
Viscosity of water measured to pressures of 6 GPa and temperatures of 300 °C

Evan H. Abramson
Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195, USA

�Received 2 August 2007; published 21 November 2007�

Shear viscosities of fluid water have been measured to 300 °C and 6 GPa �60 kbar�. Measurements were
made in a diamond-anvil cell with a rolling-ball technique. Enskog’s equation for viscosity, coupled with an ad
hoc assumption that increased collision rates are due to an “excluded volume”, yield excellent matches to the
data at temperatures of 100 °C and over, without any freely variable parameter. The data overlap the pressure-
temperature range in which experiments on shocked water have previously been interpreted to indicate ex-
tremely high viscosities. It is shown conclusively that viscosities in this region are very close to those at
ambient temperature. Further, it is argued that explanations of high apparent viscosities which rely on the
putative formation of ice behind the shock front are probably incorrect.
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I. INTRODUCTION

The shear viscosities of highly compressed fluids are im-
portant to the studies of planetary physics, explosive materi-
als, and high pressure chemistry as well as to the basic theory
of fluids. Nonetheless, due to the difficulty of the experi-
ments there have been relatively few reports of viscosities at
pressures in excess of �0.5 GPa. Water, as a ubiquitous sub-
stance of great practical and theoretical importance, has en-
gendered more attention in this regard than any other fluid,
but still the data are sparse. Water’s viscosity under static
compression has previously been reported to �1 GPa and
less than 100 °C by Bridgman �1�, Forst et al. �2�, Bett and
Cappi �3,4�, Harlow �5�, and King �6�. Other measurements
by Dudziak and Franck �7�, up to a temperature of 560 °C,
have extended only to 0.35 GPa.

Several methods have been used to infer the viscosities of
water transiently compressed by shocks, to a maximum pres-
sure of 25 GPa and associated temperature of �1700 K.
Some researchers have concluded that the viscosities of such
shocked water can exceed that of the normal fluid by as
much as six orders of magnitude. Results of various experi-
ments, however, differ by the same six orders of magnitude,
indicating that proper interpretations of the data have not yet
been established.

In this paper we report measurements of the viscosity of
water in the fluid and metastable fluid regimes up to a tem-
perature of 300 °C and a pressure of 6 GPa �60 kbar�. The
data are used to test several, previously published, empirical
and semiempirical equations. The pressures and temperatures
of these experiments overlap those of the shock data and
demonstrate conclusively that water’s viscosity in this re-
gime is normal, varying little from ambient values.

II. EXPERIMENT

Water was held in a high-pressure diamond-anvil cell of
modified Merrill-Basset design. Viscosities were determined
with a rolling-ball technique �6,8� in which a videocamera is
used to record the speed of a platinum sphere as it rolls down
an inner diamond face of the cell. Spheres were of diameters
between 30 and 60 �m. The plane of roll was inclined at

angles of between 10° and 30° from the horizontal. Plots of
speed versus sine of the angle yielded straight lines, the
slopes of which are inversely proportional to the viscosities.
The constant of proportionality for each sphere is dependent
on the diameter and was calculated from the known viscosi-
ties of water at 21 °C �and pressures less than 0.5 GPa�
given by the International Association for the Properties of
Water and Steam �IAPWS� �9,10�. Figure 1 shows a plot of
speed against angle of inclination for two different spheres at
similar pressures; note that although the larger sphere rolls
faster than the smaller for any given angle, the calculated
viscosities are the same.

The cell was held in an oven, with temperatures measured
and regulated to 1 °C using chromel-alumel thermocouples.
Pressures were measured with an included crystal of either
ruby �11� or samarium-doped SrB4O7 �12,13�; for the borate,
or for ruby above 200 °C, the pressure gauge was separated
from the working water by means of a gold divider �13�.
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FIG. 1. Rolling speeds, measured in water at 21 °C, are plotted
against sine of the angle to the horizontal. Data are presented for
two spheres of different diameter, at similar low and high pressures.
Under identical conditions the larger sphere rolls roughly twice as
fast as the smaller, but calculated viscosities, given in the figure, are
the same.
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Reynolds numbers ranged from 2�10−3 to 1.0 with no ob-
vious onset of turbulent or non-Newtonian flow.

III. RESULTS AND DISCUSSION

A. Data

Data �14� were taken on isotherms of 21, 50, 100, 200,
and 300 °C �Fig. 2�. Overall, the agreement with previous
results is quite good within the regions of overlap. Devia-
tions from a smooth curve drawn through our 21 °C data are
shown in Fig. 3; individual measurements have a root-mean-
square scatter of �3%. In the same figure are plotted results
from previous experiments. Data taken with conventional
high pressure apparatus have typically used either falling
plugs or rolling spheres moving through cylinders of slightly
larger diameters; these measurements often show precisions
of better than 1%, but at pressures approaching 1 GPa can
deviate on the order of 10% among different laboratories.
Such systematic offsets have been reasonably ascribed to di-
mensional changes in the apparatus caused by the large pres-
sures �2�. In the case of the current technique dimensional
changes due to pressure or temperature are believed to be
inconsequential, a belief supported by the fact that repeated
measurements with spheres and cells of different dimensions
are seen to yield the same viscosities �Fig. 1�.

Along the isotherms up to 200 °C it was relatively easy to
push the fluid �0.4 GPa into the metastable regime with
respect to either ice VI ��82 °C� or ice VII. Viscosities in
the metastable fluid show no obvious departure from the
regular increase with pressure seen in the thermodynamically
stable region.

The IAPWS formulation, depicted along the 21 °C iso-
therm in Fig. 3, was not designed with the purpose of ex-
trapolation and diverges quickly beyond the region of fitted
data. Aleksandrov and Matveev developed equations �15� in-

tended to be useful in extrapolation �stippled lines, Fig. 2�
which do reasonably well in reproducing much of the data,
with the notable exception of the metastable regime for
which they predict divergent viscosities at the highest densi-
ties achieved.

B. Commonly used fitting equations

Several expressions are commonly used for the purpose of
describing the variation of viscosity with pressure, tempera-
ture, or density. The Doolittle �16� equation ��eB�/��−�0�,
found to give decent fits to viscosities for many liquids, also
does so for �liquid� water at or over 100 °C �although, nota-
bly, not the 21 or 50 °C isotherms�. The range of densities of
the present data put no great demand on a three-parameter
expression and the most that can be said is that the fitting
constants obtained are reasonable. A modified Doolittle ex-
pression, shown �8� to fit oxygen viscosities from the thin
gas to liquid densities, is not useful for water at these tem-
peratures which are still below critical �and for which, more-
over, the second viscosity virial coefficient is negative�.

The Arrhenius relations, ��eEa/kT and ��ePVa/kT, with
constant energy or volume of activation �Ea and Va, respec-
tively� are often used when it is desired to extrapolate or
interpolate viscosities. These equations fit neither the current
data nor those previously taken for oxygen �8�, either along
isobars or isotherms and it seems doubtful that they should
be used at all unless for interpolative purposes and where
sufficient intermediate points exist that the data can be
shown to conform to the equation. This fact, which is well-
known among those studying glassing �17�, appears to be
less widely appreciated in other fields.

0 1 2 3 4 5 6
0

1

2

3

V
is

co
si

ty
(m

P
a

s)

Pressure (GPa)

21°C
50°C

100°C
200°C
300°C

FIG. 2. Measured viscosities are plotted against pressure along
isotherms of 21, 50, 100, 200 and 300 °C. Data of Cappi �3,4� ���
and of Dudziak and Franck �7� ��� are also shown. Solid lines are
polynomial fits through the data, dotted lines represent calculations
of Aleksandrov and Matveev �15�. Arrows indicate the freezing
pressure on each isotherm.
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FIG. 3. Measured viscosities are plotted against pressure as frac-
tional deviations from a smooth curve drawn through the current
21 °C data. �, current data; �, Harlow �5�; �, Forst et al. �2�; �

King et al. �6� �for 2 wt % NaCl solution�; and solid line, IAPWS
formulation �9,10�. All data were taken at 21±2 °C and are cor-
rected to 21 °C. Data of Cappi are not reproduced here as they were
taken in the same laboratory as those of Harlow and are much the
same. As originally published, the data of King et al. were cali-
brated against a single point taken at 1 bar. Here, the reported vis-
cosities have been uniformly reduced by 4% to better match other
data up to 0.5 GPa.

EVAN H. ABRAMSON PHYSICAL REVIEW E 76, 051203 �2007�

051203-2



The Vogel-Fulcher-Tammann equation ��eDT0/�T−T0�

gives a decent account of the data to within 1% up to
1.5 GPa �fits were not attempted at higher pressures with
fewer isotherms�. Its superiority to the Arrhenius expression
might be explained solely by the addition of a third fitting
parameter, however, it is notable that the values obtained for
T0 are a good match to the temperatures at which high-
density amorphous �HDA� ice is seen to devitrify.

C. Reduced entropy correlation

Computer simulations of ensembles of structureless par-
ticles, with a variety of model potentials, suggest �18,19� an
exponential relation between a reduced viscosity and a re-
duced excess entropy:

�red = ��−2/3/�mkT�1/2,

s = − �S − Sideal gas�/Nk: �red = aebs, �1�

with a�0.2 and b�0.8; such a connection would be of tre-
mendous value as the entropy is a well-defined and measur-
able quantity. Figure 4 shows a rough organization of the
data along these lines, but shifted significantly in entropy and
with a decided curvature. The shift is approximately that
which would be expected if the vibrational contribution to
the fluid’s entropy were equal to that of the gas while the
rotational contribution was halved. Data taken at 1 bar
�20–22� show a more pronounced curvature toward higher
viscosities as the fluid becomes deeply supercooled.

D. Excluded volume

Hard-sphere models in general and Enskog theory in par-
ticular have been the starting points for many attempts at
modeling transport properties and are quite successful at low
to intermediate �� twice critical� densities �23�. Application
to real systems requires a procedure for determining the ef-

fective hard sphere diameters and much thought has been
directed to this problem �23,24�, especially to deriving hard
sphere diameters from thermodynamic data.

In Enskog’s formulation, the viscosity is given by

� = �0/� + 5/�16	2��mkT/
�0.8b� + 0.761�b��2�� , �2�

where b=2
	3 /3, �0 is the viscosity at zero density, and 	
is the hard-sphere �collisional� diameter. The factor � ac-
counts for the increased collision rate �over that of a struc-
tureless fluid of point particles� due to local ordering and for
hard spheres it is taken as the value of the pair distribution
function at the sphere’s diameter. Lyusternik �25� has pointed
out that if one makes an ad hoc interpretation of the in-
creased collision rate as the result of an “excluded volume”
Ve, with �=V / �V−Ve�, and further that Ve is proportional to
the volume of the supposed hard sphere Ve= �1 / f��
	3 /6�,
then the Enskog equation for viscosity can be recast in terms
of Ve as �26�

� = �0�V − Ve�/V + �5/16��mkT/
�
/�6fVe��2/3

��3.2fVe/V + 12.18�fVe�2/V/�V − Ve�� . �3�

All this only becomes interesting when one realizes that
1 /Ve, calculated for known viscosities and plotted against
density �Fig. 5�, yields approximations to straight lines. Fur-
ther, these lines when extended pass close to the points �
=1 /Ve=1 /ViceVII where ViceVII is the volume �27� of ice VII
at the melting pressure �28� on that isotherm. As a predictive
prescription, we may then approximate 1 /Ve by a straight
line drawn through a single point at some low density with
known viscosity, and the point �=�iceVII, allowing us to in-
terpolate Ve and hence � at intermediate points. Viscosities
thus obtained are shown in Fig. 6. For purposes of this cal-
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FIG. 4. Reduced viscosity is plotted against �negative� reduced
excess entropy �Eq. �1��. The dashed line is an approximation �19�
to molecular dynamics �MD� calculations for structureless particles;
the thicker segment denotes the range of the MD results.
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FIG. 5. Excluded density �inverse excluded volume� as calcu-
lated by Eq. �3� is plotted against fluid density for isotherms of 21,
100, 200, and 300 °C �bottom to top�. Crosses give the densities of
ice VII on the melting line at these temperatures. Straight lines are
interpolations between the measured data point at lowest pressure
�0.1 GPa� and the point at which the excluded density equals that of
ice VII. In conjunction with Eq. �3� the lines are used to calculate
the curves in Fig. 6.

VISCOSITY OF WATER MEASURED TO PRESSURES OF 6… PHYSICAL REVIEW E 76, 051203 �2007�

051203-3



culation the factor f has been taken to be 0.35, appropriate
�29� to a fluid locally arranged as an fcc lattice with spacing
just small enough to confine each molecule in the cage of its
12 neighbors, however, the value chosen has little effect on
the final calculated viscosities.

At various temperatures below 82 °C four different poly-
morphs of ice �Ih, III, V, and VI� lie along the melting curve
of water. In this range, where the thermodynamically favored
form of packing for water may be presumed to be shifting
rapidly, the calculated viscosities fail to match the data. Be-
yond 82 °C ice VII becomes the stable modification and per-
sists as such up to approximately 700 °C �and, perhaps,
35–45 GPa� �30,31�. Correspondingly the prescription gives
an excellent account of the data along the 100, 200, and
300 °C isotherms.

In the face of all the preceding approximations and as-
sumptions, I wish to emphasize the absence of free param-
eters in the final results. It is this fact only, coupled with the
surprisingly good match between measured and predicted
viscosities �Fig. 6�, that gives reason to suppose that the
development contains some essentially correct physics which
deserve to be further explored.

E. Shocked water

The use of shocks to transiently compress materials to
high densities and temperatures is long-established and rea-
sonably well-understood. Multiple and varied attempts to
measure the viscosities of shock-compressed water have led
to reported values differing by up to six orders of magnitude
�Fig. 7�. Observations of the damping of induced corruga-
tions �32,33�, and others of the acceleration of entrained me-
tallic cylinders �34,35�, have been interpreted as indications

of viscosities which increase greatly with pressure, to �de-
pending on the experiment� 1 or 1000 Pa s in the pressure
range of 6–15 GPa. On the other hand, Hamman and Linton
�36,37� found no change in the electrical conductivities of
aqueous ionic solutions which were shocked up to pressures
of 14 GPa; assuming an approximate inverse correlation be-
tween viscosity and ionic mobility �Walden’s rule�, they then
deduced that the viscosities of the shocked solutions were
not significantly different from those under ambient condi-
tions. The huge discrepancies among these various experi-
ments have not yet been satisfactorily resolved.

In an attempt to reconcile these discordant results, several
authors have suggested �33,35,38,39� that extreme increases
in apparent viscosity are due to the formation of solid water
in a span of pressure for which the shock Hugoniot �locus of
shock end points� exists within the region of stability of ice
VII. Partial solidification of the fluid would be expected to
increase the effective viscosity as measured on the macro-
scopic scale while producing little change in the mobility of
ions through the remaining �connected� fluid. A related idea
�35� supposes that the water, although not containing actual
crystalline bodies, does contain large, highly hydrogen-
bonded “flow units” which hinder macroscopic movement
while, again, allowing essentially unimpeded movement of
ions.

It is clear from the current data that, at least on the lower
end of the pressures and temperatures previously established
by the shocks, viscosities of the thermally equilibrated fluid
are similar to those at ambient conditions; there is no devel-
opment of tightly bonded “flow units” or strong “pre-
crystallization effects” near the melting line, a conclusion
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also apparent, a fortiori, from data taken in the metastable
regions. Use of Eq. �3� to estimate viscosities at higher tem-
peratures and pressures than yet measured statically further
emphasizes the relative invariance of the viscosity along the
Hugoniot �Fig. 6�. Both the experimental data as well as the
extrapolations agree quite well with the conclusions of Ham-
man and Linton; taken together they provide an interesting
validation of Walden’s rule, over large compressions �densi-
ties of 1–1.7 g cm−3� and over temperatures ranging from
300 to 1000 K.

The idea that the presence of ice may cause the large
purported viscosities seems based mainly on the proximity of
the Hugoniot to the melt line, coupled with the absence of
other acceptable explanations. Direct experimental support
for the formation of ice is poor and derives almost entirely
from an early paper �40� in which a diminution in transpar-
ency behind the shock front was reported �along with a pos-
sible abrupt change in slope of the Hugoniot which might
also be indicative of phase transition�. In a later paper Ko-
rmer �41� found no evidence of reduced transparency after a
single shock and, in retrospect, the sparse data with large
scatter can be reasonably fitted with a smooth curve. Recent
work by Dolan and Gupta �42� indicates that water which is
multiply �quasi-isentropically� shocked to 5 GPa, and thus
deeply into the stability field of ice VII, freezes only through
inhomogeneous nucleation on particular substrates; over the
course of the experiments, which lasted �1 �s, homoge-
neous nucleation was never observed. Measurements of vis-
cosity in shocks, using either accelerated cylinders or the
damping of corrugations, were complete within a few micro-
seconds after passage of the shock front. It seems unlikely
that ice could have formed soon enough, in sufficient quan-
tity, to affect the impressed corrugations, although it might
nucleate about the accelerated cylinders.

Whether ice can form at all depends upon the location of
the Hugoniot with respect to the melt line; this, due mostly to
uncertainty in the position of the Hugoniot, is a matter of
disagreement. The locus of shocked states is fairly well-
known in the coordinates P-�-E, but the temperatures are
inferred through the use of various more or �very often� less
reasonable approximations to the thermodynamics. Figure 7
shows our calculation of the temperatures of water �shocked

from an initial state of 20 °C and 1 bar�, using an equation
of state �13� based on measured speeds of sound as well as
shock data taken in this pressure range. The figure indicates
that while ice might be able to form between 3 and 5 GPa, it
will not exist stably at higher shock pressures.

IV. CONCLUSIONS

The shear viscosity of water has been measured up to
300 °C and �6 GPa. The data are in accord with previous
measurements which extended to 1 GPa. The highest vis-
cosities measured, �3.3 mPa s, were in room temperature
water driven into a metastable state; at higher pressures the
concomitant increased temperatures necessary to avoid so-
lidification caused the viscosities to be uniformly lower.

The viscosities of fluid water remain unequivocally close
to the ambient value �1 mPa s� along the primary shock
Hugoniot up to 6 GPa. Extrapolation by use of Eq. �3� up to
1000 K and 13.5 GPa also yields a viscosity of 1 mPa s, in
good agreement with the data of Hamann and Linton;
Walden’s rule is thus verified. The reported extreme viscosi-
ties of shocked water are not credibly explained by positing
the formation of ice as this contradicts the available thermo-
dynamic and kinetic data.

A prescription based on Enskog’s equation for hard
spheres coupled with a hypothesized “excluded volume”
gives a surprisingly good account of the data between 100
and 300 °C without recourse to any free parameters. A sug-
gested relation between scaled viscosity and excess entropy
suffers, in application to a real molecular system, from ef-
fects of internal degrees of freedom. Still, when plotted
against the excess entropy, the scaled viscosities group along
a line parallel to that given by simulations using structureless
particles.
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