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We investigate the collision of adhesive viscoelastic spheres in quasistatic approximation where the adhesive
interaction is described by the Johnson, Kendall, and Roberts �JKR� theory. The collision dynamics, based on
the dynamic contact force, describes both restitutive collisions quantified by the coefficient of restitution � as
well as aggregative collisions, characterized by the critical aggregative impact velocity gcr. Both quantities �

and gcr depend sensitively on the impact velocity and particle size. Our results agree well with laboratory
experiments.
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I. INTRODUCTION

Granular systems are abundant in nature and examples
range from sands and powders on Earth �1,2� to more dilute
systems, termed as granular gases �3–5�, in space; planetary
rings and other astrophysical objects may be mentioned in
this respect �see, e.g., �3,6��. Granular matter exhibits highly
unusual properties: In a dense state it behaves similar to a
liquid or solid, while in a rarefied state it resembles in some
respect common molecular gases. This rich behavior stems
not only from the density variation and related lack of scale
separation, but to a large extent from specific particle inter-
actions �2�. The interaction force is a combination of elastic
rebound, dissipation due to viscous deformations, and adhe-
sion caused by the molecular van der Waals forces. The in-
terplay between these three basic contributions leads to a rich
collision behavior of adhesive, dissipative particles, which in
turn determines the unusual macroscopic properties of granu-
lar systems.

In the present study, we address the collision dynamics of
dissipative particles with adhesive interactions. Particles in
real granular systems may have a complicated nonspherical
shape and differ in mass, size, and composition. Here we
consider a simplified case where all grains are smooth
spheres of the same material. Moreover, we consider exclu-
sively mechanical interactions thereby disregarding long-
range forces such as electrostatic forces or gravity.

We apply the viscoelastic collision model �7,8� and incor-
porate adhesive interactions based on the Johnson, Kendall,
and Roberts theory �JKR� �9� which was shown to be appro-
priate for systems of practical interest �10,11�. To justify the
assumption of quasistatic deformations for the viscoelastic
model we assume that the impact speed is small compared to
the speed of sound. In contrast to numerous studies of vis-
coelasticity with adhesion for elastomeric materials �e.g.,

�12–14�� where the memory of the viscous material was de-
scribed by relaxation �or creep� functions, we neglect
memory effects. That is, we assume that the characteristic
times of the collision process is much larger than the dissi-
pative relaxation time of the particles’ material. This assump-
tion allows one to express the dissipative part of the stress
through the elastic stress and to develop an analytical theory.
We derive an expression for the total force acting between
colliding spheres and demonstrate that it may not be written
as a simple superposition of elastic, adhesive, and viscous
forces; instead, it includes a viscoadhesive cross term. We
study numerically and analytically the collision dynamics
and compute the coefficient of restitution as a function of
impact rate and particle size. Finally, we compute the maxi-
mal impact speed at which aggregation may occur, separat-
ing the domain of restitutive collisions where particles re-
bound, from the domain of aggregative collisions where
particles constitute a joint aggregate.

II. PARTICLE INTERACTION FORCES

A. Elastic force

To introduce the notation first let us consider the contact
of elastic spheres of radii R1 and R2 that are made of the
same material. Their material properties are described by a
single parameter, D��3/2��1−�2� /Y, where Y and � are
Young modulus and Poisson ratio, respectively. The com-
pression ��R1+R2− �r�1−r�2� characterizes the deformation of
and a the radius of the contact area between the particles.

The normal pressure distribution at the contact plane is a
function of the compression �15�
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PH�x,y,�� =
3FH���
2�a2 �1 −

x2

a2 −
y2

a2 , �1�

where x2+y2�a2 and x=y=z=0 denotes the center of the
circular contact area. Stress �ij and strain uij are linearly
related �16� where

uij�r�,�� =
1

2
� �ui

�xj
+

�uj

�xi
	 , �2�

�ij
el�r�,�� = E1�uij�r�� −

1

3
�ijull�r��	 + E2�ijull�r�� . �3�

Here, u��r�� is the displacement field and the indices i , j , l
denote Cartesian coordinates �Einstein’s summation rule ap-
plies�. The elastic coefficients E1 and E2 read

E1 =
Y

1 + �
, E2 =

Y

3�1 − 2��
. �4�

The repulsive force FH is obtained by integrating the stress
distribution over the contact region and reads

FH��� =
�Reff

D
�3/2, �5�

where

Reff =
R1R2

R1 + R2
. �6�

The compression depends linearly on the contact area, a2

=Reff�.

B. Elastic adhesive force

At given compression � the contact area of adhesive
spheres is larger than the contact area of elastic spheres as
predicted by Hertz’s theory. Among several theories describ-
ing adhesive contact �e.g., �9–11,13,17–28�� the JKR theory
was shown to be accurate enough for a wide range of appli-
cations of practical interest �see, e.g., �10�� and is, moreover,
suited for an analytical analysis due to its simplicity. The
applicability of the JKR theory is characterized by the value
of the Tabor parameter,

	T = �16D2Reff

2

9z0
3 	1/3

�7�

where z0 is the characteristic atomic scale �21�. As a rule of
thumb, the JKR theory is reliable for 	T�5 �10,11�, other-
wise the DMT theory �17� is preferable. Throughout this ar-
ticle we refer to applications where 	T�5.

The JKR theory combines two basic solutions for the
pressure distribution of an elastic contact, the Hertz solution
�15� for a compressed sphere, Eq. �1�, and the Boussinesq
solution for the uniform displacement of a circular area in a
plane, oriented normally to the surface �e.g., �18,29��

PB�x,y,�B,a� =
FB��B,a�

2�a2 �1 −
x2

a2 −
y2

a2	−1/2

, �8�

where the Boussinesq force FB depends on the correspond-
ing displacement �B and the contact radius a �9�

FB��B,a� =
3

2D
a�B. �9�

In the JKR theory an effective Hertzian force is intro-
duced which yields the observed contact of radius a and
would lead to the compression �H in a lack of adhesion. The
actual compression � is, however, smaller than in the purely
elastic case, �
�H. The difference �H−� is attributed to the
Boussinesq force FB and the corresponding displacement �B,
which is related to the contact radius as

�B =�8�
Da

3
, �10�

where the adhesive coefficient 
 is twice the surface free
energy per unit area of a solid in vacuum. FB acts against the
Hertzian force and, thus, reduces the compression. There-
fore, the force between adhesive spheres is also reduced so
that the total force and compression read

��a� = �H − �B =
a2

Reff
−�8�
Da

3
, �11�

F�a� = FH − FB =
a3

DReff
−�6�


D
a3/2, �12�

where Eqs. �5�, �9�, and �10� were used. Correspondingly, the
total �static� stress �ij

st �which still obeys the general form of
Eq. �3��, is now a sum of two components, due to the Hert-
zian and Boussinesq’s displacements in the material, u�H and
u�B. From Eqs. �11� and �12� we find the contact radius and
compression aeq for unforced adhesive spheres �F=0�,

aeq
3 = 6�D
Reff

2 , �13�

�eq =
1

3
�6�D
�2/3Reff

1/3. �14�

If the particles in contact are pulled apart from one another
the radius of the contact area a decreases. As a becomes
smaller than the equilibrium value aeq the contact force be-
comes negative and a decreases further until it reaches its
minimum at �9�

asep
3 =

3

2
�D
Reff

2 =
1

4
aeq

3 �15�

where

Fsep = −
3

2
�
Reff. �16�

A yet stronger negative force causes contact failure. The ab-
solute value of Fsep can hence be interpreted as the strength
of an adhesive bond between the spheres.
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C. Dissipative particle deformation

1. Relation between static and dissipative stress tensors

The viscous deformation of particles leads to a dissipative
contribution to the stress tensor. For a small deformation rate
u̇ij�r� , t� it reads �16�

�ij
dis�t� = �1�u̇ij�t� − 1

3�iju̇ll�t�� + �2�iju̇ll�t� , �17�

where �1 and �2 are the viscous constants, analogous to the
elastic constants E1 and E2 in Eq. �3�. If the impact velocity
g is significantly smaller than the speed of sound of the par-
ticles’ material and if the characteristic relaxation time of the
dissipative processes in the bulk of the material is much
shorter than the duration of the impact, the approximation of
quasistatic deformation �7� is eligible. It assumes that the
system passes through a sequence of equilibrium states, that
is, the slowly varying displacement field coincides at each
time instant with the corresponding static field,

u��r�,t� 
 u�st
„r�,��t�… . �18�

The superposition of the displacements u�H=u�H�r� ,�H� and
u�B�r� ,�B,a�, as described in the previous section, leads to a
total displacement u�st=u�H+u�B=u��r� ,a�, and in the quasistatic
approximation to the displacement rate

u�̇�r�,t� 
 ȧ
�

�a
u�st
„r�,a�t�… . �19�

Then, the dissipative stress reads

�ij
dis 
 ȧ

�

�a
��1�uij

st −
1

3
�ijull

st	 + �2�ijull
st� . �20�

Comparing the expression for the static stress originating
from elastic and adhesive interaction and the previous ex-
pression for the dissipative stress, we find that in quasistatic
approximation the dissipative stress may be obtained from
the corresponding static stress by using viscous constants in
place of the elastic ones �7� and applying the operator ȧ� /�a,

�ij
dis = ȧ

�

�a
�ij

st�E1 ↔ �1,E2 ↔ �2� . �21�

Note that although the JKR theory was derived as a static
one, it may be applied to slow collisions in terms of the
quasistatic approximation addressed here as denoted in Eq.
�21� �30�.

2. Dissipative force

As it follows from Eq. �21�, the dissipation part of the
stress tensor �ij

dis is expressed through the nondissipative part
�ij

st; hence, we first need to quantify the latter. In particular,
we need the normal component of the static stress tensor at
z=0, which defines the interparticle force.

The dissipative particle interaction is characterized by the
normal component of the dissipative stress tensor and thus
by the static stress tensor at z=0, see Eq. �21�. Applying Eqs.
�2� and �3� to both nondissipative contributions of pressure
we obtain

�zz
st �x,y,z = 0� = PH�x,y� − PB�x,y�

= �E1
�uz

st

�z
+ �E2 −

E1

3
	� �ux

st

�x
+

�uy
st

�y
+

�uz
st

�z
	� ,

�22�

where PH�x ,y� and PB�x ,y� are given by Eqs. �1� and �8�.
The dissipative force acting between two spheres may be
computed by integrating the dissipative stress over the con-
tact area at z=0 using Eqs. �21� and �22�. Instead of this
direct computation we apply the method of Refs. �7,31,32�,
where we transform the coordinate axes as

x = �x�, y = �y�, z = z�, �23�

with

� = ��2 − 1
3�1

�2 + 2
3�1

	�E2 + 2
3E1

E2 − 1
3E1

	 ,

� =
��2 − 1

3�1�

��E2 − 1
3E1�

. �24�

Accordingly, the rescaled contact radius reads

a = �a�, �25�

and yields �zz
st with substituted coefficients. Thus, using the

new coordinates we may write

�1
�uz

st

�z
+ ��2 −

�1

3
	� �ux

st

�x
+

�uy
st

�y
+

�uz
st

�z
	

= ��E1
�uz

st

�z�
+ �E2 −

E1

3
	� �ux

st

�x�
+

�uy
st

�y�
+

�uz
st

�z�
	� .

�26�

The expressions in the square brackets on the right-hand
sides of Eqs. �22� and �26� are very similar: While the dis-
placement field u��r�� is the same, the coordinates r� and r�� are
related by the transformation given in Eq. �23�. Both expres-
sions have the structure of the normal stress at the plane of
contact. This similarity may be used to compute the dissipa-
tive force.

Consider two elastic semispaces �z�0� of the same ma-
terial. Let the coordinates of the first system r�1 be related to
the coordinates of the second system r�2 by an invertible
transformation, r�2=r�2�r�1�. Assume the pressure P1�x1 ,y1� is
applied on a domain at z=0 of the first system and a corre-
sponding pressure P2�x2 ,y2� is applied on a respective do-
main of the second system. Assume further the displacement
field of the first system u�1�r�1� in the point r�1 coincides with
that of the second system at the corresponding point r�2�r�1�,
that is, u�1�r�1�=u�2(r�2�r�1�). Then the pressures in two systems
are related by

P1�x1,y1� = 
D�x2,y2�
D�x1,y1�
P2�x2�x1,y1�,y2�x1,y1�� �27�

and the total forces, exerted at z=0 on the two systems, are
equal �see Appendix A for the proof�. Taking into account
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Eqs. �19�, �22�, and �25� and applying Eq. �27� to the right-
hand side of Eq. �26�, separately to each part of the elastic
stress tensor with adhesion, we obtain

��E1
�uz

st

�z�
+ �E2 −

E1

3
	� �ux

st

�x�
+

�uy
st

�y�
+

�uz
st

�z�
	�

= �
3FH

2�a�2�1 −
x�2

a�2 −
y�2

a�2 − �
FB

2�a�2�1 −
x�2

a�2 −
y�2

a�2	−1/2

= ��2� 3FH

2�a2�1 −
x2

a2 −
y2

a2 −
FB

2�a2�1 −
x2

a2 −
y2

a2	−1/2� .

�28�

Then, according to Eq. �21� the dissipative stress reads

�ij
dis = ȧ

�

�a
��2�ij

st. �29�

By integrating the stress over the contact area we obtain the
dissipative force acting between two colliding spheres:

Fdis = Aȧ
�

�a
�FH − FB� = Aȧ

�

�a
F�a� , �30�

where

A = �2� =
1

3

�3�2 − �1�2

�3�2 + 2�1�� �1 − �2��1 − 2��
Y�2 � . �31�

Using Eq. �12� for F�a� we finally arrive at

Fdis = ȧA� 3a2

DReff
−

3

2
�6�


D
�a	 . �32�

For 
=0 this result reduces to the known viscoelastic model
�7�. Note the appearance of a cross term in Eq. �32� which
depends on both dissipative and adhesive constants
�Aȧ�
a. An earlier model neglected this term thereby over-
estimating dissipation �23,24�.

III. COLLISION DYNAMICS

A. Equation of motion

The head-on collision of spheres with impact speed gimp is
described by the equation of motion

meff�̈�t� + F„��t�… = 0,

��0� = �init = 0,

�̇�0� = gimp, �33�

where meff=m1m2 / �m1+m2� is the particles’ reduced mass.
Since the total contact force F=FH−FB+Fdis is given by
Eqs. �12� and �32� as a function of the contact radius a, it is
convenient to write Eq. �33� in terms of a�t�,

meffä + meff
���a�
���a�

ȧ2 +
F�a�
���a�

= 0,

a�0� = ainit,

ȧ�0� = gimp�
d�

da



ainit

	−1

. �34�

Here, the prime denotes the derivative with respect to a. For
the time evolution of a collision and the according initial ainit
and final conditions afinal we refer to the discussion in the
next section.

B. Initial and final collision conditions

The approaching and departing stage of a collision be-
tween adhesive particles differ in contact formation and fail-
ure �for experimental results see, e.g., �9,33,34��. While ap-
proaching particles collide at �=0 they, if at all, separate at
�
0. This hysteresis is well described in terms of the JKR
theory and reflects in the size of the initial ainit and final
contact radii afinal and its relation to the compression � �see
Eq. �11��.

While particles approach each other ��
0�, the interac-
tion force is zero. Upon contact at �=0, they start touching
each other and a strong adhesive force causes a rapid defor-
mation of their surfaces that leads to the formation of an
initial contact area of radius ainit �e.g., �34,35��. Thus, the
formation of the initial contact area with radius ainit occurs
very quickly and this strongly nonequilibrium process is ac-
companied by dissipation of mechanical energy. The energy
gained by the reduction of free surface during this process is
transformed into the following: �a� elastic energy of the com-
pressed material, �b� kinetic energy of the particles which
are, thus, accelerated toward each other, and �c� into heat by
viscous material deformation. Once contact is established,
adhesive forces continue to accelerate the particles while the
Hertzian repulsion and viscous damping decelerate this mo-
tion. This marks the beginning of the actual collision with
relative impact speed gimp, where the interaction force is de-
scribed by Eqs. �12� and �32�.

For sufficiently large gimp the particles move toward each
other until reaching a maximum compression �max. This
maximum deformation corresponds to a contact area whose
radius is significantly larger than aeq, where the sum of the
repulsive Hertzian force and the attracting adhesive force
vanishes. While unloading elastic and �negative� adhesive
energy is restored into kinetic energy of relative motion until
reaching the critical contact area of radius afinal=asep where
the particles separate, see Eq. �15�. The separation corre-
sponds to a negative compression, �sep
0 �30,36�. This sce-
nario is labeled restitution where the coefficient of restitution
falls between 0
��1 �see below�. A general collision pro-
cess is sketched in Figs. 1�a�–1�g�.

For smaller impact rates a different scenario is observed.
While the initial loading stage is similar to the one described
above, the unloading stage differs from that of restitution. If
the kinetic energy ceases sufficiently during unloading be-
fore the particles are completely separated, the compression
oscillates until the remaining kinetic energy is dissipated by
viscous deformations. Eventually, the oscillation ceases at �eq
and contact radius aeq where the elastic FH and adhesive
forces FB balance. In this case, the particles stick together.
Thus, this scenario is labeled aggregation where �=0 and is
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a consequence of the asymmetry between initial and final
contact �afinal
ainit� in combination with viscous dissipation.

While the Hertzian force, the viscous force, and the adhe-
sive force, which compose the interaction force, are de-
scribed above, the analysis of the far-from-equilibrium pro-
cess during the formation of contact is difficult. The rate of
material deformation is large here and certainly not well de-
scribed within the quasistatic approximation. Therefore, for
the analysis in this paper we assume that the duration of the
initial rapid process of contact formation is negligible com-
pared to the duration of contact, that is, we assume that the
initial contact formed instantly. We refer to this process as
jumping.

The process of jumping is intimately related with the ini-
tial conditions of the collision process. Generally two initial
contact radii are possible and are sketched in Fig. 1�b� as
types I and II.

For contact formation as in type I, jumping itself does not
affect the compression � but may be understood as a defor-
mation of the particles’ surfaces while the distance of the
centers of mass of the particles after jumping is given by the

sum of their radii. A mathematical formulation of the type I
initial condition reads

lim
t→−0

g�t� = lim
t→+0

g�t� = gimp,

lim
t→−0

��t� = lim
t→+0

��t� = 0,

lim
t→−0

a�t� = 0, lim
t→+0

a�t� = ainit = a0 
 aeq, �35�

where the initial contact area ainit=a0 corresponds to a van-
ishing initial compression �init=0 as obtained from Eq. �11�
that reads

a0
3 =

4

9
aeq

3 =
8�

3
D
Reff

2 . �36�

The initial contact area a0 is thus smaller than during equi-
librium as indicated by experiments �33,34,36,37�. Physi-
cally, such an initial condition is justified by the fact that
involved time and length scales in jumping are in most cases
negligible compared to the macroscopic collision scales. The
formation of a relatively small contact area �a0�R� is
caused by strong surface forces. This process, however, oc-
curs very fast �about fs� and happens in an avalanchelike
scenario �35�. Also, if the kinetic energy of the particles at
impact is much larger than the surface energy gained in
jumping, then this energy does not contribute significantly to
enhance the relative particle velocity. Hence neither gimp, nor
�, can noticeably alter during this very short time interval.

For contact formation as in type II, we allow for the ex-
treme case of jumping into an equilibrium contact where
adhesive and elastic forces balance at aeq and correspond-
ingly �eq as indicated on a microscopic scale �35�. The math-
ematical formulation of the type II initial condition reads

lim
t→−0

g�t� = lim
t→+0

g�t� = gimp,

lim
t→−0

��t� = 0, lim
t→+0

��t� = �eq,

lim
t→−0

a�t� = 0, lim
t→+0

a�t� = ainit = aeq, �37�

where aeq and �eq are given by Eqs. �13� and �14�. Physically,
also here we assume an instantaneous process where no ad-
ditional acceleration is gained although the particle centers
shifted. Remarkably, the energy gained from adhesion while
0����eq is dissipated by viscous deformation. This follows
from the fact that at a=aeq the adhesive force and the elastic
Hertz force cancel while the relative particle velocity gimp
does not change in this process.

While the first realization �type I� is supported by experi-
ments �33,34,36,37�, the latter �type II� is discussed for com-
pleteness. A qualitative analysis of the process of contact
formation with respect to its duration, particles’ acceleration,
and effective initial contact radius can be found in Appendix
B.

Before closing the section we wish to discuss the range of
validity of the quasistatic approximation in the collision dy-

a)

b)

c)

d)

e)

f)

g)

FIG. 1. Sketch of a collision of adhesive particles. The left col-
umn represents the type-I and the right column the type-II initial
condition: �a� The collision starts prior to jumping at time t=−0
when the distance R1+R2 corresponds to the compression �=0 at
relative velocity gimp. �b� Right after jumping at time t= +0, a finite
contact area of radius ainit is formed �type I: ainit=a0↔�=0, left;
type II: ainit=aeq↔�eq�0, right�. In both cases the impact velocity
gimp is preserved, see Eqs. �35� and �37�. �c� Subsequently, both
particles further deform each other until the maximum compression
is reached. �d�, �e� Then, they depart and reach �=0 with a nonzero
contact radius a. �f� The adhesive force leads to the formation of a
neck and although �
0 the contact is not broken. �g� Finally, at �sep

the particles lose contact and the bond is broken. The energy stored
in the neck is dissipated by subsequent viscous oscillations of the
particles.
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namics. As it has been already mentioned, this approxima-
tion is applicable if the impact velocity is much smaller than
the speed of sound in the particle’s material and the collision
duration is much shorter than the viscous relaxation time,
which may be estimated from the material constants, �vis

−1

�Y /� �7� �here ���1��2�. Since Eq. �31� implies A
�� / �Y�2�, we obtain an estimate for the viscous relaxation
time,

�vis = �2A . �38�

This is to be compared with the impact time �c. While it is
difficult to derive �c for viscoelastic and adhesive collisions,
the impact time of elastic particles may be used as a lower
bound �e.g., �5��,

�c,el = 6.7Reff gimp
−1/5���1 − �2�

Y
�2/5

, �39�

where � is the material density of the particles. Moreover,
�c,el also provides a relevant time scale �compression and
decompression duration� even for sticking collisions, which
formally have a divergent collision time. Hence, in what fol-
lows we assume the condition

�vis � �c,el �40�

to be fulfilled, which guarantees the validity of the quasi-
static approach.

In the next sections we solve the equation of motion �34�
numerically for given initial, Eqs. �35� and �37�, and final
conditions �15� and study main quantities characterizing the
collision, such as the coefficient of restitution � and the
threshold velocity gcr below which colliding particles aggre-
gate.

IV. COEFFICIENT OF NORMAL RESTITUTION

The coefficient of �normal� restitution defined by

� = ��gimp� = −
gsep

gimp
�41�

characterizes the loss of kinetic energy of the translational
motion due to a collision. In the case of head-on collisions
where no energy is transferred from translational into rota-
tional motion, this coefficient characterizes the collision
completely, e.g., �5,7�. It may be obtained from the solution
of Newton’s equation of motion �34� via

��gimp� = −
�̇��c�

�̇�0�
= −

ȧ��c�
d�

da



afinal

ȧ�0�
d�

da



ainit

, �42�

where, as before, �c denotes the duration of the collision. The
coefficient of restitution ranges in the interval �� �0,1�,
where �=0 stands for aggregation and �=1 for elastic resti-
tution.

An interesting application of our theory could be the evo-
lution and dynamics of Saturn’s rings. They mainly consist

of icy particles whose collision dynamics profoundly affects
ring characteristics such as, e.g., their vertical extent �6�.
Therefore, for the numerical analysis of Eq. �34� we chose
material parameters of ice at low temperature, Y =7
�109 Pa, �=0.25, �=103 kg m−3, and 
=0.74 Nm−1 �38�.
The dissipative constant A containing the viscous parameters
�1 and �2 is not directly available. Its value A=10−4 s is the
result of a best fit of a viscoelastic noncohesive collision
model to experimental data �7,39�. Using these parameters
and Eq. �38� we obtain for the viscous relaxation time of ice
particles �vis�6�10−6 s and analyze the collisions which
satisfy the condition �40�.

Figure 2 shows the coefficient of restitution as a function
of the impact speed gimp for Reff=1 cm and the above given
material parameters for different model realizations. A purely
viscoelastic collision, i.e., 
=0, naturally coincides with the
underlying viscoelastic model �7� �black dashed line in Fig.
2�. The behavior of the coefficient of restitution for adhesive
particles addressed in this article is qualitatively different
from the behavior of nonadhesive viscoelastic particles:
While for 
=0 restitution occurs at all impact speeds �in
particular �→1 for gimp→0�, for 
�0 particles agglomerate
at sufficiently low impact rates ��→0 for gimp→0�. In gen-
eral, the coefficient of restitution increases with decreasing
impact rate until reaching a threshold rate gcr where the co-
efficient of restitution drops to zero. Due to the extra dissi-
pation caused by adhesive forces, adhesive, viscoelastic par-
ticle contacts are more dissipative than purely viscoelastic
collisions. Thus, even in the absence of observable sticking
�gimp�gcr practically infeasible�, the restitution coefficient is
overall reduced �cf. the dashed black and the solid and
dashed-dotted lines in Fig. 2�. For both types of initial con-
ditions �type I, black solid and type II, dashed-dotted lines�
similar results are obtained.

0.01 0.02 0.03 0.04 0.05
gimp �m � s�

0.1

0.2

0.3

0.4

0.5

Ε

Bridges et al. �39�

Brilliantov et al. �7�

Albers and Spahn �24�
Eq. �34,42�: ainit � aeq

Eq. �34,42�: ainit � a0

FIG. 2. Coefficient of restitution � as a function of the impact
rate gimp for same-sized icy particles of radius R=2 cm �Reff

=1 cm� for different model realizations. As expected and in general
agreement with experiments �40,41�, adhesive collisions are more
dissipative than purely viscoelastic ones �cf. the dashed black and
the solid and dashed-dotted lines�. Moreover, below a certain im-
pact speed, here gcr�2 mm/s, particles stick together instead of
rebouncing in the case of restitution for gimp�gcr. Results of �39�
are shown as an exemplary comparison.
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Our results are in good qualitative agreement with experi-
mental studies of icy spheres of various sizes and surface
frosts �39–43� where critical impact rates of maximal
4 mm/s were reported �40–42�. For exemplary comparison,
we plot results of �39� �gray dotted line in Fig. 2�. Note that
here the systematic error in effective mass present in almost
all aforementioned experiments due to a utilized disk pendu-
lum as well as a slightly different geometry of an impact into
a flat wall has not been accounted for. Further, �43� con-
cluded that data in �39� is valid for frost-covered ice spheres
of 2.75 cm. Therefore, in order to apply the model presented
in this article, careful fits to the existing data are essential.

Figure 3 shows the coefficient of restitution � as a func-
tion of the effective particle radius for fixed impact rate gimp.
Similar to the dependence on the impact rate there are do-
mains of restitution and of aggregation. The critical impact
rate gcr below which particles aggregate is larger for smaller
particles. Thus, small particles are more likely to stick to-
gether while larger ones overall experience more elastic col-
lisions. Moreover, for a given Reff the most elastic collisions
occur between same-sized particles �black solid or black dot-
ted curve 	=R2 /R1=1�, whereas size asymmetry signifi-
cantly reduces the restitution coefficient �black dash-dotted
curve, 	=10� shifting gcr by half an order of magnitude. This
behavior may be easily understood if one writes the effective
mass as

meff =
4

3
��Reff

3 f�	�, f�	� =
�1 + 	�3

1 + 	3 . �43�

The function f�	� is maximal for 	=1 �equally sized
spheres� and decays monotonically with 	. The larger the
inertia, the more elastic the collision and the smaller the
relative importance of dissipation and adhesion in collisions.
Hence, for a fixed effective radius Reff the inertia effects,

quantified by meff, would be maximal for 	=1. This corre-
sponds to the maximal coefficient of restitution. With in-
creasing size asymmetry 	 the collisions become less resti-
tutive and thus more aggregative. This strongly suggests that
the size ratio of the colliding particles, besides a generally
low impact rate, is an important parameter favoring a pos-
sible aggregation.

This particular illustration bears an interesting insight into
the collision dynamics in general. In the case of viscoelastic
particles where 
=0 the coefficient of restitution increases
with the effective radius to the purely elastic limit of �=1
�black dashed line�. Contrary, whenever adhesion is involved
collisions are always dissipative due to the hysteresis related
to adhesive interactions. Collisions of types I and II initial
conditions are plotted as black and gray lines, respectively,
and clearly illustrate this effect. The larger the difference
between ainit and afinal the more energy is lost during contact.
Note that the influence of either type I or II initial condition
is rather minor. An adhesive collision is always less elastic
than a corresponding viscoelastic one in agreement with ex-
perimental studies.

Overall, the differences between viscoelastic �
=0� and
adhesive �
�0� viscoelastic collisions are most pronounced
for small particles and rather slow impacts as shown in Figs.
2 and 3.

V. STICKING VELOCITY

The agglomeration of slowly colliding particles is a sa-
lient property of the viscoadhesive interaction model. The
threshold impact velocity gcr distinguishes restitutive �gimp

�gcr� from aggregating collisions �gimp�gcr� where a joint
agglomerate is formed from the constituents. The outcome of
a collision sensitively depends on material parameters, im-
pact rate, and size of the colliding particles. From the nu-
merical solutions, as shown in Figs. 2 and 3, we are able to
infer the critical velocity for any collision setup �see Fig. 4�.

An analytical estimate of the threshold velocity can be
obtained by considering the work done in order to form the
neck prior to separation. Since ainit�afinal for 
�0, a sig-
nificant amount of energy will be invested into this hysteresis
as discussed above �cf. Fig. 3�. Thus, neglecting energy
losses due to the material’s viscoelasticity, we estimate the
critical impact velocity as �44�

gcr =�2Wad

meff
, �44�

where the adhesive work Wad reads

Wad = �
�final

�init

F���d� = �
afinal

ainit

F�a�
��

�a
da . �45�

Using Eqs. �12� and �11� the adhesive work is finally

Wad = q��5
5Reff
4 D2�1/3, �46�

where q=1.57 for ainit=aeq and q=0.09 for ainit=a0.
Figure 4 shows the critical velocity gcr as a function of the

effective particle size Reff. Black solid and dashed-dotted

�2 �1.5 �1 �0.5 0
Log10 �Reff ��m�

0.2

0.4

0.6

0.8

1
Ε

Γ � 0 N�m; gimp � 0.01 m � s

black lines: ainit � a0

Μ � 1; gimp � 0.01 m � s
Μ � 1; gimp � 0.001 m � s
Μ � 10; gimp � 0.001 m � s

gray lines: ainit � aeq

Μ � 1; gimp � 0.01 m � s
Μ � 1; gimp � 0.001 m � s

FIG. 3. The coefficient of restitution � as a function of the
effective particle radius Reff for icy particles colliding at a fixed
impact rate gimp. Restitution becomes dominant with increasing ef-
fective particle radius. Slower impacts and size ratios different from
one favor aggregation. The limit of purely elastic collision for large
particles is only reached in case of nonadhesive collision. Thus, an
adhesive collision is always dissipative.
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lines denote the results obtained by numerically solving the
equations of motion �34�, while gray solid and dashed-dotted
lines refer to the corresponding analytical equations �44� and
�46�. Additionally, the qualitative analytical result for the
critical velocity obtained by a different approach in a previ-
ous study �37� is plotted for comparison. For large particles
the same size dependence is obtained.

Generally, the smaller the particles the higher the critical
velocity for restitution to occur. Moreover, gcr is larger for
particles of different size �	�1� than for equally-sized par-
ticles with the same Reff. This is easy to understand: Indeed,
the relative importance of surface forces that cause aggrega-
tion is larger for smaller particles, whereas inertia forces,
counteracting aggregation, are smaller as seen before. Aggre-
gation is most likely in these regimes. Numerical results for
either type-I or type-II initial conditions are still fairly simi-
lar and even identical for small particles. For large Reff, the
analytical estimate according to Eqs. �44� and �46� repro-
duces the size dependence of gcr remarkably well. Differ-
ences between numerics and analytics are most profound for
small particles and are due to the neglect of viscous dissipa-
tion in the analytical estimate. Clearly, the analytics under-
estimates energy losses during collision and thus of the criti-
cal velocity gcr. Note that the initial conditions of type II
agree much better with the corresponding numerics of gcr in
particular in the large particle limit. This is due to the fact
that a part of the loading stage between a0 and aeq, present in
type I, is skipped for type-II initial conditions. Skipping this
part is equivalent to an assumption that the energy gain, due
to the decreasing free surface for the interval a0
a
aeq, is
completely compensated by viscous losses, that is, to an in-
direct account for dissipation. In the case of small particles,
however, the analytics of both type-I and type-II initial con-
ditions differs significantly from the numerics indicating the
importance of viscous dissipation.

VI. CONCLUSION

We present an analytical model for the collision dynamics
of adhesive viscoelastic spheres which accounts for aggrega-
tion and restitution. It is based on the viscoelastic model �7�
where surface interactions based on the JKR theory �9� have
been incorporated. The applicability of this model is based
on the quasistatic assumption which implies a relative impact
rate much smaller than the material’s speed of sound. This
allows us to treat the collision process as a sequence of equi-
librium states and further justifies the use of the otherwise
static JKR and Hertz’s theory. We wish to stress, however,
that due to the assumed low-velocity collisions no internal
shock waves are induced and thus neither plastic deforma-
tion nor fragmentation of any kind are covered by this
model.

We derive the total, dynamic contact force acting between
two colliding spheres. Interestingly, it cannot be expressed as
a simple superposition of elastic, adhesive, and dissipative
force, since a viscoadhesive cross term arises. Formulating
the equation of motion for normal, head-on collisions with
appropriate initial conditions we numerically solve the colli-
sion dynamics. In particular, we perform simulations of col-
lisions between centimeter-sized icy particles at low tem-
peratures as motivated by an application to the Saturnian
main rings. Characteristic parameters, such as the coefficient
of restitution and critical impact speed, distinguish between
aggregative and restitutive collisions, have been obtained
quantitatively, and are in good agreement with experiments.

We observe that aggregation is likely for small and slow
particles, whereas restitution occurs otherwise. Further, it is
very likely for small particles to stick to larger ones. Adhe-
sive collisions are generally less elastic than corresponding
purely viscoelastic impacts but significantly differ only for
small Reff, differently sized collision partners 	�1, or very
slow impact rates gimp. In these cases, the relative kinetic
energy is completely dissipated leading to an aggregation of
particles. This aggregation is possible due to the hysteresis of
adhesion and thus the asymmetry of loading and unloading
stages. Viscous dissipation further promotes the formation of
aggregates in collisions. An analytical estimate for the criti-
cal velocity agrees well for large effective particle radii but
noticeably deviates for smaller ones. This clearly indicates
that viscous dissipation plays an important role in aggrega-
tive and restitutive collisions of small viscoelastic particles
with adhesion.

Aggregation �as well as its counterpart—fragmentation� is
one of the main driving mechanisms of evolution of multi-
particle systems, such as, e.g., planetary rings �see a recently
developed kinetic model �23��. Therefore, an accurate de-
scription of particle aggregation is very important. The col-
lision model of adhesive viscoelastic particles �23,24�,
adopted in Ref. �23�, yields overall qualitatively similar re-
sults �23,24�. It does not incorporate the exact ��a� relation
between the contact area and the compression as given in Eq.
�11�, but merely traces the collision along the compression
and not the contact area. Moreover, it overestimates viscous
dissipation by neglecting the viscoadhesive cross term in Eq.
�32�. It yields so far higher critical velocities and thus plays
a role of an upper bound for the results of the more complete
model presented here.

�2 �1.5 �1 �0.5 0
Log10 �Reff ��m�
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Eqs. �34,42�: ainit � a0

Eqs. �34,42�: ainit � aeq

Eqs. �44,46�: ainit � a0

Eqs. �44,46�: ainit � aeq

Dominik and Thielens �37�

FIG. 4. Critical velocity gcr as a function of the effective particle
radius for the collision of same-sized icy particles. The analytical
estimate given by Eqs. �44� and �46� is compared to the exact nu-
merical results given by Eq. �34�. The critical impact rate distin-
guishes restitutive from aggregative collisions, where the domain of
restitution is above the respective and the domain of aggregation
below each respective curve. The results from Refs. �23,37� show a
qualitatively similar particle size dependence of gcr.
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In general, the model presented here is capable of quali-
tatively and quantitatively reproducing the contact dynamics
of adhesive viscoelastic particles. For a particular applica-
tion, this model can easily be fitted to existing experimental
results, thus providing an essential tool and addition for the
analytical as well as numerical study of multiparticle sys-
tems.

APPENDIX A: RELATION BETWEEN PRESSURES
AND FORCES IN TWO SYSTEMS

In this section we relate pressure and total force of two
systems, whose coordinates and displacement field are re-

lated by a linear transformation. Let the pressure P� 1�x ,y� act
on the surface of an elastic semispace, z�0, of the first
system and give rise to a displacement field in the bulk �16�,

u1
i �x,y,z� = �

�

Gik�x − x�,y − y�,z�P1
k�x�,y��dx�dy�,

�A1�

where Gik�x ,y ,z� is the corresponding Green’s function.
Similarly, one can write for the second system,

u2
i �X,Y,Z� = �

�

Gik�X − X�,Y − Y�,Z�P2
k�X�,Y��dX�dY�.

�A2�

Let the coordinates of two systems be related as

X = X�x,y�, Y = Y�x,y�, Z = z , �A3�

while the relation between the displacement fields reads

u2
i
„X�x,y�,Y�x,y�,Z… = u1

i �x,y,z� . �A4�

Changing the integration variables X ,Y →x ,y in Eq. �A2� we
write

u2
i �X,Y,Z� = �

�

Gik�X − X�,Y − Y�,Z�P2
k�X�,Y��dX�dY�

= �
�

Gik�x − x�,y − y�,z�P̃2
k�x�,y��

�
D�X�,Y��
D�x�,y��


dx�dy� = u1
i �x,y,z� , �A5�

where P�̃ 2�x ,y�= P� 2(X�x ,y� ,Y�x ,y�). From the last equation
and Eq. �A1� we find the relation between the pressure in
both systems:

P� 1�x,y� = 
D�X,Y�
D�x,y� 
P� 2„X�x,y�,Y�x,y�… . �A6�

Compare now the total forces in both systems which act at
the plane z=0. Using Eq. �A6� we write

F2 = �
�

P2�X,Y�dXdY

= �
�

D�X,Y�

D�x,y� 
P� 2„X�x,y�,Y�x,y�…dxdy

= �
�

P1�x,y�dxdy = F1, �A7�

where we changed the variables X=X�x ,y� ,Y =Y�x ,y�.
Hence the total forces in both systems are equal.

APPENDIX B: FORMATION OF ADHESIVE CONTACTS

1. Derivation of the rate equation

Here we present a qualitative analysis of the rapid pro-
cesses of contact formation. Since both theories, the JKR
theory and our theory of the dissipative force, are valid in the
quasistatic regime only, we have to apply a more general
approach. Therefore we use the energy balance equation
supplemented by general expressions for the elastic energy
of a deformed sphere and dissipation function of the vis-
coelastic medium. We start from the first law,

dQ = dE + dW , �B1�

where dQ is the heat produced due to the viscous dissipation,
dW is the mechanical work, equal to the sum of increments
of mechanical potential energy �elastic energy in our case�
and kinetic energy, dW=dUelas+dEkin, and dE is the incre-
ment of the internal energy of the particles’ material. Hence
we recast the above equation into a form

d

dt
�Uelas + Ekin + E� = Q̇ . �B2�

The internal energy is related to the free energy F as E=F
−T�F /�T, where T is temperature. For the case of interest
only the part of the free energy, related to the varying contact
area F=−�a2
, is relevant; this yields

E = − �a2�
 − T�
/�T� � − �a2
 , �B3�

that is, we ignore the variation of temperature of the par-
ticles. The elastic energy of a sphere, which deformation is
obtained by a superposition of Hertzian and Boussinesq’s
deformations �see Sec. II A and II B�, and characterized by a
compression � and a contact radius a, reads �18�

Uelas =
a3

4DReff
���3�Reff

a2 − 1	 −
�H

5
�5�Reff

a2 − 3	� ,

�B4�

where, as previously, �H=a2 /Reff; note that Eq. �B4� refers to
the general case, where � and a are not related by Eq. �11� as
in the JKR theory �see, for the derivation, Ref. �18��. Strictly
speaking, the above expression corresponds to a static case,
when the external parameters such as � and a completely
determine stress and/or strain distribution in a bulk. Never-
theless, it is still a good approximation if the displacement
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rate is significantly smaller than the speed of sound in the
material—this enables the stress and/or strain to relax to their
static values. It is also worth it to note that since the static
JKR theory is essentially based on two relations Eqs. �B3�
and �B4�, for E�a� and Uelas �27�, its validity extends to dy-
namic applications, as long as the above condition is met. We
assume that this is the case and prove the self-consistency of
the assumption.

The kinetic energy may be written as

Ekin =� 1

2
�u�̇2�r��dr� , �B5�

where u�̇�r�� is the displacement rate at a point r�, and � is the
material density, unaltered by small deformations; the inte-
gration is performed over the particles’ volumes. Finally, the

dissipation rate Q̇ may generally be written as

− Q̇ = R =� dr���1

2
�u̇ij −

1

3
�iju̇ll	2

+
�2

2
u̇ll

2� , �B6�

where u̇ij is the strain rate and R is the dissipation function
of the viscoelastic material �16�; the integration is performed

over the same domain. The negative sign in front of Q̇ fol-
lows from the fact that the heat is produced by the system,
and not transmitted to it from outside.

We start the analysis for the initial conditions of the first
kind, Eq. �35�, and consider for simplicity a collision of a
sphere with a plane, that is, Reff=R. In this case �=0 and Eq.
�B4� yields Uelas= �3/20�a5 /DR2. The total configurational
energy in this case

Utot = Uelas + E = �3/20�a5/DR2 − �a2
 �B7�

is always negative for small a and has a �negative� minimum,
dUtot /da=0, at a=a0. Once brought into a contact, the sys-
tem “slides” down the energy gradient, enlarging the contact
area, and tends to reach the potential minimum at a=a0. To
obtain the rate of this process one needs to determine Ekin
and dQ /dt and use the kinetic equation �B2�. However, it is
not easy to find these quantities, hence we apply the qualita-
tive estimates

Ekin =
1

2
�u̇̄2�V , �B8�

dQ

dt
= �u̇̄ij

2 �V , �B9�

where ���1��2 is the characteristic viscous constant, ū
and ūij are respectively characteristic displacement and
strain, and �V is the characteristic volume of the domain
where the deformation mainly occurs. It follows from a
simple geometric analysis �see Fig. 5� that

ū �
a2

R
, ūij �

a

R
, �V 


2�

3

a4

R
. �B10�

For the characteristic displacement ū we take this quantity
for the point on the sphere surface on the boundary of the
contact zone, where u=a2 /R �see Fig. 5�. To estimate the

strain ūij ��u /�x we take into account that the displacement
of the material on the sphere surface varies from zero, u=0,
at the center of the contact zone to u=a2 /R on the contact
boundary of radius a, that is, �u=a2 /R and �x=a. The vol-
ume �V is estimated as a volume difference between the
truncated cone with the two bases of 2a and a and height
h=2a2 /R and a spherical cap of the same height and basis
radius 2a, see Fig. 5.

Using Eq. �B10� we recast Eqs. �B8� and �B9� into the
form

Ekin =
4��a6

3R3 ȧ2, �B11�

dQ

dt
=

2��a4

3R3 ȧ2. �B12�

Substituting now Eqs. �B7�, �B11�, and �B12� into Eq. �B2�,
we obtain the equation for the contact formation rate. It is
convenient to use the dimensionless time and contact radius,
t= t̂�0 and a= âa0, and introduce the viscous relaxation time
�v as

�0 =
a0

c
, c2 =

Y

�
, �v =

�

Y
, �B13�

where c is the characteristic speed of sound in the material.
In new variables the energy balance reads

d

dt̂
��a0

R
	ȧ̂2â6 −

3

16�
�â2 −

2

5
â5	� = −

1

2
�a0

R
	� �v

�0
	ȧ̂2â4,

�B14�

where we use D�3/ �2Y�.

FIG. 5. Illustrates the geometry of the contact formation for the
initial conditions �35�. For simplicity the collision of a sphere with
a plane is considered. The radius of the sphere is R and the current
radius of the contact area is a. The displacement of the sphere’s
surface is zero at the center of the contact zone, u�0�=0, while at
the boundary of the contact zone, that is, on the distance a from the
center u�a�=a2 /R. This yields the estimate for the characteristic
strain, ūij ��a2 /R� /a�a /R. The shadowed region corresponds to
the domain of the most intensive deformation. Its volume is equal to
the volume difference of the truncated cone with basis radii 2a and
a and height h=a sin �, and the spherical cap of the same height h
and basis radius 2a. For a /R�1, from simple geometry, follows
tan�� /2�
� /2=a /R or tan �
sin �
2a /R. The velocity of a ma-
terial point on the sphere’s surface u̇z�a� is related to the rate of the
contact enlargement ȧ �which is the speed of a geometric point� as
u̇z�a�= ȧ tan �
 ȧ�2a /R�.
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We consider separately two limiting cases, �v��0 �negli-
gible dissipation� and the opposite case, �v��0.

2. Contact formation for negligible dissipation

In the first case Eq. �B14� may be reduced to

ȧ̂ =� 3R

16�a0
�1 −

2

5
â3	1/2

â−2, �B15�

where we take into account that initially ȧ̂=â=0. We assume
that the contact is practically formed when a=�a0 �or â=��
where ��1; here we choose �=0.99. Solving Eq. �B15� and
returning to the dimensional time we obtain the duration of
the contact formation,

�1 =�16�a0

3R
�

0

� dââ2

�1 − �2/5�â3
�0. �B16�

The integral may be easily performed with the result �5/3�
��1−�1−2�3 /5�, which yields, using the above value of
�=0.99, Eq. �36� for a0, and the definition of D�1/Y,

�1 = 0.473�a0

R

a0

c
�

�
�R�1/2

Y
. �B17�

For other values of �, different numerical coefficients are
obtained. Naturally, we skip these for our qualitative estimate
to �1. Note that according to Eq. �B17� the formation of a
contact of radius a0 occurs �R /a0 times faster than
�a0 /c�—the time that the sound travels the distance a0. That
is, the boundary of the contact zone effectively moves with
the speed �R /a0 times larger than the speed of sound. This,
however, is not a speed of a material particle, but rather of a
geometric point. Indeed, as it is illustrated in Fig. 5, the
velocity at which the surface of the sphere moves toward the
plane, u̇z�a�, taken at a contact radius a is related to the speed
of the contact boundary ȧ as u̇z�a�= ȧ tan �, where tan �
=2a /R, see Fig. 5. Since, as noticed previously, ȧ=c�R /a,
we obtain u̇z�a�= �2a /R�c�R /a=2c�a /R or u̇z�a��c. That
is, in spite of the supersonic spread of the contact boundary,
the material itself moves with a speed significantly smaller
than the speed of sound. This proves the self-consistency of
our approach.

3. Contact formation with dissipation

Next we consider the case of large viscosity, �v��0,
which seems to be of a wider application �this condition is
fulfilled for the ice particles addressed here�. In this case the
first term on the left-hand side of Eq. �B14� is ��0 /�v� smaller
than the term on the right-hand-side, and hence may be ne-
glected. Without this term this equation may be recasted into
the form

ȧ̂ =
3

4�
�1 − â3�â−3� �0R

�va0
	 . �B18�

Solving this equation in the same way as Eq. �B15�, with the
same condition for the contact formation, â=�=0.99, and

transforming back to the dimensional time, we obtain the
duration of this process,

�2 = 4.30� �va0

R
	 � �� 


RY4	1/3

. �B19�

As expected, contact formation takes longer for more viscous
material. Nevertheless, it still occurs fast enough to assume
that during this process the impact velocity persists and com-
pression keeps constant, �=0.

4. Analysis of validity of initial conditions

To prove the validity of the initial conditions we consider
the attractive force which pulls the particles toward each
other at the beginning of the contact at �=0. This may be
done differentiating the total configuration energy Utot
=Uelas+E with respect to the “coordinate” �,

F�� = 0,a� = 
− �Uelas

��



�=0
=

a3

2DR
, �B20�

where Uelas is generally given by Eq. �B4� and we take into
account that E does not depend on �. The force increases
with increasing contact area, so that the increment of impulse
m�gimp due to this force, acting during the time interval �2,
reads

m�gimp = �
0

�2 a3�t�
2DR

dt =
a0

3�0

2DR
�

0

� â3

ȧ̂�â�
dâ , �B21�

where we transform to the dimensionless variables and
change the integration variable from t̂ to â. Substituting Eq.

�B18� for ȧ̂�â� into the last equation and performing the in-
tegration we obtain for �=0.99,

�gimp = 1.64
a0

4�v

DR2m
�

�

m
�
2R

Y2 	2/3

. �B22�

The validity of the initial conditions requires the prerequisite
�gimp�gimp. For the centimeter-sized particles we find
�gimp�10−5 m/s, where the relation ��AY, which follows
from Eq. �31�, has been used.

Next, we estimate the increment of the compression ��

for the time of the contact formation �2. Using m�̈=F with
the force F
F��=0,a� as it is given by Eq. �B20�, we write

�� � �
0

�2

dt1�
0

t1 a3�t2�
2mDR

dt2. �B23�

Performing calculations similar to those leading to Eq.
�B22�, we finally arrive at
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�� = 3.02
a0

5�v
2

mDR3 . �B24�

It is worth it to compare �� with the value of �eq, which
characterizes the starting compression for the initial condi-
tions of the second type. Using Eqs. �14� and �B24� we find

��

�eq
= 44.2

�2


Y2m
�

A2


m
, �B25�

where in the last equations we again exploit ��AY. For the
icy particles addressed here this ratio is estimated as 10−5,
which justifies the initial conditions �35� used in our study.
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