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statistical treatment of finite unbound systems in the presence of collective motions is applied to a classical
Lennard-Jones system, numerically simulated through molecular dynamics. In the ideal gas limit, the flow
dynamics can be exactly recast into effective time-dependent Lagrange parameters acting on a standard Gibbs
ensemble with an extra total energy conservation constraint. Using this same ansatz for the low-density
freeze-out configurations of an interacting expanding system, we show that the presence of flow can have a
sizable effect on the microstate distribution.
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I. INTRODUCTION

The thermodynamics of isolated finite unbound systems
cannot in general be associated with a stationary process. In
condensed matter physics, cluster dissociation induced by
photoionization �2–5� or charge transfer collisions �6,7� can-
not be studied without properly accounting for the time win-
dow of the experiment �2�. Going down to the femto scale,
the thermodynamic properties of nuclear systems can be ac-
cessed only through collisions �10�. It has been suggested
�2,3,6� that the thermodynamics of the liquid-vapor phase
transition can be relevant in explaining the cluster evapora-
tion process. The connection with equilibrium statistical me-
chanics can be achieved by introducing the concept of an
evaporative ensemble �8,9� with a time-dependent tempera-
ture.

Conversely, in the nuclear collision case, the time scales
can be so short that the reaction and decay channels cannot
be decoupled, collective flows appear, and the statistical eq-
uipartition hypothesis breaks down �11�. If in the Fermi en-
ergy regime and in the associated multifragmentation phase
transition these collective flows may be only a perturbation
in the global energetics, this is not true for heavy ion colli-
sions as performed at the Schwerionen-Synchrotron �SIS� at
energies �between 0.2 and 2 GeV/nucleon�, where they are
likely to influence light cluster formation by coalescence
�12�. In the ultrarelativistic regime, the ordered and disor-
dered motions become comparable in magnitude �23�, and
collective flows are believed to play an essential role in the
characteristics of the transition to the quark-gluon plasma
observed in the Relativistic Heavy Ion Collider data �13–15�.
In particular, correlations and recombination of thermalized
quarks from a collectively flowing deconfined quark plasma
are supposed to be the dominant mechanism for soft-hadron
production �13,16�.

In all these very different physical situations, the huge
number of available decay channels and the general com-
plexity of the systems under study clearly call for a statistical

treatment. However, the time dependence of the process
makes the definition of statistical concepts like statistical en-
semble, temperature, pressure, etc. unclear �17,18�. If it is
intuitively recognized that the presence of incomplete equili-
bration and collective flows may be treated in a statistical
framework introducing extra constraints �19�, the procedure
is not necessarily unique.

The inclusion of collective motion in the form of a radial
or elliptic flow in equilibrium models has been treated by
different authors �1,20–25�. The most widespread approach
is to suppose a full decoupling between intrinsic and collec-
tive motion and assume for the expanding system a standard
Gibbs equilibrium in the local rest frame �23,26�. The quality
of this assumption obviously depends on the degrees of free-
dom and energy regime under study. Concerning heavy ion
collisions, this assumption may be justified in the Fermi en-
ergy regime because of the limited energy percentage asso-
ciated with directed motion �10�, and in the ultrarelativistic
regime by the empirical success of hydrodynamical models
�15�. Some attempts have, however, been made to explicitly
include flow in the statistical treatment. Limiting ourselves to
classical systems of interacting constituents treated as el-
ementary degrees of freedom, the empirical treatment of flow
in Ref. �20� has been shown not to modify the correlation
properties of the system. However, other empirical ap-
proaches �21,22� predict that the presence of flow should
lead to a violation of statistical equilibrium weights, with a
trend toward more unbound configurations. Experimental
data in the nucleonic regime suggest that the influence of
collective motion on the partitioning in the system may
strongly depend on the deposited energy �27,28�.

In this paper, we address the generic statistical mechanics
problem of the definition of a statistical ensemble in the pres-
ence of a collective flow. The general formalism has been
developed elsewhere, and applications were given in the ca-
nonical ensemble �1�. However, in the physical cases of in-
terest the expanding system is isolated, and a microcanonical
description is in order. We will use the example of a classical
Lennard-Jones system �29� to evaluate some chosen observ-
ables for a statistical isolated system subject to a radial flow.
Molecular dynamics simulations on the same system have
already shown that flow enhances partial energy fluctuations
�30� and at the same time can act as a heat sink �31,32�,
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cooling the system and thus preventing it from reaching high
temperatures. In this paper, we will show that, if flow is
introduced as an extra constraint in the framework of an
information theory approach, it can also act as a heat bath.
Indeed, the partial relaxation of the microcanonical con-
straint, of an ensemble with conserved energy, allows the
isolated system to explore a larger configuration space.

II. TIME-DEPENDENT GIBBS ENSEMBLES

The general formalism of the time-dependent Gibbs en-
semble has been developed in a previous paper �1�, and in
this section we recall the main results relevant to the specific
case of the dynamics of the expansion.

Flow naturally appears in the statistical picture �33,34� as
soon as we introduce constraints which are not constants of
motion. Consider an isolated physical system characterized
by a finite spatial extension �R2� at a given time t0. Introduc-

ing the density matrix D̂=��n����n��p�n����n��, the minimum
biased microstate probability distribution p�n� is defined by

D̂�0
�t0� =

1

W�0
�E�

exp�− �0R̂2���E − Ĥ� , �1�

where Ĥ is the Hamiltonian, �0 is a Lagrange multiplier con-
straining the finite size, and

W�0
�E� = �

�n�
exp�− �0Rn

2���E − Hn� �2�

is the associated density of states or partition sum. The dy-
namical evolution of Eq. �1� at times t� t0 is obtained from

the Liouville equation �tD̂=−i /��Ĥ , D̂� �1�, or equivalently
from the time evolution of the constraint. In the Heisenberg
representation,

R̂2�t� = e−i�tĤR̂2�t0�ei�tĤ = R̂2�t0� + �
p=1

	
��t�p

p!
B̂�p�, �3�

where �t= �t− t0� and the B̂�p� operators are defined by the
recursive relation

B̂�p� = −
i

�
�Ĥ,B̂�p−1��, B̂�0� = R̂2. �4�

The time dependence of the process can therefore be recast
in terms of an �a priori infinite� number of extra constraints

B̂�p�. In the simplified case of a system of noninteracting
identical particles

Ĥ = �
i=1

N
p̂i

2

2m
, �5�

the series reduces to the two operators

B̂�1� = −
i

�
�Ĥ,R̂2� = − �

i=1

N
1

m
�p�̂ i · r�̂i + r�̂i · p�̂ i� , �6�

B̂�2� = −
i

�
�Ĥ,B̂�1�� = �

i=1

N
2p̂i

2

m2 . �7�

Then the exact density matrix is given at any time t� t0 by

D̂�0
�t� =

��E − Ĥ�
W�0

�E,t�
exp �

i=1

N 	− 
�t�
p̂i

2

2m
− �0r̂i

2

+
��t�

2
�p�̂ i · r�̂i + r�̂i · p�̂ i�
 �8�

with


�t� =
2�0

m
��t�2, ��t� =

2�0

m
�t . �9�

The diabatic evolution of an isolated initially constrained
freely expanding system can then be described as a general-
ized Gibbs equilibrium in the local rest frame,

D̂�0
�t� =

��E − Ĥ�
W�0

�E,t�
exp �

i=1

N

− 
�t�
�p�̂ i − mh�t�r�̂i�2

2m
. �10�

Comparison with the exact solution Eq. �8� shows that the
Hubble factor is linearly decreasing in time, h=�t−1.

These equations show that radial flow is a necessary in-
gredient of any statistical description of unconfined finite
systems in the presence of a continuum; on the other hand, if
a radial flow is observed in the experimental data, this for-
malism allows one to associate the flow observation with a
distribution at a former time when flow was absent. This
initial distribution corresponds to the standard description of
an ideal gas in a confining harmonic potential. In this case,
the infinite information which is a priori needed to follow
the time evolution of the density matrix according to Eq. �3�
reduces to the three observables r̂2, p̂2, and r�̂ · p�̂ + p�̂ ·r�̂. Indeed,
these operators form a closed Lie algebra, and the exact evo-

lution of D̂�0
preserves its algebraic structure. This treatment

can be easily extended to nonisotropic flows �1� by introduc-
ing an initially deformed spatial distribution.

It is easy to see that Eq. �8� is still exact for an interacting
system, if the density is low enough that interactions can be

modeled as purely local interactions v̂12���r�̂1−r�̂2�, as in the
Boltzmann collision integral. If the interactions are nonlocal
at the initial time t0, this simple solution is not exact any
more and higher-order operators play a role. Considering a

finite-range two-body interaction V̂=�ii�V��r�̂i−r�̂i���, we can
see that the first-order correction in time to the static problem

B̂�1� is identical to the result for the ideal gas problem Eq. �6�,
while already at the second order B̂�2� contains an additional
term

B̂�2� = �
i=1

N

2
p̂i

2

m2 − �
ii�

1

m
r̂ii��

� V�r̂ii��

where r̂ii�= �r�̂i−r�̂i��. In the case of a harmonic interaction the

B̂�p� operators only contain quadratic terms �ip̂i
2, �ii�r̂ii�

2 , and
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�ii�r̂ii� · p̂ii�, with p̂ii�= p�̂ i− p�̂ i�. In this case the time evolution
can be taken into account by a suitable time-dependent tem-
perature and the introduction of a radial flow.

For any other interaction B̂�2� modifies not only the tem-
perature but also the two-body interaction and an analytical
solution is not possible. If interactions are short ranged and
the unbound system evolves in the vacuum, a time will exist
when the constituents �particles or clusters� cease to interact,
entropy saturates, and the different observables reach their
asymptotic value. This time is known in the literature as the
freeze-out time. If at this time the system can be treated
statistically, the succeeding evolution will be ruled by the
ideal gas equations developed above. As a first-order ap-
proximation, we can therefore consider the statistical ansatz
at the freeze-out time:

W
̃�̃h̃�E� = �
�n�

exp	− 
̃�
i=1

N
1

2m
�p� in − h̃mr�in�2

− 
Vn − �̃Rn
2
��Hn − E� , �11�

where the sum runs over the microstates �n� of the phase

space, V is the two-body interaction, and 
̃ , �̃ , h̃ are
Lagrange parameters imposing given values for the average
thermal energy, mean square radius, and local collective ra-
dial momentum at freeze-out through the associated equa-
tions of state

�Eth� = −
�W
̃�̃h̃

�
̃
, �12�

�R2� = −
�W
̃�̃h̃

��̃
, �13�

�Pr�r�� =
1


r

�W
̃�̃h̃

� h̃
. �14�

In heavy ion collisions, the values taken by these state
variables are consequences of the dynamics. They cannot be
accessed by a statistical treatment but have to be extracted
from simulations and/or directly inferred from the data them-
selves. Equation �11� is exact for an ideal gas. In the case of
a strongly interacting system, the underlying hypothesis is
that the only relevant information at the freeze-out time is
given by the total energy, volume, and collective flow. In the
following we take Eq. �11� as an ansatz for the statistical
description of an expanding system and explore its properties
within a classical system of N=147 Lennard-Jones particles
of mass m �29�. We expect this ansatz to be reasonable in the
case of loose interaction or moderate flows appearing at
times close to the freeze-out time, and in the case of a fast
reorganization of the potential energy surface, leading to a
decoupling of the relaxation time of the interaction and ki-
netic energy. The adequacy of Eq. �11� to describe the time-
dependent expansion of the system will be explored in a
forthcoming presentation �35�.

The statistical ensemble described by Eq. �11� is similar to
a standard Gibbs equilibrium in the local expanding frame,
with two important differences with respect to the standard
scenario �23,26� of a complete decoupling between collec-
tive and thermal motion. First, the energy conservation con-
straint acts on the total energy, including flow. This allows
energy exchanges between the thermal and the collective
motions, and therefore can modify considerably the parti-
tion’s weight, as we show below. Second, Eq. �11� contains a
term proportional to r2 which plays the role of an external
pressure �25�. This term is the combination of a positive
�out-going� pressure due to the expansion, and a negative
pressure term imposing a finite system size at the freeze-out
time. This pressure constraint naturally arises from the
closed Lie algebra structure of the three operators r̂2, p̂2, and

r�̂ · p�̂ + p�̂ ·r�̂. If the observables characterizing a system at time t

include a collective flow �r�̂ · p�̂�, the formalism developed in
Sec. II allows this flow observation to be associated with a
former time when flow was absent, and the distribution was
constrained by the �r̂2� constraint. In turn, this implies that
the correct ensemble for treating an open flowing system is
not the usual �N ,V ,T� or �N ,V ,E� ensemble �23,26,36� but
rather an “isobar” ensemble, where the system square radius
is constrained only on average through a Lagrange param-
eter. This is an important point, since it is well known that
different statistical ensembles are not equivalent in finite sys-
tems �37,38�. In particular, only in such an isobar ensemble
is the heat capacity expected to be negative �36� at the liquid-
gas phase transition �37�, which is at the origin of intense
research in the nuclear multifragmentation field �39�. It is
generally assumed by statistical models that fragment or had-
ron partitions are set within a characteristic volume �freeze-
out volume� which may depend on the thermal energy, but
does not depend on flow �23,26,40,41�. In this case, the pres-
ence of flow does not affect the canonical configuration
space of the isobar ensemble. Then flow can modify the par-
titions only because of the modified particle correlations in
phase space �12,20,22,42�, and because the microcanonical
constraint acting on the total energy leads to a nontrivial
coupling between thermal and collective energy �20�.

III. SYSTEMS IN A HARMONIC TRAP

It is interesting to notice that Eq. �11� is formally identical
to a standard Gibbs equilibrium with an external harmonic

potential Û= �̃ / 
̃�ir̂i
2. The deep connection between an R̂2

constraint and radial collective motion is shown by the fact
that it is extremely difficult from a technical point of view to
equilibrate a Lennard-Jones system in a harmonic trap; this
situation is referred to in the literature as “the harmonic os-
cillator pathology” �43,44�.

A. Dynamics of Lennard-Jones systems

The system under study is composed of N=147 particles
interacting via a Lennard-Jones �LJ� 6-12 potential with a
cutoff radius rc=3. Energies are measured in units of the
potential well ���,  characterizes the radius of a particle,
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and m is its mass. We adopt adimensional “Lennard-Jones”
units for energy, length, and time such that �==1, t0
=�2m /48� �45�. Initial conditions are constructed from
dense drops by rescaling velocities according to a Maxwell-
ian distribution such that the system has the desired value of
energy �29–32�.

The set of classical equations of motion are integrated
using the well-known velocity Verlet algorithm which pre-
serves volume in phase space �43�, taking tint=0.01t0 as the
integration time step such that the total energy and angular
momentum are conserved to better than 0.01% �29,32�. The
center-of-mass momentum conservation is better than
1/10 000.

Figure 1 shows a single, very long molecular dynamics
run for the Lennard-Jones particles trapped in a harmonic
oscillator.

Even if the amplitude of the initial oscillations is damped
by the interparticle interaction, it is apparent from Fig. 1 that
collective oscillations persist over extremely long times and
the ergodic limit does not seem to be attained. This situation
is virtually independent of the oscillator frequency and total
energy, as well as of the chosen initial conditions for the
simulation.

A similar behavior was predicted in Ref. �1� for a system
of noninteracting particles. For the sake of clarity, the for-
malism introduced in Ref. �1� is here briefly recalled. Let us
consider as above an initial condition given by Eq. �1� within

the ideal gas Ĥ= ÊK+kR̂2 /2 or diluted Boltzmann limit. If
the only constraint on the size is given by the harmonic

potential, the density matrix Eq. �1� is a stationary solution
of the Liouville equation. If, conversely, the system is initial-
ized to a different average size through an extra constraint
�0�0, the system will evolve with the appearance of a col-

lective flow B̂�1�=−�n
1
m �p�̂n ·r�̂n+r�̂n · p�̂n� as in Eq. �6�. Contrary

to the case of a freely expanding system, the successive con-

straining operators B̂�p� do not vanish for any p�1 and can
be written as

B̂�2p� = �
i=1

N

�− 1�p�2��2p	 r̂i
2

2
−

p̂i
2

2mk

 , �15�

B̂�2p+1� = − �
i=1

N

�− 1�p�2��2p p�̂ i · r�̂i + r�̂i · p�̂ i

m
, �16�

with �=�k /m. This gives at any time a density matrix with
the same functional form as Eq. �8�, with an effective tem-

perature 
̃, constraining field �̃, and collective radial velocity
�̃ oscillating in time.

For the purpose of getting analytical results it is easier to
consider an initial condition in the canonical ensemble

D̂
0,�0
�t0� =

1

Z
0,�0

exp�− 
0Ĥ − �0R̂2� . �17�

The series Eq. �3� can be analytically summed up, and the
time-dependent partition sum Z
̃,�̃,�̃=z


̃,�̃,�̃

N
results, with

z
̃,�̃,�̃�t� = Tr�exp	− 
̃�t�
p̂2

2m
− �̃�t�r̂2 +

�̃�t�
2

�p�̂ · r�̂ + r�̂ · p�̂�
 .

�18�

The time-dependent Lagrange parameters are given by


̃�t� = 
0 −
�0

k
�cos 2��t − 1� , �19�

�̃�t� =
1

2
�
0k + �0�cos 2��t + 1�� , �20�

�̃�t� =
�0

m�
sin 2��t . �21�

Equation �18� can be interpreted as a standard Gibbs equi-
librium in the rest frame of a breathing system. For classical
particles, the trace over single-particle microstates is a phase-
space integral Tr� �= �2���−3�d3r�d3p, where the integrals
are evaluated over the whole phase space. The canonical
partition sum is readily evaluated:

z
̃,�̃,�̃�t� = �2m�2��2�2
̃�̃ − �̃2m��−3/2. �22�

This leads to the prediction for the time-dependent behavior
of the different observables

�p2�
2m

= −
� ln z
̃�̃�̃

�
̃
=

3�̃

2
̃�̃ − �̃2m
, �23�
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FIG. 1. �Color online� �a� Total kinetic energy per particle as a
function of time �in Lennard-Jones units� for a Lennard-Jones sys-
tem of 147 particles trapped in a harmonic oscillator of spring con-
stant k such that �=�k /m=0.01t0

−1 for a total energy per particle
e=2.0�. �b� Zoom of the oscillation dynamics over a reduced time
interval. Dashed line: potential energy associated with the collective
oscillation eHO= �kr̂2 /2�.
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�r2� = −
� ln z
̃�̃�̃

��̃
=

3
̃

2
̃�̃ − �̃2m
, �24�

�p� · r�� =
� ln z
̃�̃�̃

� �̃
=

3m�̃

2
̃�̃ − �̃2m
. �25�

Introducing the expressions for 
̃ , �̃ , �̃, we get

eK �
�p2�
2m

=
3

2
0

1 + x�1 + cos 2��t�/2
1 + x

, �26�

eHO �
k

2
�r2� =

3

2
0

1 + x�1 − cos 2��t�/2
1 + x

, �27�

eflow � ��p� · r�� =
3

2
0

x

1 + x
sin 2��t , �28�

where the initial constraint �0 has been rewritten such that
x=2�0 /k
0 measures its strength. It is clear from the inspec-
tion of Fig. 1 that over the time scale of a collective oscilla-
tion the interparticle interaction can be neglected, the total
energy conservation constraint does not seem to play an im-
portant role, and the canonical free-particle result Eq. �18�
appears fairly accurate. The kinetic energy does oscillate
with twice the oscillator frequency in phase opposition, this
collective motion breaking the ergodicity of the dynamics.
We observe this same ideal gas behavior for several oscilla-
tor frequencies between 0.001t0

−1 and 0.2t0
−1, and energies

between −1.0� and 2.0�.

B. Microcanonical thermodynamics

In order to study the effect of flow for the freely expand-
ing system, we have performed numerical molecular dynam-
ics calculations within the statistical ensemble Eq. �11� with-
out �h=0� and with �h�0� the contribution of a radial
collective flow. To study the thermodynamical properties of
the isobar ensemble characterized by a size constraint �0, we
have constructed the microcanonical distribution by sorting
the events as a function of the energy for a canonical en-
semble �46� of the equivalent system trapped in a harmonic
oscillator of spring constant k=2�0 /
. The canonical distri-
butions are obtained by coupling the system to a thermostat
with the Andersen technique �47�. In brief, the coupling is
made by stochastic impulsive forces that act occasionally on
randomly selected particles. After each collision, the selected
particle is endowed with a new velocity drawn from a
Maxwell-Boltzmann distribution at the desired canonical
temperature. The combination of Newtonian dynamics with
the stochastic collisions generates a Markov chain in phase
space, which under some general conditions generates the
canonical distribution �47�.

The resulting microcanonical temperature and kinetic en-
ergy fluctuations are shown in Fig. 2 for an oscillator fre-
quency �=0.01t0

−1. Close to the liquid-gas transition tem-
perature, the canonical calculations give rise to very wide
energy distributions and the different events �n� can be sorted
in total energy bins

Hn = EKn + ELJn +
1

2
kRn

2. �29�

This energy can be physically interpreted as a free en-
thalpy for the isolated unbound system characterized by a
finite size at the freeze-out time �46�. Each single canonical
sampling, for which the inverse of the canonical temperature

−1 is controlled, can therefore be used to access the micro-
canonical thermodynamics over a wide enthalpy region. The
microcanonical temperature is evaluated in each enthalpy bin
as T�H�=2�eK� /3 �37�, where the average is taken over
events belonging to the same bin. The normalized kinetic
energy fluctuation AK=N��eK

2 �− �eK�2� /T2 is also represented.
The nice agreement between estimations obtained with dif-
ferent canonical temperatures shows the quality of the nu-
merical sampling. Figure 3 shows the dependence of the re-
sults on the oscillator strength. We can recognize for low �
values, i.e., loose constraints on the system size, the first-
order liquid-gas phase transition. The transition is signaled
by the back bending of the microcanonical caloric curve
�36�, corresponding to a negative heat capacity, and the as-
sociated abnormal kinetic energy fluctuation overcoming the
canonical limit AK=3 /2 �37�. The consistency between the
two independent signals is again a proof of the numerical
quality of the microcanonical sampling. These results are in
qualitative agreement with the ones obtained for the lattice
gas model in the same ensemble �46�. Interestingly, in the
energy interval corresponding to the transition, the mean
square radius shows a kink and a slope change at higher
energies. The spatial extension of the unbound phase grows
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FIG. 2. �Color online� Microcanonical temperature �a� and nor-
malized kinetic energy fluctuation �b� as a function of the total
energy inside the harmonic oscillator obtained from an energy sort-
ing of the canonical distributions corresponding to an oscillator fre-
quency �=0.01t0

−1, and canonical temperatures 
=3 / �2eK� as indi-
cated. All quantities are expressed in Lennard-Jones units.
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more rapidly with the energy, and at the coexistence point
the two phases have similar spatial extensions. This means
that in this model, contrary to the lattice case �37�, the two
coexisting phases at the transition temperature can be popu-
lated even in an ensemble that strongly constrains the vol-
ume of the system. In particular, the two characteristic sig-
nals of a first-order phase transition in a finite system,
namely, bimodality in the canonical ensemble and negative
heat capacity in the microcanonical one, can be observed
even in the isochore ensemble �30,31�.

For stronger size constraints �smaller average volumes�,
the caloric curve is monotonic, the microcanonical constraint
reduces fluctuations well below the canonical limit, and the
mean square radius increases linearly with the energy. This
signals a supercritical system. From these calculations, the
critical pressure, at which the back bending of the microca-
nonical caloric curve disappears, can be roughly estimated as
�c�0.015t0

−1.

IV. MICROSTATE DISTRIBUTIONS IN AN EXPANDING
ENSEMBLE

To simulate the expanding ensemble Eq. �11�, a radial

momentum p� r=mh̃ru�r is added to each particle and a micro-
canonical sorting is imposed on the total energy including

flow, E�=�i�p� i+ p� ri�2 / �2m�+ELJ. The Hubble factor h̃ em-
ployed at different energies has been obtained from the mea-
sured collective velocity of the same system freely expand-
ing in vacuum �Eflow

free � according to h2 /2m�R2�=Eflow
free �32�.

Since the addition of flow trivially increases the total energy
E, such that E�= �Eth�+ �Eflow��E, the comparison between

the calculations without flow at an energy E and those of the
ensemble including flow at an energy E� have to be made
such that the average thermal energies of both systems are
similar, �Eth�=E.

The results are shown in Fig. 4 for the distribution of the
potential energy and the size of the largest fragment recog-
nized through the minimum spanning tree �MST� algorithm
�29�. We can see that for all energies the presence of flow
modifies the distributions in a sizable way, leading to higher
fluctuations. This is easy to understand from Eq. �11� if we
consider that in the expansion dynamics only the total energy
is conserved, meaning that thermal energy fluctuations can
be compensated by collective energy fluctuations. In this
sense, the collective motion acts as a heat bath, leading to
distributions similar to the canonical ones. In particular, if
the system has a total energy inside the coexistence region of
the first-order phase transition �upper part of Fig. 4� the ex-
change with the flow reservoir can allow the system to ex-
plore the two coexisting phases. These latter differ in poten-
tial energy �eLJ�0.4� but not in average spatial extension
�see Fig. 3� and can therefore be accessed in the same en-
semble for a given value of the average freeze-out volume.

This result implies that signals of phase transitions typical
of the canonical ensemble, such as bimodalities, can be per-
tinent also in the microcanonical framework, if flow is ac-
counted for in a thermodynamically consistent way. Then
such signals may be accessed even in experimental situations
where the deposited energy is strongly constrained. A pos-
sible experimental confirmation of this prediction in nuclear
multifragmentation can be found in Ref. �48�.

At this point a word of caution is in order. Our ansatz �11�
is exact only for a system of noninteracting particles �or in
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FIG. 3. �Color online� Microcanonical temperature �a�,�b�, nor-
malized kinetic energy fluctuation �c�,�d�, and mean square radius
�e�,�f� as functions of the total energy inside the harmonic oscillator
for two different oscillator strengths. The horizontal lines in the
middle panels give the fluctuation expected in the canonical
ensemble.
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FIG. 4. �Color online� Distributions of potential energy �left
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and close to the transition region �upper part�. The filled histograms
correspond to a static equilibrium h=0 while for the empty ones
flow was included according to Eq. �11�. All quantities are ex-
pressed in Lennard-Jones units.
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the limit of local interactions�. In the presence of strong cor-
relations this ansatz supposes the system relaxation time to
be small compared to the time scale of the expansion. This
condition should be satisfied if the average collective veloc-
ity �vF� is much smaller than the velocity associated with the
thermal motion, �vth�. Within the ansatz �11�, the local equa-
tion of state for the radial momentum reads

�pr�r�� �
1

r

� ln z

��
̃h̃�
= h̃mr , �30�

where we have neglected the effect of the energy-conserving
� function in Eq. �11� in order to have an analytical order-
of-magnitude estimate. This leads to a collective velocity

vF= h̃�R�, which should be compared to the canonical esti-

mate vth=�3 / �
̃m�. In the case of the upper part of Fig. 4
we have vF /vth�0.79, meaning that the quality of our ap-
proximation may be doubtful. It is, however, interesting to
note that the bimodal shape of the distribution in the pres-
ence of flow persists also for smaller collective motions, as
long as the energy fluctuations are of the order of the energy
distance �eLJ between the two phases.

V. CONCLUSIONS

To conclude, in this paper we have applied an
information-theory-based formalism allowing us to include
collective motions in the statistical description of finite un-
bound systems for the flow dynamics of classical Lennard-
Jones particles. Molecular dynamics simulations show that

the simplifying ideal gas approximation worked out in Ref.
�1� may be of some pertinence even for dense, strongly in-
teracting systems: the time behavior of the different energy
components closely follows the ideal gas predictions. This
behavior can be understood from the closed algebraic struc-

ture of the p̂2, r̂2, and r�̂ · p�̂ operators, which completely domi-
nates the dynamics of the expansion. In the ideal gas limit,
the flow is self-similar, meaning that the distribution can be
recast as an equilibrium in the local rest frame in an effective
pressure field. Our simulations demonstrate that even in this
approximation of noninteracting particles, the presence of
flow can influence the microstate distribution in a sizable
way. Indeed, the presence of a �nonconserved in time� col-
lective energy component can play the role of a heat bath,
allowing for extra configurational energy fluctuations in the
total energy-conserving dynamics. In particular, close to a
first-order phase transition, this mechanism is seen to give
rise to a characteristic bimodal behavior, similar to some
recent experimental observations in nuclear multifragmenta-
tion.
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