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It has recently been observed that a large reverberant cavity admits a classically motivated random s matrix
that is not unitary but that can be made so in a minimally invasive manner. A random process with an envelope
�s2�t���exp�−t /TH� representing reflection from a structure having no internal time scales other than Heisen-
berg time TH was shown to lead to a unitary S matrix exhibiting mesoscopic behaviors not present in the
classically inspired original �s2�t��. These included enhanced backscatter, quantum echo, power law tails, and
level repulsion. Here the procedure is extended to two systems having, in addition to Heisenberg times, internal
time scales corresponding to conduction and diffusion. The repaired S matrices for coupled rooms and one-
dimensional random structures with multiple scattering are found to correspond to Wigner K matrices with
signatures of localization.
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I. INTRODUCTION

Disordered and irregular wave bearing structures permit
statistical particle dynamics models for the evolution of their
energy densities. Thermodynamic models of phonon or elec-
tron transport in which inelastic scattering is presumed to
have destroyed phase coherence of the waves are of this sort.
A picture of particles as diffusing in a random potential is
both attractive and useful. But in the absence of inelastic
scattering, waves preserve phase coherence, so neglect of
wave interference is not justified. In such systems mesos-
copic features appear which have no classical particle coun-
terpart and are not predicted within the diffusion picture.
Amongst these one counts Anderson localization and the as-
sociated absence of transport, enhanced backscatter, quantum
echo, and power law decays. Each of these behaviors is al-
ready understood, more or less well, for simple structures.
Anderson localization pertains to infinite statistically homo-
geneous multiply scattering structures. Power law tails per-
tain to the time-dependent probability that a quantum particle
will remain in a single irregular reverberant cavity before
escaping through an open channel. Random matrix theory
�1–3� permits the calculation of such probabilities, but its
methods are analytically challenging and are correspond-
ingly unlikely to be applied to more general structures.

There exist structures for which no quantitative theory of
mesoscopic wave behavior exists. Nevertheless, such struc-
tures, even if complicated and statistically inhomogeneous,
will usually permit a thermodynamic picture of probability
flow based on phase incoherence and inelastic scattering.
Statistical energy analysis �4� and its generalizations �5,6�
are well known in structural acoustics and vibrations. Elec-
tronics in quantum dots and circuits, room acoustics �7,8�,
diffuse field ultrasonics �9–11�, and optical radiative transfer
provide other examples. All of these subjects permit a statis-
tical particle picture, valid we presume in the presence of
sufficient inelastic scattering, but which is incorrect if phase
coherence is retained.

A recent report �12� proposed an ad hoc recipe for repair-
ing a classical statistical particle theory of probability flow.
The method was applied to waves reflecting from an irregu-
lar structure lacking any internal time scales except level
density. It produced probability flows with mesoscopic fea-
tures remarkably similar to those obtained by averaging over
Gaussian orthogonal ensembles of random matrices �1–3�.

Here we report application of the recipe to systems having
additional transport time scales and for which localization is
expected. Probability flow envelopes E�t� are first obtained
by arguments predicated on classical diffusion and escape.
�E is then multiplied by uncorrelated Gaussian random num-
bers to produce a classical random s matrix s�t�, a function
that represents a plausible reflected wave amplitude from a
complex system with random scattering and phase incoher-
ence. As noted previously �12� this is unlikely to be unitary,
and is thus inadmissible as a true s matrix. That such an s�t�
is unlikely to be unitary is evident, as the trajectories implicit
in its construction will have no special phase relations. Even
in semiclassical methods, where trajectories are examined in
detail, it is difficult �13� to account for all coherences be-
tween different orbits.

The recipe continues by invoking a unitarization proce-
dure that produces a unitary S�t� from s�t�, a procedure de-
signed to be minimally invasive and to respect the classical
flow in s�t� to the extent possible. The repaired S matrices
are found as previously �12� to exhibit enhanced backscatter
and power law tails. The transport of wave intensity in the
corresponding closed systems is then constructed from S, and
examined for signs of localization. In all cases we find that
the resulting wave dynamics in the closed system exhibits
signs of localization to the extent expected. This is perhaps
unsurprising. If a structure is such that most trajectories be-
ginning at the incoming channel then escape back through
that channel before much transport has occurred, then the
reflection S�t� contains no record of transport. Because re-
sponses in the corresponding closed system are concatena-
tions of S they also will have little signature of transport,
hence the localization seen in the closed systems.

Two classes of structures are studied, each with a range of
parameters. Section III considers a pair of coupled reverber-*r-weaver@uiuc.edu
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ant cavities with a single s-matrix channel attached to one
cavity. When closed, and when coupling between them is
slow compared to the inverse of the Heisenberg times of the
rooms, TH=2�� mode count /��, such systems are known to
exhibit what one might term “Thouless localization” �14,15�.
Section IV considers a finite one-dimensional medium whose
classical particle dynamics is diffusive. A single channel is
attached at the center. Waves in closed versions of such
structures are known to be Anderson localized with a local-
ization length of the order of the bare diffusivity divided by
the density of states.

II. MATHEMATICAL PRELIMINARIES

The following section reviews definitions and relation-
ships among scattering matrices, Wigner reaction matrices,
Green’s functions, and Hamiltonians for a classical wave
system. The procedure by which a nonunitary s matrix for a
discrete time domain st may be filtered in a minimally inva-
sive manner to return a unitary St is described in Sec. II B.
Finally, an exact relation is recalled between the S matrix of
an open system and the internal dynamics of the closed sys-
tem as represented by its Green’s function. These methods
and relations are then applied in Secs. III and IV.

A. Green’s functions and scattering matrices
for a classical wave field

We begin with the governing equations for a classical
wave in a finite discrete domain under the influence of a
source q�t� and dissipation.

�t
2	��t�
 = − �H�	��t�
 − �C��t	��t�
 + 	q�t�
 . �1�

The N�N symmetric real matrices �H� and �C� are stiffness
and damping matrices, respectively. C is positive semidefi-
nite and can in principle have �even� frequency dependence.
The N-component vector 	��t�
 is the wave field. The damp-
ing matrix may be written in its orthonormal spectral decom-
position

�C� = �
c=1

M

�c	vc
	vc
T �2�

in terms of real positive semidefinite � and a set of M mu-
tually orthonormal real vectors 	v
, each with N components.
The series may sometimes be truncated at a number of chan-
nels M �N.

Equation �1� corresponds to an N�N Green’s function

�t
2�G�t�� + C�t�G�t�� + �H��G�t�� = ��t��I� , �3�

which has a version without damping

�t
2�G0�t�� + �H��G0�t�� = ��t��I� . �4�

These have Fourier transforms

�G̃���� = �
0

	

�G�t��exp�− i�t�dt = �H − �2 + i�C�−1, �5�

and

�G̃0���� = �
0

	

�G0�t��exp�− i�t�dt = �H − �� − i
�2�−1.

�6�

Often the 	v
 can be identified with open waveguides
through which wave energy can be carried out. Conversely, a
channel can also carry waves into the structure, where they
reverberate and then escape, either through a different chan-
nel �transmission� or back through the original �reflection�.
An M �M scattering matrix S amongst these channels is
defined by

Sab��� = �ab − 2i�	va
T��a�G̃����	vb
��b. �7�

There is a factor � in the second term here, not present for
the Schrödinger equation �1,2,16�. We also define the �real
except at resonances� symmetric M �M Wigner reaction ma-
trix K,

Kab��� = ��a�b	va
T�G̃0����	vb
 . �8�

Except for the factors of �� this is the �Fourier transform of
the� response of the closed system �G0�t�� as evaluated at
	va
, due to a source 	vb
��t�.

We deduce

S��� = I − 2i�K/�I + i�K� = �I − i�K�/�I + i�K� , �9�

which is manifestly unitary. K is given in terms of S by

K��� = I/i� − �2/i��S/�1 + S� =
1

i�
�I − 2S + 2S2 − 2S3 . . . � .

�10�

Equations �10� and �8� permit one to determine the response
G0 of the closed system from knowledge of S and the �. In
particular, we note that the reverberant part of −�tKbb /2
�the part without the singularity at t=0� is, by Eq. �10�,
S / �1+S�. It is also, by Eq. �8�, the reverberant part of the
diagonal bb element of ��b /2���tG

0�.

B. Repair algorithm

In �12�, and in Secs. III and IV below, numerical experi-
ments are begun by generating plausible random reflected
wave amplitudes s�t� from complex systems in which waves
scatter and incur phase incoherence. Such functions are un-
likely to be unitary and are therefore inadmissible as s ma-
trices for phase coherent scattering. A unitarization proce-
dure is then applied, designed to be minimally invasive and
to respect the classical picture to the extent possible. The
details of that procedure are described below.

In the examples studied here, time t is discrete, and runs
from 1 to N, where N varies with the test but is usually of
order 221–23, much greater than the time scales for energy
flow �e.g., Heisenberg times for recapture�, which are in turn
taken to be much greater than unity. For the technical reasons
described below we choose N large enough that st is negli-
gible for t�N /2 and then set st to zero for those t. If the time
domain were infinite, N=	 �while remaining discrete�, a
nonunitary st may be repaired by convolving it with the
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causal real minimum phase function ht whose Fourier trans-
form is given exactly by

h̃��� = exp	ã���
 = exp	�1/���
t=0

	

�1 − �t0/2�
exp�− i�t�

�
�
−�

�

exp�i�t��− ln�s̃�����d�� , �11�

where

f̃��� = �
t=−	

	

f t exp�− i�t�, f t =
1

2�
�

−�

�

f̃���exp�i�t�d�

�12�

define the Fourier transform pair appropriate for discrete in-
finite time. Inspection shows that h is causal and minimum
phase �because it is the exponentiation of an explicitly causal
function a and is therefore analytic and without zeros in the
lower half plane�. Further scrutiny shows that its spectrum
satisfies �h��� � =1 / �s����. This repair procedure is an exact
analytic recipe to repair s and return an S���=s���h���, with
the �unique up to a constant phase� filter that makes S unitary
�S��� � =1, and is both causal and minimum phase. The pro-
cedure may be described as respecting the time-domain fea-
tures in s to the maximum extent possible �17�.

In practice we cannot integrate over the continuum from
−� to �, nor sum over an infinite number of discrete times t.
The literature on spectral factorization �17,18� suggests a
number of practical procedures for constructing h. The sim-
plest is perhaps to, in lieu of Eqs. �11� and �12�, restrict to a
finite time interval and construct

ãf = �
t=1

N

exp�2i��f − 1��t − 1�/N�
2
t

N

� �
f�=1

N

exp�− 2i��f� − 1��t − 1�/N��− ln�s̃ f��� , �13�

where the discrete Fourier transform pair is defined by

B̃f = �
t=1

N

exp�2i��f − 1��t − 1�/N�Bt,

Bt =
1

N
�
f=1

N

exp�− 2i��f − 1��t − 1�/N�B̃f , �14�

and can be effected by a fast Fourier transform algorithm.
The quantity 
 is a causality enforcer.


t = 1/2 for t = 1,


t = 1 for 1 � t � N/2,


t = 1/2 for t = N/2 + 1,


t = 0 otherwise. �15�

With this definition of 
 it may be shown that
Re ãf =−ln � s̃ f�.

The repaired S matrix is, in the frequency domain,

S̃f = s̃ f exp�ãf� . �16�

The approximation to a finite time interval introduces an
error. We estimate the degree of error by examining the func-

tion g̃f =1 / h̃f =exp�−ãf� in the time domain. This function
has, if evaluated according to Eq. �11�, the same domain of
support as s, that is, it should vanish for times greater than
N /2 �17,18�. This condition is used to motivate a choice of
array length. N is chosen sufficiently large that the energy in
g at times less than N /2, ��t=1

N/2gt
2� is greater than that else-

where ��t=N/2+1
t=N gt

2� by a factor close to or greater than 106.

C. Construction of the Green’s function G0

for the closed system

From the above expressions for K and G0 we derive an
expression for the bb element of −�tG

0 as −i�Kbb /�. Drop-
ping the term I as uninteresting and having support only at
t=0, and taking a time derivative, we find that the Fourier
transform of −�tG

0 is �2 /��S / �1+S�. As S is unitary, this will
have poles wherever S’s phase is �. There is a numerical
challenge in negotiating the poles while doing the inverse
Fourier transform needed to obtain S / �1+S� in the time do-
main. �The value of � pertaining to 100% prompt transmis-
sion is 2, as shown in the Appendix.� The challenge may be
met by the simple expedient of multiplying St by an artificial
decay exp�−�t�, taking its Fourier transform, then construct-
ing S / �1+S�, taking its inverse Fourier transform, and then
multiplying by exp��t�. This procedure is analytically exact
for any positive �. It moves the poles off the real � axis, at
the cost of losing numerical precision at late times. Squaring
−�tG

0 then gives energy density at b due to a source at b.
In the following sections we introduce what may be called

the Sabine reflection coefficient st for coupled rooms �Sec.
III� and for one-dimensional diffusing media �Sec. IV�. The
repair procedure described above is then applied to it. The
resulting St’s are examined for mesoscopic signatures. They
are also used to derive −�tKt /2’s whose squares can then be
compared with Sabine predictions for energy density in
closed systems.

III. CONDUCTION AND LOCALIZATION BETWEEN
TWO COUPLED ROOMS

Consider the system pictured in Fig. 1 consisting of two
reverberant cavities, each with randomizing, perhaps chaotic,
ray dynamics. A single channel is attached to cavity number
one, with a prompt transmission coefficient of 100%. The
two cavities are coupled through a small window. A room
acoustic �7,8� or SEA �4–6� or thermodynamic description of
the spectral energy densities E �energy per frequency inter-
val� in each room is given by the coupled differential equa-
tions
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dE1/dt = ��E2/n2 − E1/n1� − �E1 + ��t� ,

dE2/dt = ��E1/n1 − E2/n2� , �17�

where � is a �dimensionless� conductance between the
rooms. These equations could also be thought of as describ-
ing the probability density evolution of a classical particle. It
is convenient to identify a “leak time” from room one to
room two as tleak=n1 /�. n1 and n2 are the spectral densities
of the modes, that is, the Heisenberg times, in each room;
nj =THj. The quantity �E1 represents the rate of energy re-
capture by the open channel. It may be shown that all the
energy originally deposited is recaptured.

��
0

	

E1dt = 1. �18�

The channel has a recapture rate � limited by a thermody-
namic argument: ��1 /TH �2,3�. This is an equality, �
=1 /TH1=1 /n1, for the assumed 100% transmission.

We take equal sized rooms n1=n2 and perfect coupling of
the channel, �=1 /n1, and obtain

d

dt
�E1

E2
� = �− � − �� ��

�� − �� ��E1

E2
� + ���t�

0
� . �19�

This matrix has eigenvalues �1,2=−� /2�1+2�± ��1+4�2��.
The solution of the differential equation is

�E1

E2
� =

�

���2 − �1� ��1 + � + �2/��� �

1 + � + �1/��exp��1t�

− �1 + � + �1/��� �

1 + � + �2/��exp��2t�� . �20�

The Sabine s matrix is constructed by st=rt ��E1�t��1/2,
where rt is an uncorrelated Gaussian random number, �r�
=0, �rtrt��=�tt�. This st is a plausible wave reflection ampli-
tude if internal scatterings are inelastic. Inasmuch as it lacks
anything resembling an initial delta function ��t�, it corre-
sponds to scattering with no prompt reflections, in other
words to a channel coupled to the scattering region with
100% prompt transmission. It would in principle be possible
to add a prompt reflection P�t0 to st, choose a corresponding
recapture rate � less than 1 /TH, and decrease the strength of
the later diffuse envelope �it would then be called a “coda”�
by an amount calculated to retain probability conservation.

Closely associated with the envelope E1 for the Sabine s
matrix is the corresponding envelope if recapture is elimi-
nated. In this case Eq. �19� becomes

d

dt
�F1

F2
� = 
− �� ��

�� − ��
��F1

F2
� + ���t�

0
� . �21�

Thus

F1�t� = �1/2��1 + exp�− 2��t�� , �22�

which represents the spectral energy density in the first room
subsequent to a unit deposit in that same room when the
channel is closed. Equipartition is apparent at t�1 /��, at
which time the energy densities in the two rooms are the
same, F1=F2=1 /2. An additional factor of � converts F1 to
something that can be compared with St

2. We note that �E1
= �st

2���F1. The inequality is an equality at times t�1 /�
before much recapture.

We consider three cases of the two-room structure. Case
A, whose results are shown in Fig. 2, is a system in which
each room has a Heisenberg time TH=2000, and for which
the leaking is rapid: tleak=TH /�=200. The dimensionless
conductance parameter � is 10, much greater than unity, so
no localization is expected. The structure should behave like
a single room of volume twice that of either room separately.
The time-domain arrays were taken with length N=220. An
exact procedure following Eq. �11� would produce a repair-
ing filter h having an inverse, which vanishes for times
greater than N /2. The use of Eq. �13� did not produce such a
filter, but the inverse’s energy at such times was less than its
energy at early times by a factor of 740 000, so the inexact-
ness is judged to be negligible. Figures 2�a� and 2�b� show
the behavior of smoothed squared st �whose expectation is
�E1�t�� and smoothed squared St. We note, in particular, the
power law tail in �S2�t��. At late times �s2�t�� diminishes
exponentially like exp��1t� while �S2�t�� diminishes like
t−5/2. An enhancement at time zero by a factor of about two
may also be seen.

Figures 2�c� and 2�d� show the reverberant part of the
smoothed square of the inverse Fourier transform of the re-
sulting −i�G0=S��� / �1+S����. This represents twice the ki-
netic energy density �i.e., the total energy density� of the
closed system at the position of the channel subsequent to a
unit source at the same position. This may be compared to
the Sabine prediction �F1. The energy density in G0 is seen
to be greater than it is in �F1, by a factor of 2 at early times
and a factor of 3 at late times. These factors are predicted
independently in random matrix theory �1,2,16� and termed
enhanced backscatter and quantum echo �19�. The behavior
here is consistent with that seen previously �12� for a single
room; it shows no sign of localization.

In Fig. 3 we consider an intermediate case �B� in which
each room has a Heisenberg time of 2000, and a leak time of
4000, so dimensionless conductance �=0.5. The Sabine
�s2�t��=�E1 with its two decay rates �1,2 �=−1 /6828,
−1 /1171� may be discerned in the dashed line in Figs. 3�a�
and 3�b�. The repair process has again augmented s2�t� with
what looks like an enhanced backscatter factor of two at
short times in �St

2� �solid line�. Figure 3�c� shows the result-

FIG. 1. Two reverberant cavities are weakly coupled through a
small window. A single channel through which an ingoing pulse
returns a diffuse reflection s�t� is attached to one of the cavities.
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ing smoothed squared −�tK�t� /2 and compares it with �F1.
Quantum echo is less apparent than it is in Figs. 2�c� and
2�d�, as loss of energy density due to leaking competes with
enhancement due to quantum echo.

Late time energy density in room one is greater than is
predicted by equipartition. At such times ��tK /2�2 is greater
than �F1 by a factor of about 4.4, three parts of which may
be attributed to quantum echo. The remainder is localization.

Finally, we consider system C, for which localization
ought to be more significant. Figure 4 shows the results from
a choice TH=2000 for each room, and a leaking time of
25 000 for an �=0.08. N was taken at 221. The presence of
two decay rates �1,2 is readily seen in the Sabine �s2�t��
shown in Fig. 4�a�. Again the repaired �S2�t�� shows an en-
hanced backscatter factor of two at short times. Figure 4�b�
shows that the late time enhancement is stronger �now a
factor of about 5.2� than it was in Figure 3, close to the
theoretical maximum of 6. Localization is stronger.

In the limit of weak coupling there are analytic predic-
tions for the enhancement at late times. Weaver and Lobkis

�14� derived an expression for the fraction of the total energy
in room two at late times e= ���TH /2��1/2 or e
= ���TH /�2�1/2 depending on the model for the statistics of
the coupling. These predictions correspond to an asymptotic
enhancement here of 6�1−e�=5.32 and 5.46, respectively.

In summary, application of the unitarization procedure to
construct S matrices for three cases of coupled reverberant
cavities have all reproduced the expected mesoscopic energy
flows. In particular, the resulting S�t�2 and ��tG

0�2 show en-
hanced backscatter, quantum echo, power law tails, and
Thouless localization.

IV. DIFFUSION AND LOCALIZATION IN ONE
DIMENSION

Consider the system pictured in Fig. 5. A single channel is
attached at the center of a length 2L quasi-one-dimensional
medium with multiple scattering. A classical particle is emit-
ted at x=0, diffuses, and is recaptured at x=0 according to
the PDE and boundary conditions as follows:
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FIG. 2. �Color online� �a� A comparison of the squared and smoothed incoherent Sabine reflection �s2�t�� �dashed line� and the repaired
S matrix �S2�t�� �paler �red online� solid line� for case A. The rooms are well coupled ��=10, TH=2000� and behave together like one large
room. A power law tail �S2�t��� t−5/2 is visible at late times. �b� The enhanced backscatter factor of 2 is seen in this closeup of the data of
�a�. The repair has reproduced the fluctuations in the original. �c� Case A continued. The reverberant part of �−�tK�t� /2�
=reverberant part of �G0 /dt, i.e., the part without the delta function at time zero, S / �1+S�, is squared and smoothed �dashed line� and
compared with the Sabine-type prediction �F1�t� �solid line�. An enhanced backscatter factor of 2 is noticeable at early times. A quantum
echo appears later in which the enhancement grows to three. As predicted in random matrix theory �19� the quantum echo arrives on a time
scale comparable to the effective Heisenberg time, 4000. �d� A closeup of the short time behavior of �c� shows the enhanced backscatter
factors. The Sabine �F1 �solid line� shows the leaking process as probability flows from the first room into the second on a time scale of
tleak=200.
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�tE�x,t� − D�2E�x,t� + ���x�E�x,t� = ��x���t� ,

�xE�x,t��x=±L = 0, �23�

where E�x , t� is probability �energy for classical waves� den-
sity and � is a rate of probability recapture, equal if the

coupling is 100%, to the inverse of the density of states; �
=2L /TH. This equation is Laplace transformed to obtain

pĒ�x,p� − D�2Ē�x,p� + ���x�Ē�0,p� = ��x� ,

�xĒ�x,p��x=±L = 0, �24�

which has solution at points other than x=0 in the form
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FIG. 3. �Color online� �a� A comparison of the squared and
smoothed incoherent Sabine reflection �s2�t�� �dashed line� and the
repaired S matrix �S2�t���paler �red online� solid line� for case B for
which the rooms are moderately coupled ��=0.5, TH=2000�. �b�
The behavior of the Sabine �dashed line� and repaired recapture
rates �solid line� for case B at early time. As in Fig. 2�b� one ob-
serves enhanced backscatter and reproduction in S of the fluctua-
tions in s. �c� The Sabine �F1 for case B �solid line� shows the
relaxation of room one’s energy density on the scale of the leak
time as energy flows into the second room. The repaired S matrix
corresponds to an energy density �dashed line� at the source with a
very different behavior. At late times it is enhanced over the Sabine
prediction by a factor of 4.4.
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FIG. 4. �Color online� �a� The smoothed squares of the Sabine
s�t� �dashed line� and the repaired S�t� �pale solid line �red online��
are compared for the case C, for which the cavities are weakly
coupled. �b� The Sabine �F1 �solid line� for case C shows the slow
relaxation of room one’s energy on the scale of the leak time as
energy flows into the second room. The repaired S matrix corre-
sponds to an energy density at the source with a very different
behavior. At late times it is enhanced over the Sabine prediction by
a factor of 5.2.

FIG. 5. A single channel is attached to the midpoint of a finite
one-dimensional diffusing medium. An ingoing pulse reflects
diffusely.
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Ē�x,p� = A�p��exp	− �p/D�x�
 + exp	�p/D��x� − 2L�
� .

�25�

A�p� is determined by integrating the ODE �24� over an in-
finitesimal region around x=0,

− 2D�xĒ�x,p��x=0+ + �Ē�0,p� = 1, �26�

which implies

A�p� = ��	1 + e−2L�p/D
 + 2�Dp	1 − e−2L�p/D
�−1. �27�

Thus the Laplace transform of the rate of return �E�0, t� is

�Ē�0,p� = ��� + 2�Dp	tanh 2L�p/D
�−1, �28�

which is one at p=0, indicating that �E�0, t� integrates to
unity. All probability is recaptured.

E�0, t� is recovered by inverse Laplace transform. Evalu-
ation as a sum over the residues along the negative real p
axis gives

E�x = 0,t� = �1/L��
m=1

	

exp�− �m
2 �t/T��/�1 + �m

−2�� + �2�� ,

�29�

where T=L2 /D is a classical diffusion time and � is the ratio
of classical diffusion time T to Heisenberg time, �
=�L /2D=�T /2L. As localization length in one dimension is
of the order of 2D /�, � represents the ratio of system size to
localization length and therefore serves as a measure of the
importance of localization. The �m are the positive roots of
� tan �=�. This series converges quickly at large enough
times t.

For early times we may approximate L as infinite, and
replace the hyperbolic tangent with unity; in this case the
poles reduce to a branch cut along the negative real axis. The
result is

E�x = 0,t� =
�

4�D
��1/2�−1/2 − �e�erfc����� , �30�

where �= t�2 /4D is a dimensionless time.
We also interest ourselves in the Sabine prediction for

probability density in the absence of recapture.

�tF�x,t� − D�2F�x,t� = ��x���t�, �xF�x,t��x=±L = 0.

�31�

This is a conventional diffusion equation; the solution is well
known. It may be expressed as a sum over the normal modes
of the finite structure. The probability density at x=0 is

F�0,t� = 1/2L + �1/L��
n=1

	

exp�− n2�2Dt/L2� , �32�

a series that converges best at late times. �This expression
permits us to ascertain the meaning of the time scale T by
noting that T /�2=L2 /D�2 is the time at which the diminish-
ing F�0, t� is still 1.55 times the value it takes at t=	.� F
may also be expressed as a sum over diffusive waves from
the source and from all image sources at x= ±2nL.

F�0,t� = �4�Dt�−1/2
1 + 2�
n=1

	

exp�− n2L2/Dt�� , �33�

a series that converges best at early times. At sufficiently
early times F=E.

We consider three cases, all with L=1. For each case a
Sabine st is constructed by st=rt ��E�x=0, t��1/2 as was done
following Eq. �20�. It is then repaired using the methods of
Sec. II B. For each case we focus, in particular, on a com-
parison of the Sabine energy density �F�0, t� and the re-
paired energy density determined by squaring the inverse
Fourier transform of S��� / �1+S����.

The first, case D, illustrated in Figs. 6, is for a small �,
i.e., an unlocalized system, with E�t� determined from Eqs.
�29� and �30� using T=5 000, i.e., D=2�10−4, and �
=0.25, i.e., �=10−4.

Figure 7 presents the recapture rates and energy densities
for case E having �=1.0, and T=30 000. In accord with the
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FIG. 6. �Color online� �a� The Sabine envelope ��E for a dif-
fusing medium �case D, with T=5000, �=0.25� is multiplied by
white noise of unit root mean square, squared, smoothed, and plot-
ted, �st

2�, in the dashed line. At late times it decays exponentially.
The smoothed square of the repaired St is plotted in the pale �red
online� solid line. It decays at a late time like a power law �t−5/2.
�b� Comparison of smoothed squared �tK�t� /2 �irregular line� with
the Sabine �F�x=0, t� �smooth line� for the diffusing medium case
D, with small �. An early time enhancement by a factor of 2 is
followed by a later time enhancement that grows to four, slightly
greater than the usual quantum echo factor of 3. In accord with the
small value of �, localization is not strong. �The apparent increase
in fluctuation strength at late times is not real, being an artifact of
the increasing density of points in the plot.�
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larger value of �, late time enhancements in Fig. 7�b� are
stronger than they were in Fig. 6�b�.

Figures 8 and 9 show the recapture rates and energy den-
sities from the cases �F� and �G� for which �=5, T
=100 000 and �=10, T=100 000, respectively. The degree
of enhancement continues to increase with �, consistent with
a decreasing localization length.

V. CONCLUSIONS

There should perhaps be no surprise that the procedure
here yields Wigner reaction matrices K and Green’s func-
tions G0 that show localization. The recipe embodies the
Thouless criterion that localization is due to the time scale
for resolving levels �i.e., modal density, Heisenberg time,
recapture� being short compared to transport time scales. If
most probability is recaptured before much transport has
transpired, then S�t� contains no record of transport. If a
structure is such that most trajectories beginning at the in-
coming channel escape back through that channel before ex-
ploring the entire structure, then the reflection S�t� contains

no record of transport. But responses K and G0 in the corre-
sponding closed system are merely concatenations of S �Eq.
�10��, so they also will have little signature of transport. This
picture, with its emphasis on the role of backscatter, is remi-
niscent of weak-localization arguments �20� for the onset of
full Anderson localization. It differs, however, in that the
present approach applies in principle to systems lacking
time-reversal invariance, unlike the argument of Vollhardt
and Wolfle �20�. It will be interesting to see how the evolu-
tions of energy density determined by this approach compare
with those from the self-consistent theory of transport in lo-
calizing systems �21,22�.

While theory with which to better understand these be-
haviors is needed, there is also room for further numerical
experiments. One wonders, in particular, how these results
might be modified if the assumption of prompt transmission
were relaxed, or if other short time features were included in
s. Level statistics could be examined also. Finally, the recipe
ought to be extended to S matrices with rank M greater than
one. Such an extension would greatly expand the applicabil-
ity of s-matrix unitarization.

ACKNOWLEDGMENTS

The author thanks numerous people for stimulating dis-
cussions, in particular, Yan Fyodorov, Thomas Seligman, and

4 5 6 7 8 9 10 11 12 13 14

-30

-25

-20

-15

-10

loge time

lo
g

e
R

ec
ap

tu
re

R
at

e
at

O
rig

in

4 5 6 7 8 9 10 11 12 13

0.0001

0.001

logetime

E
ne

rg
y

de
ns

ity
at

or
ig

in

(a)

(b)

FIG. 7. �Color online� �a� The Sabine envelope ��E for a dif-
fusing medium �case E, with T=30 000, �=1.0� is multiplied by
white noise of unit root mean square, squared, smoothed, and plot-
ted, �st

2�, in the dashed line. At late times it decays exponentially.
The smoothed square of the repaired St is plotted in the pale �red
online� solid line. It decays at a late time like a power law �t−5/2.
�b� Comparison of smoothed squared �tK�t� /2 �irregular line� with
the Sabine �F�x=0, t� �smooth line� for the diffusing medium case
E, with moderate �. An early time enhancement by a factor of 2 is
followed by a later time enhancement that grows to 8. This indi-
cates, after considering the quantum echo, which accounts for a
factor of 3, a degree of localization consistent with a moderate
value of �.
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FIG. 8. �Color online� �a� The recapture rates for case F with
T=100 000 and �=5.0. Again �S2� �pale solid curve �red online��
exhibits an enhanced backscatter factor of 2 at early times. As in
Figs. 6�a� and 6�b�, it also reproduces much of the fluctuations in
the original �s2� and shows a power law tail. �b� In case F with its
larger value of � �=5�, ��tG

0�2 �irregular line� shows an asymptotic
enhancement by a factor of about 18 over the Sabine prediction
�smooth curve�.
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APPENDIX: EVALUATION OF THE �

The S matrices generated in Secs. III and IV correspond
to 100% prompt transmissions, as may be seen in that they
lack any prompt reflections. They have no delta-function
character at time zero. The corresponding K’s were con-
structed from Eq. �10�. K is in turn related to the response of
the undamped reverberant system G0 by means of Eq. �8�. To
construct G0 �or rather its matrix element vTG0v, which is
the most one could hope to get from K� and from that con-
struct the corresponding evolution of energy density at 	v
 in
the undamped isolated system, we need to know the �.

As the S have negligible contributions at time zero, K near
time zero will be, by Eq. �10�, merely the identity times a
step function, I
�t�. Thus, for short times t,

�tKab = I�ab��t� = 	va
T��tG
0�t��	vb
��a�b, �A1�

which relates the early time behavior of �G0� to the �.
�G0� is given also in terms of the eigenvectors of �H� by

�G0�t�� = �
r

	ur
	ur
T sin �rt/�r, where �H�	ur
 = �r
2	ur
 .

�A2�

G0’s time derivative evaluated at the diagonal element �bb�,
while noting that ub

r �	vb
T	u�r�
 has an expected square
value of 1 /N, is

�tGbb
0 �t� = �t	vb
T�G0�	vb
 = �

r

�ub
r�2 cos �rt

= �1/N��
0

�

n��r�cos �rtd�r. �A3�

For the uniform modal density n���, which we consider here,
n is given by N /�=TH, where � is the total bandwidth
covered by the natural frequencies. Thus

�tGaa
0 �t� = �1/���

0

�

cos �rt d�r = �sin �t/�t� . �A4�

When integrated over a short time interval near zero �less
than the time scale for transport dynamics and reverberation,
but greater than the inverse bandwidth� this becomes � /2�.
Thus we identify, for short times,

�tGaa
0 �t� = ���t�/2� , �A5�

and

��a
2 = 2�/� . �A6�

This is equivalent to the expression for �a given by Fyodorov
et al. ��2�, Eq. �5�� for the random matrix Schrödinger equa-
tion.

For the cases discussed in Secs. III and IV, the spectrum is
uniformly distributed from frequency f =0 to the Nyquist fre-
quency of 1 /2. Inasmuch as the spacing in time �t is unity,
the Nyquist frequency fNyquist is 1 /2, and the natural circular
frequencies �r lie between zero and 2�fNyquist. Thus �=�
and �=2.

The reverberant part of G is the second term of Eq. �7�,
and may be compared with Sabine-type predictions �F�t�.
Half the square of �tG

0�t� is the kinetic energy density. The
total energy density includes potential energy and is twice
this. Thus in Figs. 2–9 we compare

��tG
0�t��2 = ��tK�t�/2�2

= �inverse Fourier transform of S���/�1 + S�����2

with �F�t�.
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FIG. 9. �Color online� �a� The recapture rates for case G with
T=100 000 and �=10.0. The Sabine �st

2� is given by the dashed
line; the repaired �St

2� is given by the solid line. �b� At the largest
value of � considered �case G, �=10� the energy at late times in
��tG

0�2 �irregular line� is about 35 times greater than that predicted
by Sabine �smooth line�.
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