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Depletion force in a bidisperse granular layer
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We demonstrate the effect of the depletion force in experiments and simulations of vertically vibrated
mixtures of large and small steel spheres. The system exhibits size segregation and a large increase in the pair
correlation function of the large spheres for short distances that can be accurately described using a combina-
tion of the depletion potential derived for equilibrium colloidal systems and a Boltzmann factor. The Boltz-
mann factor defines an effective temperature for the system, which we compare to other measures of

temperature.
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Vibrated granular materials show many complex behav-
iors, including pattern formation, segregation, nonequiparti-
tion of energy, and non-Gaussian velocity distributions
[1-3]. Many of these are purely nonequilibrium effects, but
some features of vibrated granular materials are strikingly
similar to equilibrium systems such as colloidal suspensions
[1,4,5]. The extent to which the machinery of equilibrium
statistical mechanics can be used as a starting point to de-
velop a theory of these nonequilibrium steady states remains
an open question.

Segregation mechanisms, meanwhile, are important in
many industrial applications. Granular mixtures are known
to segregate by size, mass, shape, and frictional coefficients
and this segregation can be caused by many mechanisms,
including vibration, convection, and tumbling [6,7]. In this
paper we investigate a relatively unexplored mechanism for
segregation in granular materials: the depletion force. Well
studied in colloidal systems [8—11], the depletion force is an
entropic effect in which the introduction of small particles
into a colloidal dispersion will cause the larger colloidal par-
ticles to segregate. Previous suggestions of the role of the
depletion force in granular materials have focused on hori-
zontally shaken [12-14] or horizontally swirled [15] mix-
tures. The segregation effects for the horizontally vibrated
mixtures, however, has been shown to be caused by a differ-
ential driving mechanism[16], which may also hold for the
horizontally swirled system. The depletion force has also
been implicated in vertically vibrated granular mixtures,
where the Brazil nut effect is also present [17]. In this paper
we show that the depletion force can cause size segregation
in a vertically vibrated, bidisperse granular layer. Following
analyses from experiments on colloidal suspensions [10], the
pair correlation function for low concentrations of the large
particles can be accurately described using the depletion po-
tential derived for equilibrium systems and a Boltzmann fac-
tor. This Boltzmann factor defines an effective temperature
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for the system, which we compare to other measures of tem-
perature in the system.

The depletion force was originally proposed by Asakura
and Oosawa in 1954 [8]. There are two approaches for de-
riving the potential: the first is thermodynamic and the sec-
ond is mechanical. In the thermodynamic view, illustrated in
Fig. 1, the depletion force is derived through entropy maxi-
mization. There is a shell of width r; (the radius of the
smaller particles) around the large spheres into which the
centers of the small spheres cannot penetrate. By arranging
two large spheres together, the excluded volume regions of
the two large spheres overlap, and the volume accessible to
the small spheres increases, increasing the total entropy of
the system. This produces an effective attraction between the
large spheres. The mechanical view of the depletion force is
that the small spheres exert a pressure on the large spheres,
but that pressure is unbalanced when two large spheres are
close enough together that the small spheres are excluded
from the space between the spheres. The net force is found
by integrating the pressure over the surface of the large
spheres. In equilibrium, both views are equivalent and give
the following expression for the depletion potential for two
large spheres separated by a distance r, valid for moderately
low densities of small spheres:
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FIG. 1. (Color online) Schematic drawing of the depletion in-
teraction. The white shell around the large particles represents the
volume from which the small particles are excluded. The dark re-
gion shows the overlap in this excluded volume when the large
particles are close together.
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FIG. 2. (Color online) Segregation due to the depletion force.
Top panel: Experiment (p,=0.036, p; =0.066). Bottom panel: Simu-
lations (p,=0.080, p;=0.132). In both instances the large and small
spheres were initially randomly distributed throughout the available
space. v=30 Hz, I'=3.5, r;=4 mm, r;/r;=3.33, h=2.3r;.

where r; is the radius of the large spheres, P is the pressure
exerted on the large spheres by the small spheres, and V,, is
the overlap in excluded volume. V,, can be expressed as
—47(ry+1,)? 3r r

- + .
3 4(rp+ry)  16(ry+1,)?
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Our experimental setup consists of steel spheres of two
sizes placed between two horizontal plates which are vi-
brated sinusoidally in the vertical direction. Images captured
by a high resolution digital camera are analyzed to find the
positions of the large spheres. For a range of ball diameters,
as well as a range of both large and small ball volume frac-
tions, we observe segregation of the large spheres. Figure 2
shows the results of one such experiment, where large
spheres initially distributed randomly on the plate have
formed a compact cluster. The parameter values, including
the gap between the bottom and top plates, , the vibration
frequency, v, the dimensionless acceleration I'=A(27v)?/g,
where A is the vibration amplitude, and the volume fraction
of large and small spheres, p; ;=N; |V, ;/V, where V|  is the
volume of the large or small spheres and V is the volume of
the system, are given in the figure caption. The segregation
behavior is relatively insensitive to the frequency and ampli-
tude of the acceleration, but is sensitive to the gap spacing.
For spacings very close to the large ball diameter, friction
with the top and bottom plates severely limits motion of the
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large spheres. For spacings significantly larger than the large
sphere diameter, the kinetic energy of the large spheres is
much larger than that of the small spheres, and the forces
from the small spheres do not appreciably affect the trajec-
tories of the large spheres. This strong deviation from equi-
partition is a consequence of the strong interaction with the
vibrating plate experienced by all of the particles in the thin
granular layers. Except as noted, all of the results presented
below were taken with the parameters used for Fig. 2.

Because the system is highly sensitive to variations in the
flatness of the plates, we also performed molecular dynamics
simulations of the system to ensure that the segregation was
not caused by such experimental issues, using a model that
has been shown to reproduce the dynamics of similar granu-
lar experiments [1,4,18,19]. The force on a particle during a
collision with another particle is calculated with the follow-
ing equations:

Fnormal = (_ I(I'Yg_ /L'yg)ﬁp

> 3 o
Ftangential - Iu“’ysvij’

where u is the reduced mass of the two particles, Y an elastic
spring coefficient, & the particle overlap, y a dissipative
damping coefficient, and 7; a unit vector directed along the
line connecting the centers of the interacting particles. 176- is
the projection in the tangential direction of the relative ve-
locities of the spheres at the point of contact. For the simu-
lations reported, Y=107, in units of s7, and =200 and 7,
=100, in units of s~!. For computational efficiency, the cho-
sen Y creates spheres which are softer than those used in the
experiment, but combines with the chosen 7y to create a co-
efficient of restitution of 0.9, which is appropriate for collid-
ing stainless steel spheres. The top and bottom of the system
are treated as infinitely massive planes, while periodic
boundary conditions were used in the lateral direction. The
simulations produced phase segregation similar to that ob-
served in the experiment, one example of which is shown in
Fig. 2.

In equilibrium hard sphere systems, the depletion force
can be measured directly by looking at the pair correlation
function. If the density of large spheres is small enough that
only two-particle interactions are present, then the large
sphere pair correlation function, G(r), can be simply de-
scribed through the use of a Boltzmann factor: G(r)
=exp[-U(r)/T], in units where kg=1. In the nonequilibrium
granular system, there is no reason to expect that this equi-
librium approach should accurately describe the pair correla-
tion function. Figure 3(a) shows an example of the pair cor-
relation function measured in the experiment, showing a
dramatic increase at small separations. G(r) measured in the
simulation, shown in Fig. 3(b), shows a similar, although
smaller, effect (note the difference in scale). The significant
difference between the size of the peak in the simulation and
the experiment is not understood, but may be related to the
fact that, as noted above, the simulated spheres are consid-
erably softer than the stainless steel balls used in the experi-
ment.
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FIG. 3. Pair correlation function of large particles and the fit
using the a Boltzmann factor and the equilibrium depletion poten-
tial [Eq. (2)] (a) Experiment (p,=0.071, p;=0.007). (b) Simulations
(ps=0.08, p;=0.03). Solid lines are fits to the equilibrium theory
(see text).

The solid curve is a fit to G(r)=exp(-V,,P/T), with V,,
given by Eq. (2) and P/T a fitting parameter that provides
only an overall scale factor. The equilibrium-like approach
accurately reproduces the width of the peak in G(r) and the
overall shape of the curve. We have performed simulations
with smaller and larger small spheres (r;/r,=5.0 and r;/r,
=2.0), and find, as expected, that range of the interaction is
reduced in the former case and increased in the latter, but in
both cases the agreement with the theoretical result is not as
good as it is for r; /r,=3.33. One way to quantify this is to let
ry in Eq. (2) be a free parameter. For simulations with r,
=0.2, 0.3, 0.5 r;, we find r§5’=0.1610.02, 0.3+£0.03,
0.38+0.02 r;, respectively. (The uncertainties represent the
standard deviation of fit values from multiple simulations.)
The disagreement at large r, is not surprising, as Eq. (2) is
appropriate for large size ratios. The smaller discrepancy at
smaller r is not understood, but the large differences in par-
ticle masses may enhance nonequilibrium effects not ac-
counted for by Eq. (2).

In the simulations, the pressure in the system can be cal-
culated by use of the virial theorem [4,20],allowing an ex-
plicit calculation of an “effective temperature,” Ty,,, from
the value of P/T obtained from the fit to G(r). In order to
determine if this temperature is related to other fluctuations
in the bidisperse system, we have measured three other ef-
fective temperatures in the computer simulations, the granu-
lar temperature of the small spheres, the granular tempera-
ture of the large spheres, and an effective temperature
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FIG. 4. (Color online) Temperatures measured in the simula-
tions of the granular system. (a) Velocity distributions of small and
large particles in the simulations with the same parameters as in
Fig. 3(c) (vo=+(v?)). The solid line is a Gaussian distribution. (b)
Average displacement (x) as a function of time for a large particle
subjected to a constant external force, and mean squared displace-
ment (x?) vs. time for an unforced particle (p,=0.096, p;=0.0026).
(c) The granular temperatures of the small (black squares) and large
(red circles) spheres and the fluctuation-dissipation temperature
(green triangles) at different densities of the small spheres plotted
vs. the effective temperature measured from for the depletion po-
tential. (From lowest to highest Tj,,: p,=0.036, 0.060, 0.072,
0.097.)

defined through a fluctuation-dissipation relation. The granu-
lar temperatures are given by m(v;)?, where v; is one com-
ponent of the particle velocity and m is its mass. The distri-
butions of the horizontal velocity components for the large
and small particles are shown in Fig. 4(a). Both are approxi-
mately Gaussian for small values of the velocity, and the
small particles are well described by a Gaussian distribution
over all of the accessible range. The smaller particles are less
confined and hence have a more three-dimensional motion,
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which has been shown to lead to more nearly Gaussian ve-
locity distributions [21].

The granular temperatures are compared to 7, for sev-
eral concentrations of small spheres in Fig. 4(c). The results
show that, unlike either granular temperature, 7y, is a strong
function of small sphere density. (Note that in the equilib-
rium theory the concentration of small spheres contributes to
the depletion interaction only through the pressure, which is
directly computed in our determination of T,,,.) We also
investigated whether 7, is related to an effective tempera-
ture determined by a fluctuation-dissipation relation. While
the granular system is not in the linear nonequilibrium re-
gime, some studies have found that fluctuation-dissipation
measurements of the temperature can agree with the granular
temperature [22,23]. In particular, in Ref. [23], it was found
that the granular temperature of each species of particles in a
binary granular gas matches the temperature calculated by
applying the Einstein relation for that species. The Einstein
relation connects the coefficient of viscous drag, kg, to the
diffusion constant, D, through the temperature: T=kg;,,D. In
the simulations, we can apply a constant external force to a
large sphere and measure ky,, using the relation F
=KdragUterm» Where vyey is the terminal velocity. An example
of the observed linear displacement vs. time in the presence
of a constant external force is shown in Fig. 4(b). We can
also measure the diffusion constant in the case of no external
forces using the relation (x?)=2Dt. An example of this is also
shown in Fig. 4(b). Combining these measurements gives us
an independent measurement of temperature in the system:
Trp=DF,.,/ U As can be seen in Fig. 4(c), the fluctuation-
dissipation measurement of the temperature does not match
the depletion temperature. Also, unlike the results described
in Ref. [23], there is no agreement between the fluctuation-
dissipation temperature and either granular temperature, al-
though it is relatively close to the value found for the large
spheres. This difference may be due to the forcing or dissi-
pation from the top and bottom boundaries, which were not
present in the model of Ref. [23]. Similarly, in quasi-2D
colloidal systems, the presence of the confining plates results
in additional contributions to the depletion interaction [11]
that have not been considered in the above calculations. In
the equilibrium system analyzed in Ref. [11], these “three-
body” interactions (the two large spheres and the confining
wall) result in only a small correction to the depletion poten-
tial at the small sphere densities considered here.

As the density of small balls increases, the simple form of
the equilibrium depletion potential shown in Eq. (2) is no
longer accurate [24]. From an entropic point of view, the
most favorable separations are those that allow integer num-
bers of small spheres to fit between large spheres. In colloi-
dal suspensions this leads to additional peaks in the pair
correlation function at integer multiples of the small sphere
diameter. The magnitude of the oscillations has been calcu-
lated with a density functional approach [24] and directly
measured in colloidal suspensions [10]. This many-body ef-
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FIG. 5. Pair correlation function for large spheres for a simula-
tion of a high concentration of small spheres (p;=0.12, p;=0.026).
The smaller second peak in G(r) occurs at r=2r; +2r, (indicated by
the arrow), where exactly one small sphere fits in between the large
spheres.

fect, which is not easy to explain from the mechanical argu-
ments, produces a small peak in G(r) for r=2r;+2r,. This
peak is visible in the pair correlation function determined
from a simulation at a high density of small spheres, as
shown in Fig. 5, demonstrating that subtle entropy-driven
dynamics are observable in this far from equilibrium granu-
lar system. Interestingly, the reduction in G(r) at half-integer
multiples of the small-sphere diameter seen in equilibrium
[24] is not observed.

In summary, we have found direct evidence for the deple-
tion force in a vibrated granular system. We observe segre-
gation of large particles induced by the presence of small
particles, and an increase in the pair correlation function of
the large particles at low concentrations which is consistent
with the equilibrium depletion potential. We also observe, for
high concentrations of small particles, a second peak in the
large particle pair correlation function that is characteristic of
the depletion potential. Using an approach from equilibrium
statistical mechanics, we measure an effective temperature
for the system using the depletion potential and a Boltzmann
factor. This effective temperature does not agree with the
granular temperatures of either sized particle or with a mea-
surement of the temperature with a simple fluctuation-
dissipation measurement. These observations suggest that the
driving mechanisms of the depletion interaction can operate
in far from equilibrium granular systems, but that the equi-
librium tools for quantifying the effects of the depletion
force need modification to account for nonequilibrium ef-
fects such as energy injection and dissipation.
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