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We present experimental results on the aggregation dynamics of a magnetorheological fluid, namely, an
aqueous suspension of micrometer-sized superparamagnetic particles, under the action of a constant uniaxial
magnetic field using video microscopy and image analysis. We find a scaling behavior in several variables
describing the aggregation kinetics. The data agree well with the Family-Vicsek scaling ansatz for diffusion-
limited cluster-cluster aggregation. The kinetic exponents z and z� are obtained from the temporal evolution of
the mean cluster size S�t� and the number of clusters N�t�, respectively. The crossover exponent � is calculated
in two ways: first, from the initial slope of the scaling function; second, from the evolution of the nonaggre-
gated particles, n1�t�. We report on results of Brownian two-dimensional dynamics simulations and compare
the results with the experiments. Finally, we discuss the differences obtained between the kinetic exponents in
terms of the variation in the crossover exponent and relate this behavior to the physical interpretation of the
crossover exponent.
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I. INTRODUCTION

Magnetorheological �MR� �1� and electrorheological �ER�
�2� fluids have attracted a great deal of attention �3� in the
last 20 years due to the dramatic changes in their properties
that occur under the action of external fields. MR and ER
fluids are colloidal dispersions of micrometer-sized polariz-
able particles in some carrier fluid with medium to low vis-
cosity. The key point in MR and ER fluids is that, under the
action of an appropriate external field �magnetic or electric,
respectively� the particles acquire a nonpermanent dipole
moment. Due to the interaction among these dipole mo-
ments, the particles aggregate into chainlike structures �4�
that induce huge changes in the mechanical and optical prop-
erties of the fluid. For instance, viscosity may be increased
by a factor of 106, and strong optical anisotropy �birefrin-
gence and/or dichroism� may appear.

Moreover, because the dipole moment is not permanent,
removing the external field turns off the dipolar interaction
among particles, so that the aggregates dissolve by particle
Brownian motion, and the fluid returns to a nonaggregated
configuration. Consequently, the changes induced by the
field in the macroscopic properties of the fluid are reversed.

Obviously, the possibility of controlling the macroscopic
properties of a fluid by means of an external electromagnetic
field has great potential for its use in practical applications.
In this respect, MR fluids appear to be the most useful, be-
cause higher dipole moments can be induced, which makes
available larger particle-particle interactions and, conse-
quently, stronger mechanical actions and shorter response
times. In fact, devices built around MR fluids are currently
used in striking applications in disparate fields such as the
automotive industry, building antiseismic protection, hanging

bridge stabilization, prosthetic bioengineering �5�, vibration
control systems or clutches �6,7�, research on rheological
properties of living materials �8–10�, biomedical applications
�11–14�, and, recently, the motion and manipulation of small
fluid drops in microfluidics �15,16�.

The way these applications are designed is somewhat
paradoxical, because most devices involve the modulation
�temporary destruction and restoration� of the colloidal sta-
bility of the fluid, contrary to most applications of colloidal
dispersions, in which maintaining colloidal stability is cru-
cial. Consequently, the kinetics of the aggregation and disag-
gregation processes in MR and ER fluids are issues of crucial
practical importance, because these kinetics govern the
turn-on and turn-off response times.

Furthermore, MR or ER fluids are interesting from a fun-
damental point of view, because they are complex fluids in
which the interactions among their microscopic components
may be controlled rather well at values slightly above the
energy of thermal fluctuations. Hence, MR and ER fluids are
a kind of benchmark systems in which statistical mechanical
aggregation models can be checked �17�.

For instance, the irreversible aggregation of particles and
the subsequent formation of complex structures has been in-
vestigated theoretically and experimentally during the last
two decades. Microparticle aggregation studies have been
performed in a variety of physical systems, such as ER fluids
�18�, which consist of colloids of dielectric polarizable par-
ticles dispersed into nonconducting liquids, nonmagnetic
particles immersed in a ferrofluid �usually named magnetic
holes� �19–22�, and magnetorheological fluids, which are
made of magnetizable particles dispersed into a nonmagnetic
fluid �23–27�.

The kinetics of irreversible aggregation is usually de-
scribed �28� in terms of the evolution of the probability den-
sity of clusters of size s at time t, ns�t�, and several statistical
variables that can be calculated from ns�t�, such as the num-*pdominguez@fisfun.uned.es
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ber of clusters present at time t, N�t�, or the average cluster
length S�t�. The interesting point is that experiments and nu-
merical simulations show that the evolution of these vari-
ables displays power-law behavior, namely, S�t�� tz, N�t�
� t−z�, and n1�t�� t−�. The values of these exponents are sup-
posed to be characteristic of the aggregation process.

The success of the Witten-Sander model �17,29� �labeled
hereafter as the diffusion-limited aggregation �DLA� model�
in reproducing the morphology of aggregates formed by iso-
lated particles that diffuse and aggregate into a single cluster
has led to the development of models for the cluster-cluster
aggregation problem along similar line. In this spirit, several
models have been developed �17�, in which particles diffuse
to aggregate into clusters that in turn diffuse and aggregate
into larger clusters. Most of these models are designed so
that they may be implemented in Monte Carlo simulations
with different aggregation and/or diffusion rules.

The very first formulations were focused on isotropic
cluster-cluster aggregation with both mass-independent and
-dependent diffusion coefficients and, most of them, dealing
with the fractal dimension of the aggregates �30,31�. Simu-
lations of isotropic cluster-cluster aggregation with mass-
independent diffusion �28� allowed the definition of a scaling
relationship for the cluster size distribution function:

ns � t−�s−�f�s/tz� , �1�

with f�x��1 for x�1 and f�x��1 for x�1. This scaling
relationship may also be cast in the form

ns � s−2g„s/S�t�… , �2�

where g�x��x� for x�1 and f�x��1 for x�1. The expo-
nent � is called the crossover exponent and is very relevant
in this work.

In this formulation, the characteristic exponents depend
on model details such as the mass dependence of the diffu-
sion coefficient �32�. In this spirit, Miyazima and co-workers
proposed a model considering oriented anisotropic particles
aggregating into rodlike clusters with a mass-dependent dif-
fusion coefficient, namely, D�s��s�, where the parameter �
is called the diffusion exponent ��=0 means mass-
independent diffusion�. It was found that the scaling form
Eq. �2� did hold for this anisotropic diffusion aggregation
model, with kinetic exponent z�=z=1/ �1−�� provided that
the space dimensionality d�2. For the case of a diffusion
coefficient inversely proportional to cluster size ��=−1�, we
have z=1/2, which is close to the experimental values re-
ported for aggregation of dielectric colloids, z�0.6 �18�. A
later modification of the model �33� to include hydrodynamic
interaction effects through the diffusion coefficient, namely,
D�s�=D0�ln s� /s, gave a different functional dependence of
the average cluster size with the following form:

S�t� � �t ln S�t���, �3�

with the exponent � depending on the dimensionality of the
system. For systems with d�2, �=0.5. A cross check with
numerical Monte Carlo simulations yielded ��0.51, while
the effective value of z was z�0.61, in good agreement with
the experimental value �18�.

Coming back to the experimental studies, there are many
experiments dealing with the rheology and properties of MR
fluids �34�. However, their aggregation kinetics is still not
well understood. The literature concerning experimental ki-
netic exponents in the case of magnetic interaction between
particles has been thoroughly reviewed in Ref. �22�. For the
sake of completeness, we will briefly summarize here the
main experimental results, obtained by video-microscopy
techniques unless otherwise specified.

Let us first state that it is usual to classify the experimen-
tal data according to the values of two control parameters:
the volume fraction � of particles in the suspension, and the
ratio between the magnetic interparticle interaction energy
and the thermal energy, �, defined as

� �
Wm

kBT
=

	0m2

16
a3kBT
, �4�

where 	0 is the vacuum magnetic permeability, m the mag-
netic moment of the particle, a the radius of the particle, kB
the Boltzmann constant, and T the temperature.

In Ref. �20�, the aggregation of sulfonated polystyrene
particles with 30 wt % content of iron oxide �located in a
thin outer shell� in water was studied. The 3.6-	m-diameter
particles were enclosed between glass spacers placed 5 	m
apart. The value obtained for the growth exponent was z
=1.7 at �=1360 and ��0.1. Investigations �35,36� of
the aggregation kinetics of paramagnetic nanoparticles
��11 nm diameter� at �=4.6 and �=0.021 yielded expo-
nent values of z�0.79 and z��0.67.

The aggregation kinetics of superparamagnetic micropar-
ticles, made of magnetite grains randomly dispersed in a
polymer matrix, has been studied too �23,24,26�. In Ref.
�24�, the aggregation of 1.5-	m-diameter particles with 62
wt % iron oxide content was studied and gave z�=0.5, with
z� being constant in the range 10���100 and 0.005
��2D�0.026, while z varies so that 0.37�z�0.60. Con-
versely, in Ref. �26�, studies of 0.6-	m-diameter particles
with 27 wt % iron oxide content were reported. The authors
found a possible dependence of z on the dipolar interaction
strength �, with 0.45�z�0.75 �using �=8.6, 19, and 34 and
2�10−4���2�10−3�.

Later, Sohn �37�, working with particles very similar to
those used in Ref. �24� �0.8-	m-diameter particles with 68
wt % iron oxide content�, obtained z�1 for 3���30 and
0.02���0.06. However, the value calculated for z may
suffer from insufficient temporal sampling.

Light scattering techniques have also been used in this
field. For instance, Martin et al. �38� studied the aggregation
kinetics of an electrorheological fluid made of
0.7-	m-diameter silica particles dispersed in an organic sol-
vent, by means of small-angle light scattering. At ��104

and high volume fraction �11 wt %, a value z=0.4 was
obtained.

Scattering dichroism studies on magnetorheological fluids
similar to those used in Refs. �24,26,37� have also been per-
formed �27�. Provided that lateral aggregation does not oc-
cur, the dichroism value can be related �27� to the number of
aggregated particles Na, and a temporal power law was
found, such as Na� t with =0.44, at low volume fractions.
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In this work, a theoretical relationship between the dynamic
exponents z and  for S�t��20a was proposed. However, the
relationship between exponents  and z is dubious, because,
as we will show later, the power-law regimes for S and Na do
not occur simultaneously.

All of the above-mentioned experimental studies deal just
with the temporal exponents z, z�, and/or . To our knowl-
edge, the validity of the scaling ansatz �Eqs. �1� and �2�� has
actually been tested only by Fraden et al. �18� �in an ER
fluid� and, more recently, by Cernak et al. �22�.

Cernak et al. studied a system of magnetic holes using
video microscopy. They measured the exponents z, z�, and �,
and checked the validity of the scaling form Eq. �2�. They
observed large differences between z and z� when ��1.8
and z=z� when ��1.8, in apparent agreement with predic-
tions from scaling theory �22,28�. The values found for the
dynamic exponent z vary approximately from 0.4 to 0.59
�except for very large particles�. For low particle size and
intermediate and low values of �, they obtain an average
value z=0.42±0.06.

The magnetic hole system is a very nice experimental
model to check for the predictions of scaling theory. How-
ever, most magnetorheological fluids oriented toward practi-
cal applications imply also effects such as sedimentation
and/or complex interaction potentials among particles due to
surface charges. Assessing the validity of scaling theory for
the aggregation kinetics in such conditions still remains an
open problem.

Here, we report on an experimental study of the aggrega-
tion kinetics in a magnetorheological fluid made of
micrometer-sized superparamagnetic particles dispersed in
water. The particles are functionalized with surface carboxy-
lic groups and are denser than the surrounding fluid, and
therefore they exhibit sedimentation. In this study, the expo-
nents z, z�, , and � are determined using experimental
methods �video microscopy and image analysis� and by
means of Brownian dynamics simulations. In fact, the expo-
nent � is obtained in two independent ways. First, it was
determined by means of the behavior of the scaling function
g�x� at low values of x. Second, using Eq. �2�, it can be seen
that the decay of the population of nonaggregated particles,
n1�t�, follows a power-law behavior n1�t�� t−�, so the cross-
over exponent can be obtained from �=� /z. The experimen-
tal results are compared to results of Brownian dynamics
numerical simulations. Both the experimental and the nu-
merical results support the validity of the scaling ansatz Eq.
�2�.

The paper is organized as follows. After this lengthy in-
troduction, we briefly sketch the Smoluchowski theory for
cluster-cluster aggregation in Sec. II. Section III contains the
description of the experimental setup, the magnetorheologi-
cal fluid employed, the image acquisition and processing
methods, and the numerical simulation method. The experi-
mental and simulation results are presented in Sec. IV and
discussed in Sec. V. Finally, conclusions and suggestions for
further work appear in Sec. VI.

II. CLUSTER-CLUSTER AGGREGATION

Von Smoluchowski’s theory �39� of cluster-cluster aggre-
gation has been described often �18,26,33� in this context,

and we will briefly sketch it here for the paper to be self-
contained. This theory considers the kinetics of a system of
N initially separated identical particles that aggregate to form
clusters, which may themselves aggregate to form larger
clusters. This continuous process gives rise to a wide distri-
bution of cluster sizes that is specified by the number of
clusters of size s present in the system at time t, ns�t�. The
time evolution of the population of size s is ruled by the set
of equations

dns�t�
dt

=
1

2 �
i+j=s

Kijninj − ns�
j=1

Ksjnj , �5�

where the kernel Kij represents the rate at which clusters of
size i and j coalesce to give rise to a cluster of size s= i+ j.
Equation �5� directly shows that only binary aggregation pro-
cesses are considered, so that it must be applicable only at
low concentrations of clusters. Moreover, all details referring
to the particular physical system of interest are contained in
the reaction kernel Kij. For instance, in the case of diffusion-
limited aggregation, Kij is proportional to the product of the
cluster cross section and the diffusion coefficient. In the case
of aggregation into linear chains, it has been argued �40� that
the cluster cross section should be independent of the cluster
size.

Several statistical measures are typically used to charac-
terize the kinetics of an aggregation process. For instance,
the mass average cluster size S�t� is defined as

S�t� =

�
s

s2ns�t�

�
s

sns�t�
. �6�

It is also possible to define an average length of the cluster,
which we will label l�t�, as

l�t� =

�
s

sns�t�

�
s

ns�t�
=

�
s

sns�t�

N
, �7�

where N�t� is the total number of clusters present in the
system at time t. In this framework, these quantities are ex-
pected to follow simple temporal power laws, with expo-
nents z, z�, and −z�, respectively,

S�t� � tz, l�t� � tz�, N�t� � t−z�, �8�

and the scaling relationship �Eq. �1� or �2�� is supposed to be
valid.

Some relationships between the exponents may be ob-
tained on physical grounds. For instance, it can be shown
�28� that mass conservation requires

� = z�, � = 2 − � . �9�

Moreover, through Eq. �1� and using mass-dependent diffu-
sion coefficient �D�s��, the relationship can be obtained
�17,32� that z�=� if ��1 and z�=z if ��1. Dynamic scal-
ing theory also ascribes a physical meaning to the values of
the crossover exponent �, so that
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� = 	2 − � if � � �c,

2 if � � �c,

 �10�

where �c is a critical value that indicates the transition be-
tween a regime dominated by binary aggregation events that
involve one large and one small cluster ����c�, and a re-
gime where the small-large and large-large interactions have
similar probabilities ����c�.

III. EXPERIMENTAL AND NUMERICAL METHODS

A. Experimental setup

In the experiments reported here, the MR fluids were
surfactant-stabilized aqueous suspensions of superparamag-
netic particles, supplied by Estapor �M1-070/60�. These par-
ticles consist of a polystyrene matrix with embedded magne-
tite crystals of small diameter �10 nm, typically�. Since these
iron oxide grains are randomly oriented inside the micropar-
ticles, the resulting magnetic moment is zero in the absence
of an external magnetic field. The superparamagnetic par-
ticles have a diameter of 0.97 	m and a magnetite content
of 54.65 wt %, which yields a density of 1.85 g/cm3.

To avoid particle aggregation and assure redispersion of
the particles upon external field switch-off, both a surfactant
and charge stabilization are used. Indeed, the surface of the
latex microspheres is functionalized with carboxylic groups,
and sodium dodecyl sulfate �SDS� is added to the suspension
at a concentration of 1 g/l. Variation of the volume fraction
of the suspension is achieved by convenient dilution, always
keeping the SDS concentration of the resulting suspension at
the above-mentioned value.

When an external magnetic field H� is applied, a net mag-
netic dipole moment aligned with the external field is in-
duced in the particles. This magnetic moment is m�

= �4
 /3�a3M� , with M� =�H� , where M� is the magnetization of
the particle and � the particle magnetic susceptibility. We
have characterized the magnetic properties of the particles by
measuring their magnetization curve using a Vibrating
Sample Magnetometer �VSM�. These measures permit us to
obtain the � value �Eq. �4�� when the magnetic field ampli-
tude is varied. This curve can be seen on Fig. 1; in the inset
we show a detail of the central zone. For the particles used in
these experiments, a magnetic saturation of 42 kA/m �23
emu/g� is obtained, in agreement with an estimation in the
form Ms�0.54 Ms

Fe3O4 �27 emu/g, where 0.54 is the per-
centage of magnetic content in the particles and Ms

Fe3O4

=49 emu/g is the magnetic saturation of magnetite �41�. In
the inset of Fig. 1 a small hysteresis loop is observed. Mak-
ing an average value for the two branches of the curve in the
range �H��10 kA/m, a magnetic susceptibility value �
�1.6 is obtained, in agreement with the value ��1.5 re-
ported in Ref. �24� with similar particles.

The suspension sample is confined in a cylindrical cell
made of two horizontal quartz windows and a Teflon spacer
with inner diameter 6.5 mm and height 100 	m. The whole
system is placed inside a chamber surrounded by a circulat-
ing thermostatic bath that keeps the temperature constant
during the experiments at T=282 K. Each of the experi-

ments reported here is performed on a freshly prepared MR
fluid sample.

The system used to generate the magnetic field has been
thoroughly described elsewhere �42�. Briefly, it consists of
two orthogonal pairs of coils driven by two computer-
controlled arbitrary function generators �HP-33120A� that
feed two high-power amplifiers �Kepco, BOP50-4M and
BOP50-2M�. That system allows the generation of highly
uniform time-varying magnetic fields, with a spatial varia-
tion of the magnetic field lower than 0.3% in the observed
region. Nevertheless, in the present experiments, only
uniaxial stationary magnetic fields are employed, so that only
one function generator, one amplifier, and a pair of coils are
used. The generated magnetic field is set perpendicular to the
vertical axis of the experimental cell.

The video-microscopy setup used to grab the images is
located below the sample, and is formed by a Navitar long-
working-distance microscope with zoom capabilities at-
tached to a digital charge-coupled device camera �Retiga
EX�, with a spatial resolution of 1360�1036 pixels, 12-bit
intensity resolution, and a maximum acquisition speed of one
full frame image every 0.3 s �see Fig. 2�.

As stated above, the particles are denser than the carrier
fluid and, therefore, they sediment toward the bottom
cell wall. The sedimentation takes place in a time ruled
by the sedimentation velocity Us=MgD0 /kBT�1−� /�p�
�0.23 	m/s, where M is the mass or the particle, D0 the
particle’s diffusion coefficient in water, � the water density,
and �p the particle density. In the experimental conditions,
D0 can be estimated by means of the Stokes-Einstein relation
to be D0=kBT /6
�a=0.343 	m2/s. Hence, the time needed
for a particle at the middle of the cell to settle to the equi-
librium layer �48.5 	m� is �140 s. In all of the experi-
ments here reported we waited for about 15 min before start-
ing the experiment, in order to make sure that the suspension
is settled.

Assuming that the Boltzmann density profile is a reason-
able approximation for the real density profile �43�, it can be

FIG. 1. Magnetization curve for the magnetic particles used in
this work with a magnetic saturation Ms=42 kA/m. Inset: Detail of
the central region of the curve ��H��20 kA/m�, showing the pres-
ence of a small hysteresis loop.
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estimated that 85% of the particles in the dispersion lie in a
thin bottom layer with a thickness of 2 particle diameters.
For our experimental conditions, it can be calculated that the
particles are situated an average distance of �1 	m above
the bottom window.

The experimental procedure is as follows. Once the
sample cell containing the magnetic suspension is introduced
in the experimental setup, it is left to stand for at least 15 min
free of applied magnetic field for the particles to sediment. In
that way, the magnetic particles have enough time to settle to
the Boltzmann equilibrium density profile. Therefore, the
system of particles is quasi-two-dimensional �quasi-2D� and,
consequently, we focus the imaging system on the layer of
particles located right above the bottom quartz window. After
this rest period, we capture typically 5 min of images without
field. Images are captured at a rate of one every 0.4 s, at
maximum spatial resolution. Then we apply a constant uni-
form magnetic field for 5000 s, typically. Therefore, each
experiment comprises about 18 000 images that are stored in
real time on the hard disk of the controlling computer for
later processing. This procedure has been performed in ex-
periments carried out at different values of � and surface
fraction �2D.

Image analysis, data extraction, and statistical calculations
have been carried out with our own developed software,
based on the free open-source Java program for image analy-
sis named IMAGEJ �44�. In this software, we implement an
adaptive threshold algorithm. Briefly, the software removes
the image background and captures adequately the contour

of the clusters. An example can be seen in Fig. 3: in the top
image, we show the original captured image and on the bot-
tom we show the analyzed binary image.

From the series of images, we are interested in obtaining
the evolution of relevant physical variables. The image
analysis detects only the contour of the clusters from the
images, and it is possible to obtain the number of clusters, N,
as well as the mean cluster size, S�t�, directly from the con-
tour of the objects. However, this is not possible for the
number of free or nonaggregated particles �isolated par-
ticles�, n1�t�, nor for the number of aggregated particles
�number of particles forming clusters�, Na�t�=�i�2sns�t�,
where the number of particles composing the cluster is
needed. The easiest way to make that calculation is to divide
the area of the individual objects found by the algorithm by
the area of an individual particle. The results of this proce-
dure upon the experimental images are not very good, be-
cause both the polydispersity of the particles and their
Brownian motion in the direction perpendicular to the bot-
tom glass plate introduce large dispersion in the distribution
of apparent particle area.

FIG. 2. Scheme of the video-microscopy setup. In the inset we
show an outline of the cell that contains the MR fluid and the
system for generating the magnetic field.

FIG. 3. Video-microscopy image showing the clusters formed
by the microparticles after t=4358.4 s of constant applied field
with �=1718, �2D=0.088. Top: original captured image. Bottom:
corresponding analyzed binary image.
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Therefore, in order to distinguish isolated particles from
chainlike clusters, we have implemented a circularity crite-
rion. The circularity of an object can be defined as C
�4
A / P2, where P and A are the perimeter and the area of
the object, respectively. Obviously, a circle has C=1; any
other planar geometrical shape yields a lower circularity
value. In the case of interest here, it is obvious that the cir-
cularity of linear chains decreases with increasing number of
particles in the chain, with doublets having the highest cir-
cularity among all chains. Consequently, the implementation
of the criterion is quite simple: if the circularity of an object
is greater than the circularity of a doublet, the object is con-
sidered an isolated particle. To calculate the value for the
circularity threshold, we estimate the expected area of a dou-
blet as twice the area of one particle, using the calibrated
magnification of the imaging system. Then, we keep the cir-
cularity values that correspond to doublets whose area is
close to the expected one. These selected circularity values
are used to compute an average doublet circularity, as can be
seen in Fig. 4. This procedure is repeated for several images
taken with no magnetic field, and a further averaged value is
obtained for the doublet circularity.

B. Numerical model

The experimental results have been compared to numeri-
cal simulations of a simple model for a MR fluid. For that
purpose, we performed 2D Brownian dynamics �BD� simu-
lations of a system of monodisperse hard spheres interacting
through dipolar magnetic interactions and subject to Stokes
friction against the carrier fluid �42�. Several approximations
have been made in order to keep computational complexity
to a minimum. For instance, inertia terms in the equation of
motion have been neglected because the Reynolds number
for the particle’s motion is guaranteed to be very small �Re
�10−4�. Local field corrections to the magnetic field and

hydrodynamic interactions �particle-particle and particle-
wall� have been disregarded too.

Considering the previous assumptions, the Newton equa-
tion of motion reads, in dimensionless form,

dR� i

d�
=

ts

2a�0
�
i�j

F� ij , �11�

where �0=6
�a is the Stokes friction coefficient, the dimen-

sionless position vector of the ith particle is R� i=ri /2a, ts

�122� /	0M2, �= t / ts is the dimensionless time, and F� ij is
the total force exerted by the jth particle onto the ith particle.

The term F� ij contains contributions of three types, namely,

the magnetic force F� ij
m that drives the aggregation process, an

excluded-volume force F� ij
EV that prevents particle overlap,

and a Brownian term F� ij
B. To represent the magnetic force, we

use the point-dipole approximation

F� ij
m =

3	0m2

4

�
i�j

1

rij
4 ��1 − 5�m̂ · r̂ij�2�r̂ + 2�m̂ · r̂ij�m̂ �12�

where r�ij =R� i−R� j, r̂ij =r�ij /rij is the unitary vector between the
centers of mass of particles i and j, and m̂=m� /m is the uni-
tary vector corresponding to the magnetic dipole moment,
which is considered to be aligned with the field direction for
all particles when the local field correction to the magnetic
field is neglected. The excluded-volume force is a short-
range force that increases sharply when the particles come
into contact. We use the expression �45,46�

F� i
EV = A

3	0m2

4
�2a�4�
i�j

exp�− B�rij/2a − 1��r̂ij , �13�

where the parameters A and B have been set as A=2 and B
=10, so that for two particles that are in mechanical contact,
the repulsive force exactly balances the attractive dipolar
magnetic interactions. The thermal fluctuations can be in-
cluded, adding the following term:

�Fil
B�t�Fi�l�

B �t��� = 2D��t − t���ii��ll�, �14�

where D is the particle diffusion coefficient and the subscript
l corresponds to the spatial directions, l=x,y,z.

The control parameters in the simulations are � and �2D.
The value of � is set directly, while the value of �2D is set by
choosing the size L of the square box occupied by the sys-
tem. Then, the number of particles is set to Np=�2DL2 /
a2,
and the initial average distance between particles is l
�2a��2D�−1/2. The ranges of values of the control param-
eters used in the simulations were 100���3000, 0.03
��2D�0.15, and L=200, 300, 500, which gave runs with
numbers of particles in the range 1521�Np�17 161.

The initial condition for the simulations was prepared by,
in the first place, placing the particles in a regular square
lattice with step l; second, imposing random displacements
of modulus smaller than �l−2a� /2 �to avoid overlapping� on
the positions of the particles; and running the simulation with
�=0, i.e., allowing for pure diffusion of the particles, during
a time of the order of 10l2 /D0. In the analysis of the simu-

FIG. 4. Circularity vs area for an experiment with �2D without
magnetic field for estimating the doublet circularity C2. Inset: cir-
cularity histogram. 76% of the objects are contained in the range
0.8�C�1.
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lation results, we have employed the following aggregation
criterion: two nearby particles are considered to be aggre-
gated if the separation between their closest surface elements
is smaller than 10% of the particle diameter. This criterion
closely resembles the one used for the experimental images.
The time step in the numerical simulations was 0.001 in
dimensionless units, which proved to be small enough to
avoid strong accelerations due to significant overlapping
when the particles came into close contact.

IV. RESULTS

A. Experimental results

Every image acquired during the experiment is stored in
real time on the hard disk of the computer that controls the
experiment. After the experiment is finished, all of the im-
ages are processed by means of the cluster recognition pro-
gram, which yields a list of clusters and their contours. These
lists are further processed to compute the statistics of the
different relevant physical magnitudes, namely, the number
of clusters in the image, N�t�, the average cluster size S�t�,
the average chain length l�t�, the number of aggregated par-
ticles, Na�t�, and the number of isolated particles, n1�t�. Typi-
cal experimental results for all of these magnitudes are
shown in Fig. 5. In this case, the experiment was run at �
=1718, and �2D=0.088. On the right axis we represent the
dimensionless values of S�t� and l�t� using the diameter of
the particle, while in the left axis we represent N�t�, Na�t�,
and n1�t�.

In Fig. 5, several facts can be appreciated that show up
consistently in all of the experiments we have carried out.
First of all, it should be noticed that, at the initial time, the
total number of clusters is larger than the number of isolated
particles, N�0��n1�0�, and that the number of aggregated

particles is not null. This is due to the limited resolution in
the recognition of isolated particles. In fact, at the very be-
ginning, a small fraction of the particles are counted as dou-
blets, because of the limited resolution for small objects, so
that N�0�=n1�0�+Na�0� /2. Moreover, the subsequent evolu-
tion of Na shows a decrease to a minimum value of approxi-
mately Na�0� /2. This happens because the pairs of nearby
particles that are initially counted as doublets are oriented
randomly with respect to the magnetic field. Now, the dipolar
magnetic interaction between a pair of particles is attractive
if the angle between the vector that links the particle centers
and the magnetic field, �, is ���c=arccos�1/�3��55°, and
repulsive otherwise. Therefore, the initial doublets that have
orientations lying in the attractive region do really aggregate,
and remain as doublets, while the initial doublets that have
orientations lying in the repulsive region separate and go into
two isolated particles. Consequently, a fraction of the initial
doublets of the order of 2�c /
�60% will remain as dou-
blets, while approximately 40% of the initial doublets will
separate into isolated particles.

All of the quantities plotted here show some region in
which power-law behavior is observed. It is important to
notice that N�t�, S�t�, l�t�, and n1�t� share a common region
of power-law behavior; this region is indicated in Fig. 5 by
two vertical lines. On the other hand, the number of aggre-
gated particles, Na�t�, displays power-law behavior at shorter
times. A closer inspection of the data shows that the region in
which Na�t� displays power-law behavior corresponds to a
regime that is dominated by the aggregation of pairs of iso-
lated particles into doublets, and where very few clusters of
size larger than two particles are formed.

The exponents for N�t�, S�t�, l�t�, and n1�t� are calculated
for the data within the common region of power-law behav-
ior. The results for all of the experiments, together with the
exponent of Na�t�, are reported in columns 3–7 of Table I.
The uncertainty in the reported values is one unit in the least
significant figure, except for the two last columns, where
calculation is straightforward once we know the uncertainties
for �, z, and z�. We would like to remark that the values of z�
obtained from N�t� and n1�t� are in agreement within the
experimental error.

A complete check of the scaling ansatz �Eq. �2�� requires
a study of the fit of the scaling function to the experimental
results, and we also need to obtain the crossover exponent �
�18,22�. The scaling function is appropriate for the experi-
ment if the experimental data show good collapse onto a
single curve when the function s2ns�t� is plotted against
s /S�t�. If good collapse is obtained, the logarithmic slope of
the scaling function at small values of s /S�t� provides the
value of �. Of course, good collapse should be expected only
in the time range in which S�t� shows power-law behavior.

Typical experimental data for the scaling analysis are
shown in Fig. 6. The data correspond to the experiment
whose evolution is represented in Fig. 5, limited to time
values within the region bounded by the two vertical lines.
The collapse of the experimental data is remarkable. The
logarithmic slope of this plot yields a value of the crossover
exponent �=1.66±0.08. The values obtained for � for all
experiments, together with their uncertainties, are shown in
Table I.

FIG. 5. �Color online� Typical example of the evolution of the
kinetic variables at �=1718, �2D=0.088. On the left axis �gray
points� N�t�, Na�t�, and n1�t� are represented. Dimensionless values
of S�t� and l�t� are represented on the right axis �black points�. The
vertical lines indicate the region of power-law behaviors �except for
Na�t��. See the values obtained for the exponents in Table I.
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A cross check of the values of the crossover exponent can
be performed directly using the relationship �=� /z. The re-
sulting values are also summarized in Table I. Good agree-
ment is found between the values shown in the columns
labeled � and � /z of Table I.

B. Numerical results

As far as the scaling aspects are concerned, the numerical
simulation results show a behavior similar to the experimen-
tal one. A typical evolution of the kinetic variables is shown
in Fig. 7, obtained with parameter values �=100, �2D
=0.15, L=300, and N=17161.

Many common features with the experimental results can
be observed. For instance, the power-law regimes for vari-
ables N�t�, S�t�, l�t�, and n1�t� coincide again in the same
time region. The power-law region for Na�t� is also domi-
nated by aggregation of two isolated particles to give a dou-
blet. However, in the simulations large numbers of aggre-
gated particles are achieved comparatively faster than in the

TABLE I. Experimental results.

� �2D R1 /R0  � z� z � � � /z

48 0.074 1.12 0.23 0.73 0.47 0.61 0.33 1.2±0.2 1.20

77 0.071 1.28 0.31 0.95 0.49 0.50 0.34 1.94±0.06 1.90

77 0.132 1.74 0.35 1.05 0.55 0.48 0.34 2.3±0.1 2.19

171 0.068 1.64 0.48 1.13 0.57 0.61 0.38 1.77±0.07 1.85

171 0.115 2.13 0.65 0.92 0.51 0.50 0.30 1.7±0.1 1.84

296 0.145 2.87 0.40 1.15 0.57 0.60 0.42 1.8±0.1 1.92

455 0.039 1.71 0.24 0.71 0.40 0.48 0.30 1.6±0.1 1.48

455 0.084 2.52 0.59 1.06 0.46 0.59 0.39 1.7±0.1 1.80

455 0.112 2.91 0.50 0.73 0.44 0.51 0.31 1.5±0.1 1.43

640 0.051 2.19 0.56 1.28 0.54 0.61 0.41 1.9±0.2 2.10

640 0.086 2.85 0.65 1.00 0.45 0.60 0.43 1.43±0.05 1.67

812 0.031 1.87 0.62 1.03 0.48 0.65 0.47 1.6±0.1 1.58

812 0.038 2.06 0.41 0.65 0.41 0.54 0.41 1.6±0.1 1.20

812 0.106 3.43 0.40 1.06 0.49 0.65 0.47 1.60±0.08 1.63

985 0.051 2.54 0.27 0.73 0.38 0.43 0.40 1.4±0.2 1.70

985 0.075 3.08 0.42 0.96 0.50 0.67 0.46 1.3±0.1 1.43

1531 0.059 3.17 0.21 0.74 0.44 0.64 0.44 0.9±0.1 1.16

1718 0.088 4.01 0.66 0.79 0.34 0.48 0.38 1.66±0.08 1.63

1909 0.045 2.97 0.38 0.88 0.41 0.54 0.49 1.7±0.1 1.63

2844 0.043 3.33 0.31 0.82 0.45 0.61 0.44 1.4±0.1 1.34

FIG. 6. Experimental representation for the scaling function in
the �=1718, �2D=0.088 case. A crossover exponent �
=1.66±0.08 is obtained.

FIG. 7. �Color online� Evolution of the kinetic variables in a
typical numerical simulation with parameter values �=100, �2D

=0.15, L=300, N=17161 �the corresponding values for the kinetic
exponents are included in Table II�. N�t�, Na�t�, and n1�t� are rep-
resented on the left axis �filled gray circles�. S�t� /2a and l�t� /2a are
represented on right axis �black circles�. The vertical lines indicate
the region of power-law behavior �except for Na�t��.
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experiments, so that the power-law region shrinks.
The kinetic exponents obtained from the simulations per-

formed are shown in Table II. Good agreement is found for
exponent z, but the agreement is less good for exponents 
and z�, and clear discrepancies are found between the values
of exponents � and � in experiments and simulations.

A typical result of the scaling analysis on the simulation
data is shown in Fig. 8. The exponents have been calculated
in the regions 10−3� t�10−2 s, for exponent , and 0.1� t
�1 s, for exponents �, z, and z�. The values obtained for �
for all simulations, together with their uncertainties, are sum-
marized in Table II. The cross check against the values ob-
tained for � /z is again very satisfactory within the estimated
error.

The agreement between the values obtained separately for
� and � /z shows unambiguously the validity of their equal-

ity. Let us remark that the relation between � and � /z is
obtained by imposing the condition of particle number con-
servation on the scaling relationship �Eq. �2��. This shows
that, within the region where power-law regimes are ob-
served, events consisting of lateral aggregation of isolated
particles over long sedimented chains are very rare and are,
therefore, statistically irrelevant.

V. DISCUSSION

We have not found a direct dependence of the different
exponents summarized in Tables I and II with the external
parameters � and �2D. For that reason, in order to compare
with the values reported in the literature, we have calculated
average values of these exponents over all the exponents, for
both experiments and simulations. The results are shown in
Table III. The expressed uncertainties are in each case the
standard error of the mean. The average experimental value
found for the exponent associated with the evolution of the
number of aggregated particles, ��=0.43±0.02, is in very
good agreement with the value found by means of the scat-
tering dichroism technique �27�, namely, =0.44±0.02, at
similar low values of �2D. However, it is somewhat smaller
than the value obtained in the simulations, ��=0.50±0.02.

The average values of the exponents �z�� and ��� reflect
better the discrepancies between the values obtained in the

TABLE II. 2D Brownian dynamics simulation results.

� �2D L R1 /R0 Npart �  z� z � � /z

100 0.15 300 2.03 17161 1.57 0.50 0.64 0.69 2.01±0.14 2.26

300 0.03 200 1.31 1521 1.61 0.56 0.56 0.54 2.8±0.2 2.99

300 0.03 500 1.31 9409 1.47 0.54 0.53 0.53 2.40±0.12 2.75

300 0.06 300 1.85 6724 1.42 0.57 0.62 0.67 2.15±0.14 2.12

300 0.09 300 2.27 10201 1.64 0.55 0.64 0.66 2.45±0.11 2.48

300 0.12 300 2.62 13689 1.47 0.53 0.68 0.77 2.06±0.13 1.90

300 0.15 300 2.93 17161 1.50 0.49 0.65 0.66 2.3±0.2 2.27

1000 0.03 200 1.96 1521 1.42 0.57 0.50 0.43 2.90±0.10 3.30

1000 0.03 500 1.96 9409 1.28 0.57 0.53 0.45 2.6±0.2 2.84

1000 0.06 300 2.77 6724 1.58 0.57 0.55 0.53 2.85±0.15 2.98

1000 0.09 300 3.39 10201 1.36 0.55 0.66 0.72 1.95±0.07 1.89

1000 0.12 300 3.91 13689 1.45 0.52 0.65 0.70 2.2±0.3 2.07

1000 0.15 300 4.38 17161 1.52 0.48 0.64 0.73 2.0±0.2 2.08

3000 0.03 200 2.82 1521 1.33 0.53 0.44 0.42 2.51±0.12 3.17

3000 0.06 300 3.99 6724 1.67 0.57 0.63 0.70 2.29±0.11 2.39

3000 0.09 300 4.89 10201 1.54 0.55 0.64 0.69 2.24±0.12 2.23

3000 0.12 300 5.65 13689 1.51 0.51 0.61 0.63 2.0±0.2 2.41

3000 0.15 300 6.31 17161 1.42 0.49 0.65 0.71 2.00±0.15 2.00

FIG. 8. Scaling analysis for typical simulation data obtained for
parameter values �=300, �2D=0.06, L=300. A crossover exponent
�=2.15±0.14 is obtained.

TABLE III. Average values of kinetic exponents.

Type �� ��� �z�� �z�

Experiments 0.43±0.02 0.92±0.04 0.47±0.02 0.57±0.03

Simulations 0.55±0.01 1.5±0.1 0.59±0.01 0.62±0.02
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experiments and in simulations. However, the agreement ob-
tained for the �z� exponent is rather good. Moreover, the
values obtained for �z�, both in experiments and by simula-
tions, are perfectly compatible with most results yet pub-
lished, which report values z�0.60 for these kinds of system
�18,33�. In Ref. �33�, it was proposed that values of the z
exponent close to 0.6 appear because of the effects of hydro-
dynamic interactions between particles within the same clus-
ter, leading to a modified power law �see Eq. �3��. That func-
tional dependence is plotted in Fig. 9 using the data from an
experiment with �=1718 and �2D=0.088. Power-law behav-
ior is observed and, for the data in this figure, the exponent
obtained is �=0.38. The values obtained for this exponent
are also shown in Table I. The average value obtained for all
the experiments gives ���=0.40±0.02. This result is lower
than the ��0.51 value obtained by Miguel et al. but higher
than the ��0.31 obtained by Cernak et al. No systematic
dependence of � on the values of � or �2D is observed.

Another discrepancy between experiments and simula-
tions is found in the values of the exponents � and �. It
appears that exponents � and � take much larger values in
the simulations than in the experiments. While ���expt

=0.92±0.04, the corresponding value for the simulations is
���sim=1.5±0.1. For the crossover exponent, we notice that
the range of values for experiments and simulations is differ-
ent, so 1��expt�2��sim�3. Both facts may be related to
the different behavior of isolated particles in the simulations
and in the experiments.

Moreover, the dispersion in the exponent values, both ex-
perimentally and numerically, is bigger for � and �, and
smaller for z. This probably reflects the relative role of the
number of isolated particles in each of the exponents. Indeed,
the exponent � depends entirely on the evolution of the num-
ber of isolated particles, while the exponent z, being a second
moment of the cluster size distribution, gives much more
weight than z� to the population of larger clusters. On the
contrary, regarding the number of clusters, N�t�, the larger
clusters count as much as a single free particle. The evolu-
tion of n1�t� might be very sensitive to the initial spatial
configuration of the particles, and neither the experiments

nor the simulations have been averaged over realizations.
That means that, if the difference between experiments and
simulations is related to the free particles, the discrepancies
between exponents should be clear for z�, �, and  but not
for z, as observed.

With the intention of exploring this possibility, we repre-
sent in Fig. 10 the relative difference �z−z�� /z� versus the
crossover exponent �, for both experiments and simulations.
In this work, all values obtained, either experimentally or in
simulations, for the crossover exponent are larger than unity.
Therefore, we should obtain z=z� �because ��1� in all
cases �except perhaps when ��2�. This does not occur.
However, it can be noted that z�z� when ��2, since z
�z� when ��2 and, reciprocally, z�z� when ��2. A strik-
ing result is the different behavior for experiments and simu-
lations: the experimental data are situated in the region �
�2 and z−z��0, while the data obtained in the numerical
simulations are in the region ��2 and z−z� slightly above
or below zero. This observation allows a qualitative interpre-
tation based on the different predominant aggregation re-
gimes for each set of data. If z�z� that means that S�t�
grows faster than l�t� �remember that l�t��N�t�−1�. This
means that the most important contribution to the growth of
S�t� comes from the production of large clusters by aggrega-
tion of intermediate-size clusters. Hence, according to the
interpretation of Eq. �10�, ��2 should be expected, in
agreement with the experimental results. On the other hand,
simulations show z roughly equal to z�, so that in this case
�=2 should be expected. This does not happen because, for
the simulations, the expression �=� /z also holds true and,
while zsim�zexpt, �sim is considerably higher that �expt, giv-
ing �sim�2.

In this work, no direct dependence of the exponent values
on the control parameters � or �2D has been observed. How-
ever, we have further checked whether the variability of �
values might have its origin in the variation of the control
parameters. In fact, we have studied the influence of two
characteristic length scales R1 and R0, where R1 is the dis-
tance at which the dipole-dipole interaction energy is equal

FIG. 9. Experimental representation for the functional depen-
dence of Eq. �3� for the �=1718, �2D=0.088 case. A �=0.38 expo-
nent is obtained.

FIG. 10. Relative difference between kinetic exponents, �z
−z�� /z�, versus the crossover exponent values � for experiments
�empty dots� and for numerical simulations �black dots�.
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to the energy of thermal fluctuations, i.e., R1�2a�1/3, and
R0��
a�2D

−1/2 represents the initial average interparticle dis-
tance. The ratio of these two length scales allows us to dis-
tinguish between diffusion-limited and field-driven aggrega-
tion processes. If, at the time the field is switched on, R1
�R0, the aggregation process should be diffusion limited,
while if R1�R0, the aggregation process should be field
driven. Values for this ratio in experiments and simulations
are quoted in Tables I and II, respectively.

In all of our experiments and simulation results, R1 /R0
�1 is verified. Therefore, from the beginning, the aggrega-
tion process should be dominated by the magnetic interaction
among particles. However, a dependency on this ratio is
found for the values of �z−z�� /z� and � �represented in Fig.
10�, as can be seen in Figs. 11�a� and 11�b�. In these figures,
we can see how experimental and simulation results have
different tendencies when the value of the ratio R1 /R0 is
increased. In Fig. 11�a�, for the experimental data, the rela-
tive difference between the kinetic exponents tends to in-
crease when R1 /R0 grows; however, the data obtained by the
simulations tend to a saturation value when R1 /R0�4. A
similar behavior can be observed in Fig. 11�b�: the experi-
mental values of the crossover exponent separate from the
simulation values when the ratio grows. The crossover expo-

nent values obtained in the simulations seem to converge to
��2 when R1 /R0�4. The behavior shown in Figs. 12�a�
and 12�b� for simulations at large values of R1 /R0 is prob-
ably due to the dominance of the magnetic field attraction in
the aggregation processes, which become less and less influ-
enced by diffusion as R1 /R0 increases.

A remarkable difference between experiments and simu-
lations is related to a characteristic aggregation time ta that
we might define as the time needed for half of the initial
particles to become aggregated. Whereas in the experiment
we have aggregation times ta�102 s, in the simulations we
obtain ta�0.1 s. This difference might be at the origin of the
low values of the exponent z reported in Ref. �22�.

We can theoretically estimate the aggregation time for
two magnetic particles under dipolar magnetic interaction
using the equation of motion �ṙ+3
−1		0m2r−4=0. The re-
sult, depending on � and �2D, is tag�2a2�15�D�−1�2D

−5/2 �for
3D aggregation, the exponent 5/2 must be replaced by 5/3�.
By means of this expression, we obtain aggregation times on
the order of those obtained in the simulations for typical
values of the external parameters. The cause of this discrep-
ancy is not clear to us, although several possible mechanisms
may be though of that have not been included in the theoret-
ical model used in the simulations; for instance, effects of
hydrodynamic interactions �particle-particle and/or particle-
wall� on the diffusion coefficient of the clusters �47–49�, or
anomalous electrostatic interactions �50–52�.

In order to clarify the role of the hydrodynamic interac-
tion of the sedimented particles with the lower cell wall, we
have performed some measurements by means of a mi-
crorheology technique �53�. In this technique, images cap-
tured with a constant time interval �t are analyzed to follow
the motion of the particles in the fluid. Then we calculate the
displacement of the particle’s center of mass. These displace-
ments should show a Gaussian statistics with a width � re-
lated to the particle’s diffusion coefficient, so that D=�2 /8t.
A typical experimental result, obtained with a time interval
of �t=45 s, is shown in Fig. 12, which, after a Gaussian fit,
yields Dx=0.23±0.01 	m2/s.

FIG. 11. Dependence of �z−z�� /z� �a� and � �b� on the ratio
R1 /R0 for experiments �open circles� and simulations �closed
circles�. The dotted line is a guide for the eye related to the apparent
tendency to saturation in simulation data with high values of the
ratio R1 /R0.

FIG. 12. Experimental determination by means of microrheol-
ogy of the experimental diffusion coefficient D. We show the
Gaussian fit to the number of counts obtained for each �x. A Gauss-
ian width 0.286 is obtained and therefore Dx=0.23±0.01 	m2/s
with t=45 ms.
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The height of the particle from the bottom window intro-
duces a correction to the theoretical diffusion exponent for a
free particle �43,54�. For a particle staying at a height of
1 	m above the bottom cell wall, the correction is D /D0
�0.64. Hence, using for D0 the value estimated by means of
the Einstein-Stokes relation �D0=0.343 	m2/s� the cor-
rected value for the diffusion coefficient is D=0.23 	m2/s,
in perfect agreement with the experimental value. Anyway,
this 30% decrease in the effective diffusion coefficient for a
sedimented particle with respect to a nonsedimented one
does not explain the large difference between the character-
istic aggregation times found in experiments and simula-
tions.

A final comment can be made about the lack of lateral
aggregation events at large values of � and large times.
Many experimental results show that, at high values of � and
long aggregation times, lateral aggregation appears, which
creates thicker structures, sometimes described as columns
�55–59�. These lateral aggregation events appear because of
a lateral attractive interaction between chains that may be
caused either by fluctuations �38,60� or by the magnetic in-
teraction between long chains �61�. However, experimental
�62� and theoretical �61� work shows that this attractive lat-
eral interaction between chains is much weaker than the lon-
gitudinal interaction that produces head-to-tail chain aggre-
gation.

We would like to remark that lateral aggregation events
are not observed in the experiments reported in this paper.
Several physical mechanisms can conceivably be cooperat-
ing to prevent lateral aggregation. First of all, the particles
have carboxylic groups in their surfaces, which, in an aque-
ous suspension, should give a negative surface charge to the
particles, thus creating a repulsive electrostatic interaction
among particles that is not high enough to preclude longitu-
dinal aggregation, but might make more difficult the appear-
ance of lateral aggregation, because of its comparative weak-
ness.

Another factor is related to the sedimentation of the
chains. Indeed, the force causing sedimentation is directly
proportional to the volume of the aggregate �43�. Obviously,
the volume of a chain of n particles is n times the volume of
a particle. Hence, a chain of particles will certainly sink
deeper than a single particle, which increases the hydrody-
namic interaction with the bottom plate of the experimental
cell. Moreover, recent results on numerical computations of
the diffusion of chains close to a rigid wall �49� show that the
reduction of the diffusion coefficient of a long chain close to
a rigid surface can be very high. Therefore, in the conditions
of the experiments of this paper, there must be a large hy-
drodynamic resistance to the lateral motion of the chains.

This may impede lateral aggregation in two ways. If the
lateral attractive interaction were created by chain profile
fluctuations, the reduced mobility of the particles due to the

small distance to the cell bottom plate would decrease the
amplitude of these fluctuations and, consequently, the lateral
attractive interaction would be strongly reduced. If the lateral
interaction were between long chains, these long sedimented
chains would have a strongly reduced mobility and, conse-
quently, lateral aggregation events between long sedimented
chains should be very rare.

VI. CONCLUSIONS

The video-microscopy technique and image analysis have
been used to obtain and process, respectively, experimental
data on a sedimented magnetorheological suspension of
1-	m-diameter particles in water. Additionally, two-
dimensional Brownian dynamics simulations have been de-
veloped to compare with the experimental results. We have
shown that the Family-Vicsek scaling ansatz for the
diffusion-limited cluster-cluster aggregation model is verified
both in the experiments and in the numerical simulation re-
sults. We have obtained also different characteristic kinetic
exponents by varying the external parameters � and �2D �see
Table I for experiments and Table II for simulations�. The
average exponents ��expt=0.43±0.02 and �z�expt��z�sim

�0.6 are in agreement with previous results found in the
literature �the average values can be seen in Table III�. How-
ever, discrepancies are observed in the rest of the exponents,
especially for the crossover exponent values, verifying the
relationship 1��expt�2��sim�3. We noted how this re-
sult is correlated with the differences between kinetic expo-
nent values, showing the predominance of different kinds of
processes of aggregation for experiments and simulations.
Furthermore, we found a dependence of the different values
of � on the ratio R1 /R0, exposing a dependency on the ex-
ternal parameters related to the magnetic field and the con-
centration of particles that deserves further investigation.

We have also shown a strong discrepancy between the
characteristic particle-particle aggregation times in experi-
ments and simulations. The origin of this discrepancy is not
yet known. There is work in progress to study the electro-
static and hydrodynamic interactions of the experimental
system, in order to understand the physical mechanism caus-
ing this discrepancy.
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