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Long-time tails in freely cooling granular gases
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The long-time behavior of the current autocorrelation functions for the velocity, the shear stress, and the heat

flux is investigated in freely cooling granular gases. It is found that the correlation functions for the velocity

and the shear stress have the long-time tails obeying

as T—(d+2)/2

T_d/2

, while the correlation function for heat flux decays

exp(—{*7) with the dimensionless cooling rate ¢, the spatial dimension d, and the scaled time 7 in

terms of the collision frequency. The result of our numerical simulation of the freely cooling granular gases is

consistent with the theoretical prediction.
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I. INTRODUCTION

One of the central concerns in granular physics is to know
the rheological properties of granular fluids [1]. It is believed
that rapid granular flows for relatively dilute granular gases
can be described by a set of hydrodynamic equations derived
from the Kinetic theory [2—-4]. Most of theories assume the
molecular chaos ansatz which can only be justified for dilute
gases. For granular gases with finite density, inelastic Enskog
equation has been used [5—8] and the theoretical predictions
well recover the results of simulations and experiments
[9-11]. It is, however, well known that correlated collisions
cause significant changes in the form of constitutive relations
for molecular fluids. It is important to include effects of cor-
related collisions for the description of granular fluids,
though so far there are few such studies.

In a recent paper, Saitoh and Hayakawa [11] demonstrate
the relevancy of the kinetic approach to describe sheared
granular fluids [5]. In spite of their success, there are some
unclear points. For example, they rely on the kinetic theory
for uniform cooling granular gases, but this approach may
not be valid for the description of shear flows. In fact, we
have recognized the significant differences between freely
cooling granular gases and sheared granular flows: (i) There
is a long-range velocity correlation in freely cooling states
[12], but we do not find any evidence of the equal-time long-
range correlation in sheared granular flows [13]; (ii) the basic
solution of the inelastic Boltzmann equation in sheared
granular flows [14,15] is completely different from that of
homogeneous cooling states [16].

In general, the long-time tails obeying ~““ with the time
t and the spatial dimension d in the autocorrelation functions
play important roles for elastic gases [17-19]. In fact, it is
known that the transport coefficients in two-dimensional sys-
tems diverge in the thermodynamic limit [20,21], and they
have the logarithmic singularity in the virial expansions even
in three-dimensional cases [22] because of the long-time
tails. Thus, if there are the long-time tails in granular fluids,
we may need to change the transport coefficients determined
by the inelastic Boltzmann equation [3] and Enskog equation

—d/2

*hisao @yukawa.kyoto-u.ac.jp
Totsuki@ yukawa.kyoto-u.ac.jp

1539-3755/2007/76(5)/051304(14)

051304-1

PACS number(s): 45.70.—n, 83.10.Pp, 05.40.—a

[5-8]. In a recent paper, Kumaran [23] indicates the sup-
presses of the long-time tail in sheared granular flows as
392 while Ahmad and Puri [24] suggest the existence of
the long-time tail as 77! with the scaled time 7 by the colli-
sion frequency in freely cooling granular gases from their
two-dimensional simulation. Therefore, we need to clarify
what is the true story of the long-time tails in granular fluids
and whether the logarithmic divergences of the transport co-
efficients exist in two-dimensional granular gases.

In this paper, we discuss whether there are the long-time
tails in freely cooling granular fluids. First, we demonstrate
that the conventional long-time tails for the velocity autocor-
relation function and the shear stress auto-correlation func-
tion exist, while we predict that the autocorrelation function
for the heat flux decays exponentially from our consideration
of the hydrodynamic fluctuations around the uniform cooling
state. Second, we show the results of our extensive numerical
simulations for two-dimensional freely cooling granular
gases, which are almost consistent with our theory. Finally,
we will discuss the nontrivial relations between the diffusion
coefficients and the autocorrelation functions in granular flu-
ids.

II. THEORETICAL ANALYSIS

In this section, we calculate the behavior of the time cor-
relation functions in the freely cooling system based on the
method developed in Ref. [18]. This section consists of four
subsections associated with five appendices.

A. Model

The system considered in this paper consists of N identi-
cal smooth and hard spherical particles with the mass m and
the diameter o in the volume V. The position and the veloc-
ity of the ith particle at time ¢ are r;(¢) and v,(7), respectively.
The particles collide instantaneously with each other with a
coefficient of restitution e less than unity, where we do not
consider the effects of oblique impacts and the collision
speed dependence in e [25-30]. When the particle i with the
velocity v; collides with the particle j with v;, the postcolli-
sional velocities v; and vj( are respectively given by

vi’:vi_%(l +€)(€'UU)€, (1)
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v]’.:vj+%(l+8)(€'vij)€, (2)

where € is the unit vector parallel to the relative position of
the two colliding particles at contact, and v;;=v,~v;.

B. Basic formulas

Here, we introduce the correlation functions as

N
1

Cp(tp,1) = lim _2 Wit)v(t + t0)>zoa (3)

V—oo Vi:l

1

C(to,1) = élfio ‘—/<J A1) {1+ 10))y, (4)
Cltg) = lim (1)1 + 1), (5)

V—o V

where J,(1) and J)(¢) are the shear stress and the heat flux at
time ¢, respectively. Here, #, is the time when we start the
measurement and (- - -),0 represents the ensemble average of
possible configuration at time #,. In general, the currents
J,(t) and J,(z) consist of the kinetic part and the potential
part, respectively. In this paper, we only consider the contri-
bution from the kinetic part of the currents. This treatment is
correct in dilute gases. For higher density cases, we need a
more sophisticated method to include the contribution from
the potential part, but the corrections only appear in the pref-
actor of coefficients at least for elastic gases [31,32]. To be
consistent with the assumption that the kinetic part is domi-
nant, our calculation is based on the hydrodynamic equations
for dilute granular gases. Thus, the currents in Egs. (4) and
(5) are respectively approximated by their kinetic parts J’f](t)
and JX(¢) as

Jt) = T(0) = 25 mo (00, (1), (©)

K =150 =3 S0 @+ DT, ()

where T(z) is the temperature at time 7. In order to simplify
the calculation, we express these correlation functions as

1
Ca(to’t) = éijg‘_/<Nja[vl(tO)]Ja(t + t0)>t0’ (8)

where a=D, n,\ and

jp) = vy, )

Jn(v1) =mu vy, (10)
in(y) = 3[mvt = (d+2)TTvy,, (11)
Jp=Jjp(vy). (12)

In the following argument, the calculation of the correla-
tion functions will be separated into two steps. At the first
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step, we decompose the average in Eq. (8) into the partial
averages over spatially nonuniform systems where the par-
ticle 1 has a given velocity v,(¢y)=v and its initial position
is constrained to the neighborhood r, by the smeared out
probability density W(r,(zy))—r). Thus the decomposed ini-
tial weight function is given by &wvy—v (1)) W(rg—r;(1)),
where W(r) satisfies the normalization

fdr W(r)=1. (13)

At the second step, we further average quantities over v, and
ry in the given ensemble of granular fluids.
Following this procedure, we rewrite Eq. (8) as

Ca(t()’t)
1
Zéiilzc‘_/fdrofdv(ﬂa(vo)
XJd"<Nja("J+to)é(vo—Ul(fo))W(ro—rl(fo)»zo,

(14)

where we introduce the microscopic current densities as

jD("J +10) = jp(v,(t+10)) 6r —r(t + 1)),

T (rt+19) = 2 Mt + 10, (t + 10) S — 1 {t + 1)),

-7)\(",1‘ + IO)

= 2 %[mviz(t +10) = (d+2)T(t + 10) v, 80 — (1 + 1))

(15)

Here, we define the conditional average (F' (r,t+t0)>t0,c of an
arbitrary function F(r,1+1,) as

(NF(r.1 + 1) 8wy — 01 (1)) Wlro = r1 (1)),
= (8(vy = v, (1)) Wlrg = r1(10))), (F(r,t + 1))y
= folto, 0 (F(r,t +10));, s (16)

where f(#y,v,) is the one-particle velocity distribution func-
tion at the initial time #,. The choice of fy(t,,v,) is not trivial.
If we are interested in the relaxation process starting from an
equilibrium state, f(#y,vy) can be the Maxwell-Boltzmann
distribution. This choice, however, cannot be used for the
case starting from the middle of a cooling state. If we assume
that the base state is in a homogeneous cooling state (HCS),
it is natural to adopt f(#9,v) is the approximate solution of
HCS as

m

- o
m] e {l+ayS,(c)}y, (17)

foltg,vo) = ”H[

where Ty(t,) is the initial temperature at ;. In HCS, a¥ is
approximately described as
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16(1 —e)(1 —2e)
9+ 24d + 8de — 41e + 30(1 — e)e?

(18)

H
a2=

determined from the first Sonine expansion with ¢
=v\m/2Ty(ty) and S,(x)=x/2—(d+2)x/2+d(d+2)/8 [16].
It should be noted that a more sophisticated method devel-
oped by Brilliantov and Pdschel [33] which includes the
higher expansion term a5S5(c?) with Ss(x)=-x3/6+(d
+4)/4x* = (d+2)(d+4)x/8+d(d+2)(d+4)/48 does not give
significant differences in the statistical properties of HCS
from that by van Noije and Ernst [16,24]. Hence, we neglect
the higher order terms such as a4 for later discussions.

With the aid of this conditional average, Eq. (14) is re-
duced to

L1 .
Ca(t07t)=é1m‘_/fdrOfdea(UO)fO(tO’vO)

X f dr<‘7a(r’t+ t())>lo,C' (19)

We rewrite <ja(r,t+t0)),0,c furthermore. For a=7,\, from

Eq. (15), (ja(r,t+t0)>loyc can be approximated by

<~7a(r’t + t0)>t0,c

- [ aw ja<v)<2 8001~ () oy 1) - v<t>>>

tpc

2fdvja(v)fl(r’v’t)' (20)

Here, we replace (Z;8(ri(1+19)—r)8(t+1))-v)), . by the
local scaling distribution function [16]

m dr2
27 T(r,t + 1)

©

Xe T 1 +a,85() + 2 a,8,(@) |,
p=3

fl(r,v,t+ to) =n(r,t+ t0)|:

(21)

where &=\m|v—u(r,t+10)|*/[2T(r,1+1,)]. It should be
noted that a, is different from af and a, with /=3 may be
relevant for inhomogeneous cooling state. The replacement
of (Z;8(ri(t+1)—r)dv(t+19)—v)); . by f; might be crucial.
However, (i) in general, the velocity distribution function
(VDF) can be expanded around the local Maxwellian, (ii) the
transport coefficients and the velocity correlations can be de-
termined from the lower moments of VDF, and (iii) the long-
time tails do not depend on the choice of f;. From Eq. (15),

(jD(r,t+t0))t0,c can be approximated by

Tp(ri+ 1)), o

= f dv jo(0)(8(r (1) = (1)) (v, (1) = v(1))y

= f dv j(v)f,(r,v,1), (22)
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where f,(r,v,7) is the probability density of finding the
tracer particle 1 at position r with velocity v, which is the
same as Eq. (21) with n(r, ) replaced by the probability den-
sity of a tracer particle P(r,r) [18].

From the integration over v in Egs. (20), we rewrite the
current densities as

<‘7D(r7t + t0)>t0,(7 = ux(r,t"' tO)P(r7t+ tO)» (23)

.t + to»fow = mn(r,t+ to)u(r,t + to)u(r,t + t,),

(24)
<j>\(",f + t0)>zo,c
= 2(d+2)n(r,t + 1) [ T(r,t + ty) = Tlu,(r,t + 1)
+ 3mn(r,t + 1) u>(r 1 + t)u(r,1 + 1g). (25)

Substituting these equations into Eq. (19), we rewrite the
correlation functions in terms of the hydrodynamic fields.
When the linearized hydrodynamics is used, it is known that
cubic terms such as the second term in the right-hand side of
Eq. (25) are negligible [18].

C. Hydrodynamic equations

The time evolution of the hydrodynamic fields is de-
scribed by the following equations [34]:

on+V-(nu)=0, (26)
du+u-Vu+(nm)'V-II=0, (27)

T +u-VT+2(dn) " (I1:Vu = \V>T - uV?n) + T{ =0,
(28)

(d,- DV)P(r,1)=0, (29)

where  proportional to 1-e? is the cooling rate due to in-
elastic collisions, and D is the diffusion constant. We should
note that the diffusion equation is introduced to describe the
diffusion process of the tracer particle 1.

The pressure tensor II for dilute gases is given by

2
_‘Sijvk”k> : (30)

Hij = f’lT(slj - 7]<Vluj + Vjul - d

Here, the viscosity 7, the heat conductivity A, and the trans-
port coefficient associated with the density gradient u, the
cooling rate { and the diffusion coefficient D can be nondi-
mensionalized as

n=m7, 31)

A=X\", (32)
TNy .

p=—"u (33)
n
nT .

{=—¢, (34)
o
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29

p=""p", (35)
mn
where
2+d
7= TF(d/Z)W‘(d‘l)/Z(mT)”20‘("‘1), (36)
d(d +2)* T\

No=———T(d]2 —<d—”/2<—) S
0 16(d—1)( ) o (37)

are the viscosity and the heat conductivity in the dilute elas-
tic gas [34], and %", \*, u", £, and D" are the constants
which depend only on e in dilute cases.

The hydrodynamic equations (26)—(29) have the set of
homogeneous solutions as

n(r,t) = ny, (38)
u(r,n)=0, (39)
T(r,t) = Ty(t), (40)
where Ty obeys
dT "
#@ = — D0 Tyt (41)

with the characteristic frequency vy=nyTy/ 17o(Ty). Then,
we introduce the dimensionless deviations of the hydrody-
namic variables as

0
[ V[::n = ik &=
0, 24,*_2@1:21)“*](2
IWy) = (é/* - %W*k2>wkj_’ (50)
3.Py=—kD"P, (51)

in Fourier space, where the Fourier transformed of the hy-
drodynamic fields are defined by

T =fd§eXp(— ik - §)f(£.7). (52)

Here w;, and wy are the transversal velocity and the longi-
tudinal component of the velocity, which are defined as

Wi =wi— (k- wpk, (53)
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n(r,t) =ny(1 + p(r,1)), (42)
u(r,t) =uy()w(r,1), (43)
T(r,t) =Ty(t)(A + 6(r,1)), (44)

where the variables with the subscript H imply hydrody-
namic variables in HCS. It is convenient to introduce the
thermal velocity explicitly as

up(t) = [Ty(t)im]"2. (45)

Substituting Egs. (42)—(44) into Egs. (26)—(28), we obtain a
set of hydrodynamic equations for the deviation fields p,w,
and 6. To avoid to use time dependent coefficients, we non-
dimensionalize the set of equations by using

E=1'r,

1 1+t
T= 2 fr ds vy(s),

0

(46)

(47)

where [y=2uy(1)/ vy(t) is the characteristic length in HCS.
Here, the dimensionless time is proportional to the number
of collisions per particle.

Therefore, the uniform temperature decreases with the di-
mensionless time as

Tyt + to) = Ty(to)exp(— 20, (48)

which is nothing but Haff’s law [35]. We linearize the set of
hydrodynamic equations as

—ik 0

d-1 .,

RamL ik P

d WkH N (49)
. d+2 0,

- =ik - Nk

d' £~ 2d-n

[

Wi = 12 Wy, (54)

where k=k/|k|.
The eigenvalues s, of the matrix in Eq. (49) for small k
are calculated as

. (d=1 . 1
5:=¢ —(777 +d§*)k2+0(k3),

g’* ( d+2 )\*+d+1
- 2(d-1) dt"

)k2 +O(K),
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S, =— %kz +0(k), (55)

where s,,s_, and s, correspond to the largest, the smallest,
and the neutral eigenvalues at k=0, respectively. Here, we
note that any sound wave proportional to k does not exist in
Eq. (55). This is one of the features in granular gases. In
Appendix B, we discuss how the sound wave disappears in
granular gases. In the long-time behavior, we assume that the
largest eigenmode dominates the other modes. Thus the ap-
proximate solution of Eq. (49) is described as

2 ik
et +1) = (_ pk(gfz) ! ng(to)
_ 2
+ %)exp(&*’r),

WkH(t+ to) = (— lkpgft())

ik(d — 1) 6, (o)

+ WkH(tO) +

(d—-Dpi(to)k>  ik(d — 1wy (to)
(1 + 10) :( dgkz ok dg:‘/kH 0
Y 2
- %)expﬁur). (56)

The details of the calculation around here are shown in Ap-
pendix A.
It is easy to find the solutions of Egs. (50) and (51)

Wi (t+1) = WkL(fo)e[g*_(l/z) el (57)

Pt +1y) = Pyl1g)e™® P . (58)

From Egs. (38)—(40), (45), (48), (56), and (57), we obtain the
expressions of the hydrodynamic fields as

1)K ikngmug (1)
ml(t+1) = | = T |
¢ NTy(1o)
d—=DnyT(t)k>\ .+
d{ “T(to)
ikNTo(to)ni(to)
uy(t +1p) = (‘ % + 1y (o)
ng\m
4 tMd - DTilty) )e-b"ZT, (60)
d{ NmT(t)
d - 1)Ty(to)n, (o) k>
Tyt +10) = (( )T OZZk( 0)
dan
. [y
+ lk(d - 1)\rm7;0(l())uk”(lo) >e_({*+bk2)7,
d¢
d—1)°T(t)k>
_ %e—(g +bk2)1" (61)
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wy, (1 + o) =y (1) 1277, (62)

where we introduce ny=nyp;, u=uyw, T,=Ty0;,

g, =ug— (k- upk, (63)
ukH =I€ . uk, (64)
and
pod=l ] (65)
a T Tar

Here, we note that 7)_, decays exponentially as ¢¥'7. The
origin of the exponential decay is the absence of the energy
conservation law in granular gases.

The initial values of the hydrodynamic fields depend on
vy and r. In this paper, following Ref. [18], we use the
approximate expressions of the initial values of the hydrody-
namic fields as

n(r.1) = nyg+ Wr = rolto)). (66a)
u(r,tg) = :—ZW(r —rolto). (66b)

T(r.10) = To(to) + @W(r —ro(t).  (66¢)
P(r.1g) = W(r - rolty)). (66d)

D. Results

Now, let us calculate the correlation functions. Substitut-
ing Egs. (23)—(25) into Eq. (19) with the help of Egs. (58),
(60), (61), and (64), we can obtain the correlation functions.
The details of the calculation are shown in Appendices C-E.

First, let us calculate Cp (1, 7). Substituting Eq. (23) into
Eq. (19), we find

Cplty,7) = l;1d J dvfo(t,vo)vox

dk
X f Wukx(t + t())P_k(t + l())
= Cp (1, 1) + Cp(t, 7). (67)

where Cj(t,,7) and Cl(#y,7) are respectively the contribu-
tions from the transverse mode and the longitudinal mode for
uy, (t+1,). Their explicit definitions are respectively given by

Czé(fo’ T)=11_1dfdvafo(f0,vo)l)0x

dk
X f (2_77)dukxl(t + to)P_k(f + to), (68)
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Ch(to, 1) =1} f dvofo(t9,00)vox

dk
X f kauk“(t+to)P_k(t+t0). (69)

The result of Cp(ty,7) (see Appendix C) becomes

il (1)
dm {(d )277(77*+2D*)7

1 dr2
* (47T(b + D*)T> ’ (70)

where b is given in Eq. (65). The first term in Eq. (70) is the
contribution from Cé(to,r), and the second term is from
Cl)(to, 7). We should note that the second term is absent in
the elastic case [18]. The finite contribution from the second
term in our problem is related to the absence of the sound
wave in granular gases. Thus, we obtain the asymptotic be-
havior of Cp(ty,7) decaying 7%? which is consistent with
the simulation by Ahmad and Puri [24].

Second, let us calculate C,(f), 7). Substituting Eq. (24)
into Eq. (19), we rewrite

Cplty,7) =

C,(ty, 1) = dvofo(t5,00)V0xV0y

H
dk
X f Wukx(t + to)u_ky(t + to)

= Cp (i, + Cl (1,1 + O, ), (T1)
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C“nL :manl;ldf dvufo(to,vo)UOxUOy
dk A
X f Wuku(l + to)k_vul\—k(t + 1)
+m2nylﬁdfdvofo(to’vo)UOxUOy

dk
Xf(277)dkxukll(t+tO)ul_ky(l+[O), (73)

C‘HH 2m nHlH fdvofo(to,vo)voxvoy

dk
Xj 2 )dk K it (1 + to)uy_i (1 + 1) . (74)

The result of the calculation C,(y,7) becomes (see Ap-
pendix D)

2 2 _ dr2
Cn([o’ T) — 2T0(t0) (1 + az) x [d 2( 1 )

d(d+2)I, 2

1 dr2 1 dr2
+d(277(7]*+2b)7'> +<87Tb7’> ]’ (73)

which also obeys C,(, 7) ~ 7“2 Here, the first term comes
from C ;l(to, 7), the second term is from C"l(to, 7) and the
third term is from C””(to, 7). The finite contnbutlon from the
mixing term C”i(to,r) is also one of the characteristics in
granular gases because of the absence of the sound wave.
We should note two important points. First, there should
be the logarithmic corrections in Cp(ty,7) and C,(ty,7) for
d=2 through the self-consistent treatment, because the coef-
ficients include transport coefficients which show the loga-

4777]*7'

where rithmic dependence on the system size. This is known for the
calculation of elastic gases [36]. Second, these results sug-
gest that the diffusion constant and the viscosity may depend
C;L = manl;fd f defO(to,vo)voxvoy on the system size in two-dimensional systems. We discuss
these system size dependences briefly in Sec. IV.
dk Finally, let us evaluate C,(f,, 7). Substituting Eq. (25) into
X f 2 )d”m(”‘ to)uy i (t+ 1), (72)  Eq. (19), we obtain (see Appendix E)
|
(d+2)n mvs  (d+2)Ty(t,) dk
Clto, 1) = | dvafolio:vo)vo:| = - = (1 + 1) T4t + 1) = Gl (1, ) + Ch (10, 7). (76)
21y 2 2 (2m)
where
(d+2)ny mvd  (d+2)Ty(to) dk
1
C)\ (to, T) = z—lil dv()fo(to,vo)vox T - 2 (Zw)dukxl(t + tO)T—k(t + to), (77)
2
I _ (d + 2)}’1[_1 % (d + 2)T0(t0) dk A
C\(to, 7) = 21?1 dvfo(to,vo)vox 5~ 5 (2W)dkx”k||(f+ t)T it + 1) (78)

The calculation of Cy(z,,7) gives
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w(d +2)X(d - 1)Ty(1)*A

Cy(ty, 7) = — .
)\( 0 ) 2d3m§ 2151{
><< (d=Det + 2det " )
[277( 77* + Zb) 7.:l(d+2)/2 (8’7Tb7')(d+2>/2 ,
(79)
where we introduce A as
A=2(d-1)+d¥(9d-10). (80)

Here the first term in the right-hand side of Eq. (79) comes
from Cf(to, 7), and the second term in Eq. (79) is from
Cg\(to, 7). The result in Eq. (79) is characteristic one for
granular fluids, because C(t,, 7) has the fast decay obeying
7(@226-C'7 The absence of the long-time tail in Cy (7o, 7) is
the result of the absence of the energy conservation law.

In our calculation, we assume the linearity of the fluctua-
tions around the homogeneous cooling state. This assump-
tion might be invalid to describe the long-time behavior of
freely cooling granular gases. Indeed, it is well known that
the homogeneous cooling state is unstable, and the system
develops into inhomogeneous complicate patterns. Hence it
is not clear whether our analytic calculation of the correla-
tion functions is valid in the wide range of time evolution of
freely cooling states.

Before we close this section, let us comment on the initial
condition dependence of our result. Through our calculation,
we assume that the average is taken over possible configu-
ration at time #,. Although we introduce f; in Eq. (21), we use
it only to derive Egs. (23)—(25). Fortunately, our analysis for
Cp(ty.1), C,(t,1), and C\(t,t) suggests that all correlation
functions can be factorized. Namely, the correlations are rep-
resented by the products of functions of #, and functions of z.
It is obvious that the important point for long time behavior
is the functions of 7, and long-time tails are function of .

III. NUMERICAL SIMULATIONS

To verify the validity of our theory, in this section, we
perform two-dimensional simulations to calculate Cp(t,, 7)
and C,(ty,7), where we only calculate the kinetic part of
C\(ty,7) in Egs. (5) and (7). Here, we do not show any result
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of C,(ty,7) because there are large fluctuations in the nu-
merical data and the results are not characteristic one. To
simulate the system, we employ the event driven method for
hard-core particles in which the collision rule is given by Eq.
(1), where the scaled time by the collision frequency is the
only relevant time. The actual code of the simulations is
based on the efficient algorithm developed by Isobe [44]. We
set the volume fraction v=v,./2, where v, is the close pack-
ing fraction of hard disks. We choose the equilibrium state as
the initial state at r=0. In addition, we fix the time when we
start the measurement as zero. Therefore, in this section, we
replace the notation C,(ty,7) by C,(7). In our simulation,
Ty(ty), m and o are set to be unity, and all quantities are
converted to dimensionless forms. We should note that our
numerical system is not dilute which is in contrast to the
assumption of the theory. However, as mentioned in the pre-
vious section, we expect that the contribution from the po-
tential term is not essentially important when the density is
enough lower than the jamming transition point. Thus, we
regard the average volume fraction v=v,./2 is enough “di-
lute”.

In our simulation, the number N of the particles we use is
65 536 for the calculation of Cp(7) with the ensembles of
100 different initial conditions for the case e=1.0 and 10
initial conditions for the case ¢<<1.0. On the other hand, to
suppress the large fluctuation in the calculation of Cy(7), we
use a smaller system with N=1024 with the ensemble of
2 250 000 initial conditions for the case e=1.0 and 400 000
initial conditions for the case e=0.95 [37].

A. Velocity autocorrelation function

Figure 1 shows the behavior of Cj(7) as the function of 7
with ¢=1.0,0.9, and 0.8. For e=1.0, Cp(7) approximately
obeys 7! as indicated in the previous studies [19]. For
granular gases with e<<1.0, Cp(7) decays as 7! when the
time 7 is smaller than a certain threshold value 7p. This be-
havior in the early regime is consistent with the result of our
theory. On the other hand, when 7> 7p, Cp(7) seems to de-
cay faster than 7~!. This behavior is contrast to the prediction
of our theory. It is not surprising that our theory cannot be
used for 7> 7p. This is because the system is no longer in
HCS, and we conjecture that our theory is valid in HCS. The

Ty T

FIG. 1. (a) Cp(7) as the func-
tion of 7 with e=1.0 and 0.9. (b)
Cp(7) as the function of 7 with e
=0.8. 7 and 7, are the time of the
violation of Haff’s law and the
time starting to obey 7(7)~ 77!,
respectively.

1 1
Co(1)/ny Co(t)/ny <=,
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(a) (b)

FIG. 2. (a) The snapshot of the density field at 7=22. (b) The
snapshot of the density field at 7=70. Both figures are obtained
from simulation of ¢=0.8. The size of the system shown in this
figure is 3370.

fact that the system is not in HCS for 7> 7 is confirmed
from Fig. 2(a). This figure shows the snapshot of the system
with e=0.8 around 7=22 which is nearly equal to 7p. From
Fig. 2(a), we find the existence of inhomogeneous clusters.
We also note that the threshold value 7p decreases as e de-
creases.

We also calculate 7(7) as the function of 7 for e=0.8 (Fig.
3). We confirm that the temperature decreases in terms of
Haff’s law (48) [35] for 7<<22. However, when 7>22,
Haff’s law is no longer valid and the system becomes inho-
mogeneous. Here, we introduce 7 as the time when Haff’s
law is violated. Our picture that the violation of the theoret-
ical description is related to the formation of inhomogeneous
clusters can be verified through the numerical comparison of
7p with 7 (Fig. 4), in which 7 is close to 7p for all e. This
fact supports that our theory is valid in HCS, but the theory
may not be used when the system goes into the inhomoge-
neous state.

From the data shown in Fig. 1, we find another interesting
behavior. When the system goes into the late regime, Cp(7)
seems to recover the theoretical behavior: Cp(7)~ 7! In-
deed, the simulation for e=0.8 clearly shows the existence of
two regions obeying 7' as shown in Fig. 1(b). The time
when Cp(7) recovers the theoretical behavior decreases as e
decreases.

It is interesting that the numerical result becomes consis-
tent with the theoretical prediction in the late regime. We do
not have any definite answer of this mysterious behavior.
However, we note that the linearized fluctuation hydrody-
namics is valid even in the late stage [12], and the decay of

F o=y,

0.01 T~7

0.001

0.0001
1 1000

FIG. 3. T(7) as the function of 7 with ¢=0.8. See the caption of
Fig. 1 for the definitions of 7y and 7;.
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FIG. 4. 7 and 7p as the function of 1—e¢?.
temperature 7(¢)~t%? in the late stage can be calculated
from the fluctuation of the linearized hydrodynamics [38].
Here, we have confirmed that the scaled 7 is almost propor-
tional to the real time in the late stage, which is contrast to
the relation in HCS. Let us introduce 7; as the time when
T(7) starts to obey 77%2, as shown in Fig. 3. From the com-
parison of 7; and the behavior of Cp(7) in Fig. 1(b), we find
the time that Cj(7) starts to recover the theoretical behavior
is nearly equal to 7,. We also suppose that the theoretical
behavior recovers because the density becomes uniform in
clusters in the late stage. Indeed, the uniform density inside
clusters may be verified in Fig. 2(b) at 7=70 which is nearly
equal to 7;.

B. Correlation function for the heat flux

Figure 5 shows the result of C,(7) as the function of 7 for
e=1.0 and 0.95. From this figure, we find that C,(7) decays
with an exponential function of 7 when ¢=0.95, while C\(7)
has a long tail obeying C,~ 7! for e=1.0 though the range
to obey 77! is short. This behavior is different from the be-
havior of Cp(7) as expected from the theoretical prediction.
The fluctuation of the data for C\(7), however, is too large to
verify the quantitative validity of the theoretical prediction

C\(7) ~ =72/ 2¢=¢'", 1t should be noted that our theory sug-

1

TP
CA®) o412 - 999%
~ - e
001l _______ = .%o o Ou®) -7
————_Hg%os o5 oo
0001| CA(T) ~ exp(-0.07*1) ay o~ _
iy
0.0001 o e=1.0 N
= ©=095 "5
1e-05 nl
1 10 100

FIG. 5. C\(7) as the function of 7 with e=1.0 and 0.95.
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gests negativeC,(7) but the simulation does not show nega-
tive Cy(7).

IV. DISCUSSION AND CONCLUSION

In this paper, we analytically calculate the behavior of the
time correlation functions Cp(t,7), C,(ty,7), and Cy(t, 7).
From our calculation, we predict that Cp(ty,7) and C,(t,, 7)
obey 792, while C\(ty,7) decays as F@22-07 in the
freely cooling system. Although the behavior of Cy(¢y,7) is
different from that in elastic gases, the behaviors of Cp(z, 7)
and C,](to, 7) are similar to those in the elastic cases. We also
perform the numerical simulation of the freely cooling sys-
tem to verify the results of the theoretical prediction.
Through our numerical calculation of correlation functions,
we find that our prediction is valid in HCS. Although our
prediction cannot be used in the middle regime of inhomo-
geneous state, the theoretical behavior is recovered in the late
regime.

The prediction of our theory is completely different from
Kumaran’s prediction [23] for the sheared granular fluids in
which the correlation functions obey ~3#2. One reason of the
difference between the theories comes from the difference of
the base states in the analyses. In our theory, we choose the
homogeneous cooling state as the base state, while the base
state in the sheared granular flow is the uniform shear flow in
which the velocity gradient is uniform, the temperature and
the density are uniform.

In the elastic gases, the autocorrelation functions are di-
rectly related to the transport coefficients. Actually the diffu-
sion coefficient, the viscosity and the heat conductivity are
respectively given by Do [(dt Cp(1), o [gdt C,(t), and N
o [ydt C\(t) for conventional fluids. It is known that such a
simple Green-Kubo formula may not be valid in granular
gases [39-43].

The anomalous relation between the transport coefficient
and the correlation functions in granular fluids is easily veri-
fied from the following simple argument. If we assume
CD(IO,T):<v(t+t0)~v(t0)>,0=T0(t0)gb(T), then we obtain the
relation

(r*(n)
2dt

D=

) Mf ds $ls)5=(1 - ) (81)
T Jo 2¢
for sufficiently large 7, where (r?(7)) is the mean square
displacement of the tracer particle during 7. Although the
explicit expression seems to be different from the conven-
tional Green-Kubo formula, the logarithmic singularities in
two-dimensional systems are still valid at least near e=1. In
fact, the integral can be evaluated as O(7[}ds ¢p(s))
=0(rlog 7) for d=2 and 7<<1/(2{") with 1/(2Z") is propor-
tional to (1—e?)~". For this case we might replace the cutoff
time by the characteristic time depending on the linear sys-
tem size L such as L?/D, and D may be determined by the
self-consistent way. Thus we expect that the diffusion coef-
ficient depends on the system size as the result of the loga-
rithmic singularity. We also indicate that Eq. (81) implies
that the diffusion disappears in the limit of large 7, because
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the exponential term is negligible. This is also consistent
with the observation in our simulation.

In this paper, we adopt Eq. (17) as the initial weight func-
tion which depends on the initial temperature. However, this
dependence may be removed if we map HCS onto a steady
state [45]. We expect that this mapping make our calculation
clearer.

We also assume that the coefficient of restitution e is a
constant in contrast to actual cases [25-30]. It may be pos-
sible to extend our results to the gases of viscoelastic par-
ticles [46,47]. However, we believe that our prediction for
the algebraic time dependence of the correlation functions is
unchanged.

We adopt, here, the phenomenological approach devel-
oped by Ernst ef al. [32]. The advantages of this method is
that the calculation is simple and the physical pictures, i.e.,
the roles of conserved quantities are clear. This approach is
successful for the first step to indicate the relevant roles of
long-time tails. However, the approach has the limitation in
which our theoretical prediction cannot be used in the middle
stage. To improve this, we may need a more fundamental
approach starting from the Liouville equation [48].

In conclusion, we confirm the existence of the long-time
tail in the autocorrelation functions for the velocity and the
shear stress, while it does not exist for the heat flux. These
results are consistently obtained from the theory and simula-
tion. Thus the transport coefficient based on inelastic Enskog
equation should be modified for two-dimensional systems.
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APPENDIX A: TIME EVOLUTION
OF THE HYDRODYNAMIC FIELDS

In this appendix, we calculate the solution of Eq. (49).
The eigenvalue s of the matrix in Eq. (49) satisfies the equa-
tion

o d=1 . d+2
—sls=C+—nk||s+{ + Nk

d 2d-1)
<d+2 §*+ d+2 ., d+2 *k2>k2—0
d’ 2d—-1) 2a-1" R

(A1)

To discuss hydrodynamic behaviors, we expand the eigen-

value around k=0 as
s=50+sWk+sPU2 4 - (A2)

Substituting this equation into Eq. (A1), we find that there
exists three eigenvalues s,,s_, and s, as Egs. (55). Introduc-
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ing the eigenvector X, corresponding to the eigenvalue s,
with the condition |X,|?=1, we find that the solution of Eq.
(49) is expressed as

Pl + 1)
wi(t+10) | = a,exp(s, DX, +a_exp(s_1)X_
Ot + 1p)
+a, exp(s,nX,, (A3)
where we define a, as
aq=Lplto),wu(to), Oit0)] - X - (A4)
Near k=0, the eigenvector X, can be represented by
ik
- +0(k)
¢
X, = 1+ 0(k) (AS)
d-1)ik
d-Dik )
e
and
! d—1)ik 6, (1
a,= _ ek +wy(to) + (- Dikblty) ¥ Kt + (A6)
s d¢

When the time 7is enough large, the mode corresponding to
the largest eigenvalue s, is only the relevant mode. Hence we
obtain the approximate solution of Eq. (49) as Eq. (56) in the
long-time behavior.

APPENDIX B: ABSENCE OF THE SOUND WAVE

It is well known that the eigenvalue s has the term pro-
portional to k which corresponds to the sound wave for elas-
tic gases. However, as shown in Eq. (55), for granular gases
with e < 1.0, the eigenvalue s does not have the term propor-
tional to k. This might be puzzling because the term propor-
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tional to k does not appear in the elastic limit of Eq. (55) at
the first glance.

In order to understand this puzzle, let us show the relevant
point of the calculation of s in Appendix A. Substituting Eq.
(A2) into (A1) with equating coefficients of each power of k,
we obtain the expression of s.

In the zeroth and first order of k, we obtain the equation

sOO - )0+ ) =0, (B1)
0350 - ¢2) =0. (B2)

From Eq. (B1), we obtain
sO=af", (B3)

where a=0,+1 with [“=1-¢?
into Eq. (B2), we find

. Substituting this equation

WEa2-1){?=0. (B4)
For " #0, thus, s, only satisfies
sM=0. (B5)

However, for the elastic case with (k =0, s is not deter-
mined by this equation but by the equation obtained from the
coefficients of k> in Eq. (A1), and we find that s") has some
nonzero values. Thus the elastic limit is rather singular in
granular fluids. This is the reason that the there are no sound
wave when ¢ <1.0.

APPENDIX C: CALCULATION OF C)(ty,7)

In this appendix, we calculate the correlation function Eq.
(70). From Eq. (67), Cp(ty,7) is expressed as

Cp(tg,7) = Cpy (15, 7) + Ch(£9, 7). (C1)

where CLL)(IO,T) and C%(IO,T) are defined in Egs. (68) and
(69).

Substituting Egs. (58) and (64) into Eq. (68), we obtain
the expression of Cp(ty,7) as

dk .
=l;ldf dv()f()(lb’UO)vaf W“m(fo)P_k(fo)e_m/z)” DN
v

n[_]lz

dk et
defo(to,Uo)onJ (277)"(UOX - kva . k)|Wk|2e [(172)n +D" ]k

To(to) f 12y - D K2
~ 1- k [(1/2)77 +D Jk°T
(2 )d( e

mld
d—1)Ty(t, 1 an
_( )dO( 0)( i i ) ’ )
dmly 2m(yp +2D")1
where we use the relation derived from Eq. (13) as
lim|W,| = 1. (C3)
k—0
In addition, we also use the relation
f dk kik;= 8,/d. (C4)
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Similarly, substituting Egs. (58) and (60) into Eq. (68) with the use of Eq. (C3), we obtain the expression for Cﬂ)(to, 7) as

_ dk
Clz)ledJ dvﬂfO(thUO)v()xf 2 )dk (o) P_i(tg)e” ®+D)r

1 dk - - )2
_ d o, i Dw 2 _—(b+D kT
_nHlil U()f()( 0 U())onf (277),1( 00 )| k| e

—~ TO(tO) f (b+D )k
mld (2 )d x

~ To(to)( 1 )‘”2
B dml;’, 4w(b+Dr) ()

From Egs. (C1), (C2), and (C5), we obtain Eq. (70).

APPENDIX D: CALCULATION OF C, (), 7)
Let us calculate C,(ty, 7). From Eq. (71), C,(t,7) is expressed as
Ctg.7) = Cyy (10, 7) + C) (89, 7) + C(t, 7). (D1)

where ClL(tO, 7, C“'(to, 7), and C"”(to, 7) are respectively defined by Eqs (72)—(74).
Substltutmg Eq. (64) into Eq. (72) we obtain the expression of C L(to, 7) as

i dk e
Ci;L(IO’ T) = manlde dvofo(to,vo)voxl}oy f QT)deXL(tO)ul_ky(tO)e 7k

2

m )
= dUOfO(t()’vO)vaUOyf — (Vo — kvy - k)(on yv0 B)| W[ vk

To(t())z(l +a ) A L 27,
( S+ 260K — k= kD)W Pem *

_(dz—l)To(fo) H< 1 )m
T dd+ )l (1+a2) 4y r) D2)

where we use Eq. (C4) and

AAAAA 8yt BuGi+ 8By
(D3)

dd+2)
Similarly, substituting Egs. (60) and (64) into Eq. (73), we obtain the expression of C””l(to, 7) as

_ dk A ~ SRATER
C”,,l(fo, T)=m2"Hldedvofo(l‘oavo)vmvmrf Wukxi(to)kyull—k(to)e L172)y +bJk

i dk e
+m2”Hlde dvﬂfO(IO’UO)UOXUOyf (ZT)dkxukll(tO)“kiy(tO)e [72) 7 +blk

2

m dk . - . D b
=—— | dvofolte.vo)vowo, f ——[vor — k(g - k) Ty (v - k)| W 21127 +bJk
ngly (2m)

man dk . A A - 2 —[(112) 5 +blK%r
+ a dv(lfO(t()’UO)vavOy (27]()6(00 . k)[l)oy - ky(v() . k):||Wk| e 7

H

To(fo) (1+a )f(z )d(k2+k2 4k2]2§)|Wk|2e—[(1/2)1;*+b]k27

2To(to) ( 1 )‘”2
T @+l (1+ )277(77*+2b)7 ' (D4)

Substituting Eq. (60) into Eq. (74), we obtain the expression of C‘ﬂ]‘(to, 7) as

051304-11



HISAO HAYAKAWA AND MICHIO OTSUKI PHYSICAL REVIEW E 76, 051304 (2007)

2
ke deyugy (t0)uy_y(to)e 2K

- dk
C'ﬂl‘(to, ’T) = manlde dv(lf()(t(),v())voxvoy f (2 )d

2
= Hld dUQfQ(IO,UQ)UOXUO) f ( k k (UO k)2|Wk|2 2

To (10)* 1+az)f 227201y, 12 ~2bK?

2k kS |W, T
(2 )d X | k| e

2T ([ ) 1 dr2
_ O—Od( )(_> ) (D5)

d(d+2)ly 8mhT

From these equations, we obtain Eq. (75).

APPENDIX E: CALCULATION OF C,(ty,7)
In this appendix, we calculate C,(zy, 7). From Eq. (76), C,(ty,7) is the combination of two modes,

C\(t,7) = Cy (15, 1) + Cy (1, 7, (E1)
where C;(,7) and C)(t,,7) are respectively defined by Egs. (77) and (78). Since the calculation is complicated, we separate
the contribution from the transverse mode and that from the longitudinal mode in the explanation.

1. Contribution from the transverse mode

Let us evaluate Cy (,7) which is the contribution from the transverse mode at first. Substituting Egs. (61) and (64) into Eq.
(77), we obtain the expression of C}f(to,r) as

(d+2)n dk o SR
Cy (tg,7) = TH dvofolt, v0)vomug — (d +2)Ty(t)] W”k}cL(%)e {0112y 40
H

)

dnyl? e &y
= Cy (tg, 1) + C (19, 7) (E2)

y ((d— DTolgntg)h _ ikld = D\mTy(tg)usy(to) _ (d~ 1)2Tk(ro)k2>

where we introduce

(d+2)(d-1)*ny

C)%T(fo, T) =- *
4d*71,

f defO(tO’UO)UOX[mUO (d+2)T(1y)] f Qn ot ()T k(to)kz 172y +b]k2}T (E3)

x zi(jé;zlld)TO(tO) f dvafo(IOvUO)on[mvé —(d+2)Ty(1y)] J %”kﬁ(fo)”-k(fo)kze_{&[(1/2)77*+b]k2}7- (E4)
H

C)fn(fo’ 7=

Here, we use the fact that the term proportional to uy,  (fo)u_y(zy) in Eq. (61) does not survive in the integration over vy,.
Substituting Eq. (66) into Eq. (E3), we obtain
(d+2)(d-1)ny

1T
o7 == 4d°ny 1y

deOfO(IO’UO)UOx[mUO (d+2)T0(t0)]

dk ~ A j« « 2
X J W(on - kxvo . k)[ml)?) - dTo(to):”Wkaze—{g +H1/2)n +b)kY T

d+2)Xd-1)Ty(1,)°
e 21(;3m§*2)l 7 olto [2+d(d+10)] f
_ m(d+2)*(d - 1)*To(1p)°*
2d°m Y,

d (1 - ]22)6_{4*+[(1/z)77*+b]k2}r
(2m) )
e_fT

[27(7n" +2b) 7] @+2)/2

[2 +a5(d+10)] (ES)
Substituting Eq. (66) into Eq. (E4), we obtain
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d+2)(d—-1)Ty(t
C)%n(t()’ T) = ( )( *Z)d 0( 0)
4dnH lH
_(d+ 2)2(d - 1)Ty(tp)%dy [ dk
4dm{8, m)?

m(d+ 2)2(d = 1) Tylt) ( et )
- 2dm{ 1y, Qm(n" +2b)7) @2 )

dk . C
f dvofy(to,vo)voLmog — (d +2)Ty(tp)] f W(vm — kg - k)| W, Pkt Hm bl

(1-1) ) 7 +b1P) T

(E6)

Substituting Egs. (E5) and (E6) into Eq. (E2), we obtain

(d +2)*(d = 1)*Ty(19)°A ( = et ) ’ (E7)

Cl to, == % *
o) 2dm L, 7+ 2b) )P

where A is defined by Eq. (80).

2. Contribution from the longitudinal mode

Substituting Egs. (60) and (61) into Eq. (78), we obtain the expression of Cg\(to, 7) as

(d+2)ny
41,
y (_ ik\er#(tO) i)+ ik(d - 1@@ )
{ngNm d{ \NmT(t,)

% ( (d - DTo(t)ni(to)k* N ik(d - I)N’mro(fo)“ku(fo) B (d- l)sz(fo)k2>

dk ~ x50
Cg\(fo,T)= fdvofo(to,vo)v()x[mvg—(d+ 2)T0(t0)]f kae—{{ +2bk°} T

dnyl? ac &y
= O (ty, 1) + C\ (1, 7), (ES)

where we introduce

_(d+2)(d- 1)’ny

dk £
C\ (tg,7) = 22071 f dvofo(to,vo)vomug — (d +2)To(t)] f kauk\\x(to)T—k(tO)kze_{g w2, (E9)
H
n (d +2)(d - 1)T(to) dk e
C)% (tO’ T) = ngled . defO(IO’UO)UOX[mv(% - (d+ 2)TO(Z‘O):I kauk“(to)n_k(to)kze (£ 2617 . (EIO)
H

Substituting Eq. (66) into Eq. (E9), we obtain the expression for Cy(to, 7)

_(d+2)(d- 1)?

Cll(ty,7) = "
)\(O ) 2d3nH§‘zl?_'I

J doufolto.v0)vom— (d + 2)Tolto)]

dk A A & * 2
X f ka(vo . k)[mv(z) - dTo(to)]|Wk|2k2€_{§ 27 +b T}

_ (d+ 2)2d-1)To(ty) [ dk

12)25 ©2 e—{{*+2bk2}7

2d°m {1, 2m)?
(d+2)%(d - 1)*Ty(1,)° -
__md+ e C 2+ at(d + 10)]<—(8w27)(d+2)/2)' (E11)

For C)(t, 1), by substituting Eq. (66) into Eq. (E10), we obtain
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_(d+2)(d - 1)T(1)

CHn t , — "
X (to:7) 2dngl e,
_(d+ 2)2(d - D) Ty(tp)%d [ dk
2dm{"1, m)?
m(d+2)%(d = 1Ty(1p) ( et
- dm{ 1, (87 7)( @22

Thus, from Egs. (E8), (E11), and (E12) we obtain Cg\(to, 7) as
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dk - A I
dvofy(to,00)vo.Lmog — (d +2)Ty(1p)] f Py AN S

A i« >
k)ZCkZe—{{ +2bk“}T

). (E12)

Cg\(t(% T) =

(d +2)X(d - 1)2Ty(1,)*A ( e )
2d°m Y, ’

(87Tb 7_) (d+2)12 (El 3)

Finally, from Egs. (E7) and (E13) associated with Eq. (76), we obtain Eq. (79).
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