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Transient chaos induces anomalous transport properties of an underdamped Brownian particle
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For an underdamped Brownian particle in a one-dimensional periodic potential we theoretically predict three
unusual transport properties: (i) A static bias force (of either sign) generates an average particle motion in the
opposite direction. (ii) A small bias leads to a particle transport in the direction of the bias, but upon increasing
the bias the particle velocity reverses direction. (iii) For a given bias force, the particle motion follows the
direction of the force for low temperatures, but upon increasing the temperature reverses its direction. The
considered model is shown to be minimal for the occurrence of these phenomena. A detailed analysis of its
deterministic properties and the influence of thermal noise is carried out with numerical simulations that are
complemented by analytical approximations. Intuitive explanations of the basic mechanism behind the three
effects are provided; their origin is attributed to a subtle interplay between the stability of coexisting attractors,
noise induced metastability, and transient chaos. An experimental system for the realization of the predicted
effects is given within the Stewart-McCumber model for Josephson junctions. Suitable parameter values for
which these effects can be observed are quite realistic experimentally.
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I. INTRODUCTION

The interplay of nonlinearity and (thermal) noise in non-
equilibrium systems often gives rise to quite unusual emerg-
ing properties, in the sense that they might seem at first
glance to contradict physical intuition or everyday experi-
ence. Prominent examples are the stabilization of transient
chaos by noise [1,2], ratchet effects [3], stochastic resonance
[4], enhancement of diffusion [5], and noise suppression by
noise [6], to name but a few. In many cases, such unusual
properties can be revealed by considering the “characteris-
tics” of the system in the form of a response to an external
perturbation.

Here, we predict three anomalous transport properties of a
single Brownian particle in one dimension by studying its
response to an external static bias force:

(i) In the absence of the bias the symmetry of the system
rules out any systematic transport. When perturbing the sys-
tem by a static force of either sign (but not too large modu-
lus) the result is an average motion with velocity of just the
opposite sign. This quite astonishing response behavior is
referred to as “absolute negative mobility” (see [7] for a
recent review). For single Brownian particles, it has been
theoretically studied so far in two-dimensional structured
systems [8] or by including an “internal” degree of freedom
[9]. Experimentally, it has been observed for charged Brown-
ian particles in structured microfluidic devices [10], and due
to quantum effects in a sample of bulk GaAs [11] and in
semiconductor heterostructures [12]. In the latter two cases
one also speaks of “absolute negative conductance.” For a
more detailed account of the quite extensive literature
(mainly theoretical) we refer to [7].

(ii) For small bias forces, the transport direction is as
usual, i.e., in the direction of the bias. However, upon in-
creasing the bias the transport velocity suddenly changes
sign and switches to the direction opposite to the external
force, before returning to normal for even larger bias forces.
To our knowledge, such a paradoxical nonlinear response has
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so far only been reported in the theoretical studies [13] of
single Brownian particles confined to two-dimensional me-
andering structures.

(iii) For a given bias force, the transport behavior is as
usual for low temperatures, but upon raising the temperature,
first turns anomalous and later again normal. In other words,
by increasing the random fluctuations due to thermal noise
the transport velocity can be reversed to be opposite to the
bias, in contradiction to our intuitive expectation that an in-
crease of noise would support the downhill motion in the
direction of the bias.

With the present work we continue and provide the details
of our brief account [14] on the existence of the above de-
scribed transport phenomena (i)—(iii) in a one-dimensional
dynamics of a Brownian particle for which inertial effects
play a dominant role. An independent, closely related inves-
tigation of the above effect (i) has recently been published in
Ref. [15]. While the qualitative findings therein agree with
ours, the underlying physical mechanisms are fundamentally
different in the two cases, as detailed in Sec. V D below.
Moreover, our approach to analyze the observed effects is
complementary to the one from Ref. [15], admitting addi-
tional insight into the underlying physical mechanisms.

The paper is organized as follows: In Sec. II we introduce
our model and the observable of main interest, namely, the
average particle velocity. In Sec. III basic properties of our
model are discussed: It is shown that this model is minimal
for the occurrence of the above described effects (i)—(iii), in
particular, a no-go theorem is mathematically proven for the
case of overdamped one-dimensional systems. Focusing on
the above effect (i), Sec. IV contains a detailed analysis of
the deterministic properties of the model. The observed cha-
otic behavior in the deep nonlinear regime does not admit a
quantitative analytical treatment. Instead, numerical simula-
tions are complemented by intuitive explanations of the basic
physical mechanism behind the occurrence of absolute nega-
tive mobility. Noise effects due to finite temperatures are
thoroughly discussed in Sec. V and analytical approxima-
tions for the average particle velocity are provided that agree
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well with the numerical simulations. After this detailed
analysis of absolute negative mobility, the occurrence of the
other two phenomena (ii) and (iii) in our model follows quite
naturally and is easily understood, as described in Sec. VI. In
Sec. VII, Josephson junctions with the property that they can
be well modeled by the so-called resistively and capacitively
shunted junction (RCSJ) or Stewart-McCumber model are
considered as a concrete experimental system to which our
theoretical predictions apply. Suitable parameter values for
which the effects (i)—(iii) can be observed are quite realistic
experimentally. Finally, we conclude and discuss our results
with Sec. VIL

II. MODEL

Our working model consists of the one-dimensional dy-
namics of a Brownian particle with coordinate x(z), mass M,
and friction coefficient 7 [16],

M5(1) = = () = V' (x(1) + f(0) + F+ \29TE0), (1)

where V(x)=V(x+L)=V(-x) is a spatially symmetric,
L-periodic potential, f(t)=—f(t+7/2) is a temporally sym-
metric, T-periodic driving, F is a dc bias, and thermal fluc-
tuations are modeled as usual by unbiased, J-correlated
Gaussian noise &(r) with units of the temperature T such that
Boltzmann’s constant equals one. Furthermore, we focus on
the simplest example, namely, purely harmonic potentials
V(x) and drivings f(z), and we adopt dimensionless units of
time, length, and mass such that

M=1, f()=Asin(wr), ()

ie., L=2m and 7=2m/w. More general models will be
briefly addressed at the end of the paper.

Driven Brownian motion in a periodic potential is of rel-
evance in many different contexts, such as atomic friction,
fluxons in semiconductors, superionic conductors, Josephson
junctions, charge density waves, phase and mode locking
phenomena, intracellular transport, neural activity, and so on
(see, e.g., Refs. [16,17], and references therein). The corre-
sponding minimal model (1) and (2) has been extensively
studied, e.g., from the viewpoints of noisy chaos and phase
locking [18-22], resonance activation [23,24], stochastic
resonance [25], and escape processes [26-28]. An even much
larger literature is available if one also includes slight modi-
fications (e.g., nonharmonic V or f), generalizations (e.g.,
two-dimensional models), or special limits (vanishing
M,n,T,f, etc.) of the basic model (1) and (2), addressing
various aspects of ratchet effects [3(b),29,30] and diffusive
transport [16,17], to name but two examples.

The observable of foremost interest in Egs. (1) and (2)
will be the time and ensemble averaged particle velocity

V(x) = —cos x,

T ('

v:i=—\ lim —f dr'x(t") ), (3)
t—o 0

expressed as a dimensionless multiple of the spatial and tem-

poral periods L and 7. The ensemble average is indicated by

(-) and the time average ensures independence of initial tran-
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sients and of the 7-periodic oscillations imposed by the driv-
ing f(¢) in Eq. (1).

III. BASIC PROPERTIES, MINIMAL MODEL,
AND NO-GO THEOREM

The dynamics (1) and (2) is ergodic for any finite noise
strength 77T and hence the velocity (3) unique (independent
of initial conditions). For symmetry reasons, it follows that
F——F implies v+~ —v, in particular, v=0 for F=0. As men-
tioned at the beginning, our main objective will be to find
situations with opposite signs of F and v. To appreciate that
such a behavior is indeed quite astonishing, we first give
three arguments which—at first glance—seem to prohibit it
altogether.

First, according to Newton’s second law, when increasing
the force from F=0 to a finite value one should always ex-
pect a finite acceleration in the same direction and hence a
change of the velocity from v=0 to a finite value of the same
sign. This argument, however, is no longer conclusive for a
nonlinear dynamics: one cannot simply superimpose the ef-
fects of those forces which are already present when F=0
with the effect of an additional finite F. Indeed there is one
nonlinear term in Egs. (1) and (2), namely, =V’ (x).

Second, one might object that a velocity v opposite to a
dc force F contradicts thermodynamic stability criteria, the
principle of Le Chatelier, and ultimately the second law of
thermodynamics. Again, such an argument is no longer con-
clusive for systems out of equilibrium [31]. The latter is
guaranteed in Eq. (1) by the periodic driving f(7).

Third, let us consider any one-dimensional stochastic dy-
namics of the form

i(1) = h(x(1),0) + F + g(x(1),0) €(z), (4)

whose solutions x() are almost certainly ergodic and con-
tinuous. Furthermore, let us define v as in Eq. (3) but without
the prefactor 7/L. For ergodicity reasons, the time average is
equivalent to the ensemble average, hence the latter is in fact
superfluous. It follows that v=1im,_,, x(¢)/¢, independent of
x(0) and independent of the particular realization of the noise
&(r) [3(b)]. Next, consider two solutions x;(z) and x,(z) of Eq.
(4) with identical seeds x;(0)=x,(0) and identical realiza-
tions of the noise &(r), but with different dc bias F, say F,
> F,. Then, for any ¢ with the property x;(1) =x,(¢) it follows
from Eq. (4) that x,(r)—x,(r)=F;— F,>0. Exploiting conti-
nuity, we can infer that x,(¢) =x,(¢) for all ¢ and hence v,
=v, [32]. In other words, v is a monotonically increasing
function of F, implying the following no-go theorem: v and
F cannot have opposite signs for any continuous, ergodic
dynamics of the form (4) with v=0 for F=0. In a special
case, namely, for z-independent & and constant g in Eq. (4),
the same conclusion has been reached in a completely differ-
ent way in Ref. [33]. For our purposes, the above generali-
zation for ¢-dependent 4 in Eq. (4) is indispensable. Namely,
by comparison with Egs. (2) we now can rigorously rule out
opposite signs of v and F in the absence of the inertia term
Mi(r) in Eq. (1) (overdamped limit).

Omitting the dissipative term —nx(t) in Eq. (1) is equiva-
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lent to the limit »— 0 with #T kept fixed, i.e., a system
coupled to an infinitely hot bath. Then, the effect of the po-
tential force —V’(x(r)) is negligible. As seen above, this ex-
cludes v opposite to F.

As we will see later, without the last term in Eq. (1), v
opposite to F is still possible but this may now depend on the
choice of the initial conditions. Apart from that, we can con-
clude that every single term in Eq. (1) is indispensable. In
this sense the model (1) and (2) is minimal.

It remains to be shown that this minimal model indeed
can give rise to net motion against the average force [34]. In
general, the dynamics (1) and (2) exhibits an extremely rich
behavior as a function of its parameters 7,A,w,F,T. A gen-
eral overview is provided, e.g., by Refs. [20-22]. Our objec-
tive is not such a systematic exploration but rather to unravel
the above mentioned anomalous transport behavior.

Such a behavior can readily be ruled out for very small
and large frequencies w: Below some lower limit an adia-
batic approximation becomes valid [35], and beyond some
upper limit an approximation by means of Bessel functions
holds [22]; absolute negative mobility is ruled out within the
range of validity of both approximations. Our detailed analy-
sis shows that the lower limit is about 0.01, and the upper
limit about 2, and that

w=0.6 (5)

is close to the optimal choice (see also the following discus-
sion). Moreover, as already mentioned before, for large tem-
peratures T the effects of the potential force —V’(x) in Eq. (1)
become negligible. The remaining linear dynamics (1) is
readily solved, yielding for the velocity (3) the result
T
v——— forT— o (6)
7

in the direction of F. Hence, we can focus on the low tem-
perature regime.

IV. DETERMINISTIC BEHAVIOR

Starting with the unbiased dissipative dynamics (1) and
(2) in the deterministic limit (i.e., F=0, >0, T=0), the
remaining control parameters are A and 7. In general, ana-
lytical progress is still fairly hopeless [20-22], but numerical
solutions are readily available. As usual [20-22,29], one
finds that those deterministic solutions of the dissipative dy-
namics (1) and (2) either converge towards a periodic attrac-
tor [36] or maintain an aperiodic behavior in the long time
limit, depending on the choice of A, 7, and the initial condi-
tions.

In the case of a periodic attractor, the resulting average
velocity (3) is of the form v=n/m with integers n and m,
indicating that the periodic attractor proceeds by n spatial
periods L of the potential V(x) during m time periods 7 of the
driving f(¢) in Eq. (1). In the aperiodic case we distinguish
between (i) phase locked aperiodic: the long time solution
still proceeds by n elementary spatial cells during m time-
periods, but with an aperiodic behavior of the reduced dy-
namics within the elementary cell [0,L] [37], and (ii) non
phase locked aperiodic [38].
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A. Numerical findings

The colors in Fig. 1 summarize our numerical findings for
a few dominating n/m ratios, including both periodic and
phase locked aperiodic attractors. The remaining white re-
gions refer to non phase locked attractors [39]. For symmetry
reasons, every solution with v#0 has a coexisting twin
brother with opposite v. Further, v is invariant under A~
—A. In agreement with what one would have expected, for
very small and large amplitudes A, only solutions with v
=0 survive. Also in agreement with the well known behavior
in the Hamiltonian (77— 0) and overdamped (7— <) limits,
for weak (but finite) dissipation 7 one typically finds a whole
mess of coexisting attractors with different velocities v by
probing different seeds [30], while for larger % the
asymptotic velocity is in most cases unique apart from the
above mentioned degeneracies due to symmetry [40]. Such a
situation with unique velocity is, for instance, observed in
the (7,A) regions around the two black crosses in Fig. I,
which indicate the parameter values we study in more detail
below [see Egs. (7) and (12)].

A magnification of the lowest red stripe in Fig. 1 is repro-
duced in Fig. 2(a), while in Figs. 2(b)-2(d) the effect of a
finite static bias F in Eq. (1) is illustrated. As mentioned
above, the red region in Fig. 2(a) comprises coexisting solu-
tions for F=0 with either v=1 or v=-1. This degeneracy is
lifted by gradually increasing F, and hence the regions with
v=1 and v=-1 in Figs. 2(b)-2(d) start to diverge. Focusing
on any point at the border of the colored region in Fig. 2(a)
(an example is indicated by the larger black cross), there is a
well defined local “speed” at which the two borderlines with
v=1 and v=-1 in Figs. 2(b)-2(d) start to move apart upon
increasing F. For any such border point (7,A) which turns
blue in Figs. 2(b)-2(d) (e.g., the larger black cross) we thus
expect a velocity |v|=1 opposite to the static bias F, at least
for not too large |F|.

B. Basic physical mechanism

The way in which the two regions with v=1 and v=-1 in
Fig. 2 move apart and deform upon variation of the bias F'
can be qualitatively understood by means of the following
two intuitive arguments. First, it is quite clear that for suffi-
ciently large F any net motion in the opposite direction will
finally become impossible. This basically explains why the
blue region in Fig. 2 shrinks and finally disappears upon
increasing F, while the orange region grows (at least for not
too large F; later it disappears as well). Second, it is plau-
sible that for any fixed amplitude A, a solution with a given
velocity |v|=1 will dissipate on average less energy when %
is decreased. Now, consider any border point in Fig. 2(a)
(e.g., the larger black cross) where the |v|=1 solutions cease
to exist when 7 is decreased. But now, instead of decreasing
n we apply a small positive bias F>0. Along the same lines,
a solution with positive velocity v=1 gains energy on the
average, which is basically equivalent to saying it dissipates
less. Therefore we expect that this solution ceases to exist.
While not rigorous, this argument explains why for any
given A value the border under consideration moves into the
direction of increasing # upon increasing F, at least for suf-
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FIG. 1. (Color) Regions in the (7,A) plane with periodic and
phase locked aperiodic attractors of the unbiased, deterministic, dis-
sipative dynamics (1), (2), and (5), i.e., F=0, T=0, >0, ©=0.6,
obtained by numerical integration sampling many different initial
conditions. Colors: average velocity v from Eq. (3) on these attrac-
tors for a few dominating rational v values. Black: other rational v
values. White: no phase locked attractors have been found. Over-
lapping of regions with different colors typically indicates coexist-
ence of attractors. The larger black cross represents Eq. (7) and the
smaller one Eq. (12).

ficiently small F (later, nonlinear corrections take over).
Analogous arguments hold for any border point of the orange
and blue regions in Fig. 2, thus explaining why they move to
the right and left, respectively, upon increasing F. By inspec-
tion of Fig. 2, one furthermore sees that the parameter choice
indicated by the larger black cross, i.e.,

7=0465, A=1.24, (7)

is optimal in the sense that it remains within the blue region
for the largest interval of F values.

C. Bifurcation diagrams

A more detailed illustration of the above reasoning is pro-
vided by Fig. 3. The panels (a)—(d) correspond to horizontal
sections through the larger black cross in the corresponding
panel of Fig. 2. The red dots in Figs. 3(a)-3(d) are a common
way of visualizing attractors of a nonlinear dynamics [22].
These bifurcation diagrams reveal the two qualitatively dif-
ferent dynamical situations already classified above. The ver-
tical red stripes that cover the whole spatial period L corre-
spond to non phase locked aperiodic attractors, whereas the
period-doubling cascades to chaos and the periodic windows
comprise phase locked aperiodic and periodic attractors.
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FIG. 2. (Color) (a) Magnification of the lowest red stripe in Fig.
1. The large black cross represents Eq. (7) and the small one rep-
resents Eq. (12). [(b)—(d)] Same except for F>0. Periodic and
phase locked aperiodic attractors with v=1 are indicated in orange
and those with v=-1 are indicated in blue, yielding red in the
coexistence regions. Apart from this degeneracy due to symmetry
(see also main text), the asymptotic velocities v==+1 are unique,
i.e., independent of initial conditions [39].

The large window without non phase locked aperiodic
attractors in each panel corresponds to the colored region
along the horizontal sections in Figs. 2(a)-2(d). Focusing on
Fig. 3(a), we find v=0 in the entire non phase locked regime
and within most of the small periodic windows. Within the
large window, the phase locked solution with velocity v=1
and its symmetry partner with v=—1 are each generated by
two attractors. All four attractors are born out of tangent
bifurcations, coexist in a small 7 range around 7=0.53 (in
which they are connected by an unstable invariant set in
phase space), and are destroyed by way of crisis [22,41] after
evolving through a period-doubling route to chaos. In par-
ticular, four phase-locked attractors coexist around 7=0.53,
but only two velocities v=1 and v=-1 are observed. Note
that in the stroboscopic map in Fig. 3(a) the actual symmetry
of the v=1 and v=-1 solutions would be recovered after
shifting the stroboscopic times for one of them by 7/2.

For F>0 [Figs. 3(b)-3(d)] the symmetry of the period-
doubling cascades is broken, especially their birth (tangent
bifurcations) and death (crises) points along the % axis no
longer coincide. As a consequence, a gap is opening up at the
lower end of the phase locked regime (small % values),
where only solutions with v=-1 remain possible, whereas
the formerly coexisting solution with v=1 has lost stability
and turned into a chaotic repeller [1]. An analogous gap
opens up at the upper crises. Since one is dealing with either
a periodic attractor or phase locked aperiodic solutions
within the entire phase locked regime, structural stability im-
plies that the time- and space-periodicities n and m do not
change and hence the velocities v=n/m indeed keep their
values +1 upon changing F. In contrast, the velocity v within
the » regimes with non phase locked aperiodic attractors is
expected to depend continuously on the bias F and hence, in
general, no longer vanishes for finite F.

The situation within the small windows is analogous to
that in the large one, but beyond the resolution of Fig. 3. A
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FIG. 3. (Color online) Bifurcation diagrams of attractors (red)
[36] and concomitant velocities (blue) versus damping strength 7
from numerical solutions of the deterministic dissipative dynamics
(1)=(3) with T=0, 0=0.6, A=1.24 and the same values of the static
bias F as in Fig. 2. For any given 7 and F, the red dots represent
x(k7) modulo L (stroboscopic map of the reduced spatial dynamics)
for a set of sufficiently large integers k such that initial transients
have died out. The dashed line at 7=0.465 corresponds to the larger
black cross in Fig. 2. Coexistence of different velocities v implies
coexistence of attractors, but not vice versa.

very small periodic window containing v=+2/3 phase
locked attractors is located in Fig. 3(a) at 7= 0.464 just left
to the dashed line, but is beyond the resolution of Fig. 3(a). It
gives rise to another anomalous transport behavior as de-
tailed in Sec. VL.

In the same vein, the results for 7=0 in Fig. 4 can be
readily understood by observing that they basically amount
to a cut through Figs. 3(a)-3(d) along the dashed line (fixed
7=0.465). The fact that the parameters in Eq. (7) do not
exactly hit the borderline in Fig. 2(a) [see also Fig. 3(a)]
explains why v does not immediately jump to —1 for F>0.
A nice illustration of three coexisting attractors but only two
velocities v=1 and v=-1 is visible around F=0.13 in Fig. 4.

According to our above explanations of Figs. 2-4, the
simplest case of net motion opposite to the bias F is exem-
plified by the specific parameter choice (7) and F=0.1. In
this case, there is a unique attractor of the deterministic dy-
namics (1), (2), and (5), consisting of a period m=1 orbit
whose time evolution is illustrated by the nine snapshots in
Fig. 5. Apparently, the delicately tuned up and down tilting
of the total potential prevents the particle from running
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FIG. 4. (Color online) Same as Fig. 3(a), but keeping 7
=0.465 fixed and instead varying F. In addition, the numerically
determined velocity v from Eq. (3) for various 7 is indicated in the
lower part. The numerical uncertainty is of the order of the symbol
size. The connecting lines serve as guides to the eye. Since
F——F implies v——v, negative F' are omitted.

downhill and even stabilizes the periodic uphill motion
against arbitrary perturbations of finite duration.

Basically, the solution in Fig. 5 advances by one spatial
period during the first half time period and remains within
the same spatial period in the second half time period. The
same rough behavior applies for all the solutions within the
lowest red stripe in Fig. 1. Likewise, the solutions within the
next red stripe in Fig. 1 advance by two spatial periods dur-
ing one half time period and then move back by one spatial
period during the second half time period, and so on: in each
red stripe the solutions advance by n and then return by n
—1 spatial periods, resulting in [v|=1 in all cases, and simi-
larly for the other colored stripes in Fig. 1.

Besides the “main” stripe of the lowest red region in Fig.
1 there are many very fine additional filaments emanating
from this main stripe [see also Fig. 2(a)] (the one to the
lower left of the larger black cross is relatively well visible;
most of the others are at or below the resolution of the nu-
merics or the figures). With increasing F the corresponding
orange filaments in Fig. 2 start to grow and move somewhat.
Some of the small periodic windows in Figs. 3 and 4 can be
traced back to such filaments. If a filament crosses a part of
one of the other main stripes with a different color in Fig. 1,
there are several coexisting |v| values. As announced above,
the measure of parameter values (7,A) for which this is the
case, is quite small for moderate-to-large 7. Moreover, only
the solutions within the main stripes are reasonably robust
against parameter changes and perturbations, e.g., by weak
noise.
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V. NOISE EFFECTS

Next we address the effect of thermal noise with finite
temperatures 7 in Eq. (1). As mentioned at the end of Sec.
III, we can focus on small 7. The first main consequence of
any finite 7T is that any deterministic attractor turns meta-
stable, and due to the noise induced transitions between them
the dynamics is always ergodic and hence the velocity (3) is
independent of the initial condition. While in the determin-
istic case the unstable periodic orbits and chaotic repellers
play no role with respect to the velocity (3), in the presence
of noise they are back in the game during the transitions
between the attractors. Essentially, the velocity (3) will thus
be the average over the individual velocities of all the attrac-
tors and repellers, weighted according to their “lifetimes”
[42].

To illustrate these qualitative arguments in more detail,
we next compare numerical results for finite 7" step by step
with our above findings for 7=0. Figure 6 is the analog of
Fig. 1 but for finite temperature T and bias F [43]. Appar-
ently, the periodic and phase locked aperiodic solutions with
v=0 (gray in Fig. 1) are quite robust against some noise and
bias (white in Fig. 6). For the periodic and phase locked
aperiodic solutions with finite v (colored in Fig. 1) the sym-
metry breaking F>0 in most cases leads to a dominance of

the solutions with positive v (orange in Figs. 2 and 6) but
also substantial regions with v opposite to F (blue in Figs. 2
and 6) survive at the upper borders of some colored stripes in
Fig. 1. The quite notable positive velocities v within the
lowest stripe in Fig. 6 and the negative velocities at the upper
border of this stripe are obviously the noisy traces of the
orange and blue regions in Fig. 2(c), and similarly for the
other stripes in Fig. 6.

The main conclusion from Fig. 6 is that net motion
against the bias F indeed can survive in the presence of
noise. In fact, for any given friction 7 between 0.1 and 0.65
there exists an interval of amplitudes A with significant v
opposite to F according to Fig. 6. Furthermore, comparison
of the blue islands in Fig. 6 suggests that there are parameter
values (77,A) whose motion against F is even somewhat
faster and more robust than the one indicated by the larger
black cross, however, with a more complicated deterministic
motion than the one in Fig. 5. Its actual quantitative robust-
ness against bias and noise is shown in Figs. 4 and 7. Hence,
we expect that by optimizing parameters, one may be able to
further improve the maximal F in Fig. 4 and the maximal T
in Fig. 7 with v opposite to F (see Sec. V B below). A com-
parison of Figs. 1 and 6 furthermore suggests that periodic
attractors of low period are more stable against noise than
those of high period and phase locked aperiodic solutions.
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FIG. 6. (Color) Same as Fig. 1 but for 7=0.001 and F=0.1. The
value of the velocity v from Eq. (3) is independent of initial condi-
tions and indicated by the coloring.

A. Analytic approximation

The noisy counterpart of the deterministic, period-one so-
lution from Fig. 5 is depicted in Fig. 8. According to Fig.
8(a), roughly speaking, the trajectory seems to switch ran-
domly between pieces with a negative slope v_ and pieces
with a positive slope v,. Those with v_ are almost perfectly
periodic and indeed practically coincide with the determinis-
tic period-one orbit and hence one readily understands that
v_=-1. Those with v, have an aperiodic fine structure which

0.4 T T

//ﬂ,, T
0.2 e i
0 .

> -02
-0.4
-0.6

0.0001 0.001 0.01 0.1

T

FIG. 7. (Color online) Symbols: Average velocity v from Eq. (3)
versus temperature 7 from numerical solutions of Egs. (1), (2), and
(5) with parameter values (7) (labeled by the larger black cross in
Figs. 1, 2, and 6) and with bias F=0.1. The numerical uncertainty is
smaller than the symbol size. Red solid line: analytic approximation
(8), (10), and (11); green dashed line: analytic approximation
(9)—(11), with velocities v,=0.88 and v_=-1, cf. Fig. 9. Arrow:
analytical asymptotics v —0.358 for T— @ according to Eq. (6).
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FIG. 8. (Color online) Typical numerical solution x(z) of the
dynamics (1), (2), and (5), with parameter values (7) (labeled by the
larger black cross in Figs. 1, 2, and 6) and with 7=0.001 and F
=0.1. (a) Global behavior. (b) Magnification of the green window in
(a). Dashed: straight lines with slopes v,=0.88 and v_=-1.

can be naturally understood as the fingerprint of the under-
lying chaotic repeller (see the above discussion of Fig. 3).
Contrary to the naive first guess v, = 1, the average velocity
of long lived transients on the repeller is found to be v,
~0.88 [cf. Fig. 8(b)]. In other words, the chaotic repeller
does not strictly maintain the velocity of the former attractor,
and in fact there does not seem to be any reason why it
should do so.

We have analyzed the above noisy transitions between the
period-one attractor and the chaotic repeller by extensive nu-
merical simulations for a number of temperatures 7 between
25X 107 and 6.7X107*. We found that they can be de-
scribed very well in terms of escape rates k_ and &, from the
periodic orbit and the repeller, respectively [42]. Thus, we
adopt a two state Markov model for the system with the
states being the attractor (“—” state) and the repeller (“+”
state). Asymptotically, the escape rates are given by the in-
verse lifetimes of the states. In principle, these could be de-
termined from the average (temporal) length of the uninter-
rupted v=—1 (v=0.88, respectively) segments of the noisy
trajectory (cf. Fig. 8). The length of these segments is ex-
pected to follow an exponential distribution for sufficiently
long segments, and the average lifetimes can be obtained
from the exponents of the cumulative distribution functions.
However, the numerical determination of the time instant at
which the motion switches from one state to the other turned
out to be ambiguous when based only on the particle position
x(#). It is more convenient to use a well-defined set in the
(x,v) phase space that represents the “—” state with motion
on or close to the phase locked attractor, and to track when
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the trajectory leaves this set and enters its complement, cor-
responding to the “+” state on the repeller.

This approach is illustrated with Fig. 9. The crosses rep-
resent the stroboscopic signature of the v=-1 attractor for
three successive driving periods, i.e., if the trajectory starts
on the rightmost cross in Fig. 9, it is located on the middle
cross one period later, and on the left cross another period
later. A deterministic solution (7=0) starting from any other
point in the phase plane [44] (irrespective of its color) is
eventually attracted to this periodic trajectory. The colored
regions consist of those trajectories in phase space that, while
converging to the attractor, move “synchronously” with a
trajectory on that attractor, i.e., a point from the blue region
jumps to the green region and then to the red region during
two successive driving periods. We term this subset of the
total basin of attraction the “synchronous basin of attrac-
tion,” and use it to define the set in phase space that repre-
sents the “—” state of the noisy dynamics in the following
way. A noisy trajectory switches from the “+” state to the
“—” state when entering the blue part of the synchronous
basin of attraction within the rightmost spatial period of Fig.
9 (or the green part within the middle period, or the red part
within the left period, etc.), and remains in the “— state
until it leaves the synchronous basin of attraction of the as-
sociated attractor [22]. Consequently, a trajectory in the “—”
state moves uphill against the force >0 with v=-1 exactly
like a trajectory on that attractor (and would continue to do
so if the noise source is switched off). The behavior in the
complementary “+” state is characterized by a downhill mo-
tion close to the chaotic repeller resulting in v=0.88.

Based on this definition of the “+” and “—” states, the
average lifetime of the attractor is calculated from the aver-
age time it takes a trajectory, initialized on the attractor [45],
to leave the synchronous basin of attraction for the first time.
The average lifetime of the repeller is determined from an
ensemble method [1], which basically estimates the expo-
nential part of the decay into the “—"" state of a population of
trajectories being initialized close to the repeller in the “+”
state.

The temperature dependence of the resulting escape rates
is shown in Fig. 10. The escape rate k_ from the attractor (red
squares) is found to be well described by an Arrhenius law
[22], whereas the escape rate k, from the repeller (blue dots)
is found to be roughly temperature independent (cf. solid
lines in Fig. 10)

k_=0.14 exp(- 0.0034/T), k,=0.081. (8)

These approximations can be improved by taking into ac-
count the temperature dependence of the prefactor in the
Arrhenius law of k_ [46], and by heuristically including a
lowest order temperature dependence of k, of the form \7,
yielding (cf. dashed lines in Fig. 10).

k_=2.5\VT exp(= 0.0028/T), k,=0.07 +0.46\T. (9)

Both, the Arrhenius form of k_ and the approximate 7 inde-
pendence of k, are quite plausible, while the quantitative
details are clearly beyond the analytical realm.

Next, the probabilities p_ and p. to be in the “—" state on
the attractor and the “+” state on the repeller, respectively,
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will be approximately proportional to the inverse escape
rates (lifetimes) and normalized, i.e.,

k—l

. — 10
K+ k! (10)

P+

Finally, this suggests that one can approximate the velocity v
by the average over the velocities v, associated with attractor
and repeller, weighted with the respective probabilities p.,

v=uv,.p,+U_p_. (11)

The agreement with the numerical results in Fig. 7 is remark-
ably good even at rather high 7, where the rate theory is
expected to fail. Surprisingly, the more sophisticated form
(9) of the escape rates shows no notable improvement as
compared to the less precise representation (8). The reason is
that by Eq. (8) both, k_ and k., are underestimated for larger
T (see Fig. 10) so that the respective errors compensate in
Eq. (10).

B. Maximal temperature and bias

Next, we address the question: What is the maximally
achievable temperature which still supports net motion
against the applied bias, and similarly, what is the maximally
achievable bias?

Figure 7 shows that the attracting properties of the peri-
odic v=-1 orbit are overruled by thermal noise effects if T
becomes large, so that finally the average velocity is in the
direction of the bias F. Although it is clear from the discus-
sion of Eq. (6) that for high enough temperatures 7T transport
is always [i.e., for any values of the other parameters in Eq.
(1)] in the direction of F, the quantitative details of the tem-
perature region with v opposite to F depend on the specific
properties of all attractors and repellers present, and thus on
the specific parameter values in Egs. (1) and (2). For our
choice [Eq. (7)], e.g., we see from Fig. 4 (lower part) that a
smaller bias F (still F>0) allows for larger 7 with an aver-
age motion against the bias. A more comprehensive picture
of this observation is presented with Fig. 11, showing that
part of Fig. 6, which contains the blue regions with average
velocities opposite to F, for smaller bias but larger tempera-
tures. From Fig. 11(d) we see that transport against the bias
is possible even for temperatures as high as 7=0.04 for op-
timized values of # and A.

One might conjecture that the temperature range with v
opposite to F becomes largest for F— 0. This is, however,
not generally true, because the stability of the present attrac-
tors can change considerably with decreasing F, and even
new attractors or repellers with other T-specific properties
can come into play and dominate the transport behavior. In-
deed the parameter values (7) constitute an example for such
a situation, as discussed in detail in Sec. VI below.

From a complementary point of view, we may expect that
the strength of the bias F at which the negative average
velocity finally becomes positive and then follows the direc-
tion of F can be larger for smaller temperatures 7. Although
we could find (numerically) transport against the bias for
forces up to F=0.32 at T=4 X 107>, a general statement is
not possible in the same sense as above.
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FIG. 9. (Color) Stroboscopic representation of the phase locked
periodic attractor with v=-1 (black crosses), whose time evolution
is illustrated in Fig. 5, shown within three spatial periods of the full
(x,v) phase space (indicated by the dashed lines) for three consecu-
tive driving periods. The colored regions represent the synchronous
basin of attraction of the attractor (see main text) also for these
three driving periods. The right cross and blue region correspond to
the first, the middle cross and green region correspond to the sec-
ond, and the left cross and red region correspond to the third driving
period. This picture can be periodically repeated to the right and to
the left to obtain the attractor and its synchronous basin of attraction
for previous and later driving periods, respectively. The synchro-
nous basins of attraction of all these periods have filaments that
extend into the shown part of the phase space, and if one included
them, they would completely cover the white region.

C. Speedy uphill motion

In comparison with purely noise-induced negative mobili-
ties as studied in [7-9,13,15], the maximal velocities against
the external bias observed here are considerably larger (typi-
cally at least by one order of magnitude). As detailed above,
this is due to the fact that for not too large temperatures the
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FIG. 10. (Color online) Arrhenius plot of the escape rates k_ and
k, from the attractor (red squares) and the repeller (blue dots), re-
spectively. Remaining parameter values: same as in Figs. 5 and 7-9.
The statistical uncertainties are of the order of the symbol sizes. The
solid lines represent the data fits (8); the dashed lines show Eq. (9).
All fits are based only on the escape rates for temperatures T
=0.0025, because in this temperature range the description of the
noisy trajectories in terms of transitions between the “+* and “—"
state with respective escape rates k, and k_ is expected to be valid,
as is self-consistently concluded from the obtained values in the
exponents of Egs. (8) and (9).

noisy dynamics (1) is governed by the presence of phase
locked attractors with deterministic transport in the direction
opposite to the bias. Accordingly, the effect can readily be
accelerated by exploiting phase locked attractors with higher
velocities [v] (see Fig. 1). As an example, we consider n/m
=3 by choosing the parameter values given in Fig. 12. These
values are located at the upper border of the green region in
Fig. 1 around =0,...,0.23 and A= 1.5, ...,1.8, which in-
dicates the existence of a symmetric pair of period-one at-
tractors with |v|=3. Hence, transport against the bias F oc-
curs by the same mechanism as illustrated with Fig. 2 for the
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3F 4 sh -
25 4 25 F <
—
__ 2 4 2F .
< = < FIG. 11. (Color) Same as Fig.
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: . ! . ! ! : : : ! with transport against the bias (see
3.5 T T, 2 T T represent magnifications of the
3 T = 0.0 12 L (d) T =0.04 i dashed box in (c), but for higher
14 - temperatures. Negative average
251 1121 : : | - velocities can still be observed for
—_ 2 R ] o : : : T=0.04. The black cross repre-
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FIG. 12. (Color online) Average velocity v for the given param-
eter values and for various temperatures, obtained from numerical
simulations of Egs. (1) and (2). The indicated values for 7 and A are
located at the upper border of a green region in Fig. 1 with deter-
ministic transport velocities [v|=3.

[v|=1 attractors. The resulting speedy uphill motion is de-
picted in Fig. 12 for various temperatures 7. Surprisingly, it
is comparably robust against noise and only a little less
stable with respect to increasing bias forces F as the slower
uphill motion in Fig. 7.

In principle, unlimited acceleration of the uphill transport
seems to be possible by using attractors with even higher
deterministic velocities |v| In practice, however, this is lim-
ited by the fact that such attractors are typically located at
smaller z values in coexistence with other attractors, and
only exist in rather small parameter regions.

D. Nontransporting attractors and comparison with Ref. [15]

Nontransporting phase locked deterministic solutions with
v=0 typically exist over large parameter ranges (see, e.g., the
gray region in Fig. 1). If there is a parameter region, in which
such a nontransporting solution coexists with a symmetric
pair of transporting attractors at F'=0, then absolute negative
mobility can occur for suitable parameter values at the bor-
der of that region by the same mechanism as detailed in Fig.
2. The only qualitative difference to Fig. 2 is that the white
background would be gray, indicating the coexisting v=0
attractor. This situation is exemplified by Fig. 13 for some
finite bias F>0 [compare to Fig. 2(c)]; suitable parameter
values are located in the blue region, indicating the existence
of a transporting attractor with v=—-1/2. Correspondingly,
the noisy trajectories at small temperatures 7" switch between
three different states, since the uphill and downhill transport-
ing “—” and “+” states are now complemented by a non-
transporting “0” state. As a main consequence, the achiev-
able velocities v opposite to F are slowed down
considerably.

In contrast to the above situation, the parameter values
indicated by the black cross in Fig. 13 are never reached by
the blue region for any bias F>0 (nor by the orange and red
regions). Nevertheless, absolute negative mobility can occur
by another, different mechanism: Obviously, at 7=0 we find
v=0, because the nontransporting solution is globally attrac-
tive. At small temperatures 7, however, the dynamics is gov-
erned not only by the stable v=0 orbit but also by two re-
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FIG. 13. (Color) Same as Fig. 2, but for the case of coexisting
v=0 and v= i% attractors. The indicated cross and the chosen fre-
quency o and bias force F' represent the parameter values used in
Figs. 1 and 2 of Ref. [15]; a vertical section through the cross
corresponds to Fig. 1(a) therein. (Note that the units used by us and
in Ref. [15] differ by some factors of 2.

pellers that emerge from the v=—1/2 and v=1/2 attractors
due to crises occurring at the borderlines of their stability
regions (the blue and orange region in Fig. 13). Since the
escape time from a repeller scales with the distance from the
crisis according to some power law [47], and since the black
cross in Fig. 13 for F>0 is closer to the blue than to the
orange region, the major contribution of the chaotic repellers
to the noisy trajectories comes from the repeller with nega-
tive v =—1/2. As a result, an average velocity v opposite to
the bias F' is observed for small temperatures 7.

The above explanations represent our announced comple-
mentary intuitive insight into the basic physical mechanism
behind the effect of “absolute negative mobility induced by
thermal equilibrium fluctuations,” recently reported by Ma-
chura et al. [15]. While the latter effect per se is qualitatively
very similar to the one discussed in the previous section of
our present paper (see also Ref. [14] and footnote 22 in Ref.
[15]), the underlying basic physical mechanism is thus quite
different. Moreover, qualitatively the maximally achievable
velocities are substantially smaller: In our units, the maximal
velocity v opposite to a negative bias F reported by Machura
et al. [15] is about v=0.017, and our more detailed numerical
analysis of the parameter range from Fig. 13 indicates that
one indeed can hardly do better.

In summary, the distinct feature of the effect reported in
Ref. [15] is that it is purely noise induced, while the effect at
the main focus of Ref. [14] and our present study has the
advantage of producing much larger velocities.

VI. FURTHER ANOMALOUS TRANSPORT PROPERTIES

Our understanding so far of the system (1) and (2) allows
us to readily predict further remarkable transport properties.
Two examples are discussed in the following.

First, we consider the small black cross in Fig. 2 at

7=02, A=0.85. (12)

For small bias F we are somewhere in the white or gray
domains of Fig. 1. Around F=0.1 the small black cross in
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FIG. 14. (Color online) Symbols: Numerically determined ve-
locity v from Eq. (3) for Egs. (1) and (2) with parameters as indi-
cated in the plot. The numerical uncertainty is smaller than the
symbol size. The red line is a guide to the eye.

Fig. 2(c) penetrates a bulge of the orange area, which is
“moving upwards” as a function of F. Hence, a velocity v of
the same sign as F is expected. At the still larger F value in
Fig. 2(d), the small black cross has left the orange bulge
again and now instead is hit by the blue stripe, so that we
expect a velocity v opposite to F. The corresponding predic-
tion for the velocity v as a function of the bias F' is nicely
confirmed by the numerical simulations in Fig. 14. For small
bias, the velocity direction is as usual, but changes sign upon
increasing the bias, before returning to normal for even
larger F [48].

Second, we focus on the small periodic window around
F=0.007 in Fig. 4. This window represents an attractor with
a unique deterministic velocity v=2/3 in the direction of the
bias F. The reason for the appearance of this attractor at
small bias forces is that the parameter values (7) indicated by
the larger black cross in Fig. 1 are not exactly located at the
upper border of the red stripe but somewhat above. The
v=-1 attractor contained in this red region and emerging
from it in blue in Fig. 2 reaches the larger black cross only at
F=0.012 (cf. Fig. 4); for smaller F it turns into a chaotic
repeller. Similarly as in Egs. (8)—(11), one thus has a com-
petition between the deterministic attractor with v,=2/3 and
this chaotic repeller with v_=~-1. As confirmed by Fig. 15,
for small T the attractor with v =2/3 wins, then the repeller
with v=-1 takes over, and finally, the usual large-T

O S———————
06 | F =0.007, n = 0.465 A

04 A=124,w=06
02t
- 0
_02 L
04t
10810710%10°10*10210210™

T

FIG. 15. (Color online) Same as Fig. 7, but for F=0.007. Lines:
approximations (10) and (11) with v,=2/3, v_=-1, and k,
=0.024_exp(—1.35_>< 1077/7), k_=0.036 (red solid line), k_=0.038
—6.6\T, k,=63\T exp(—1.1 X 1077/T) (green dashed line).
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asymptotic v=(7/L)(F/ 1) =0.028 according to Eq. (6) is ap-
proached. Therefore, the response behavior for the bias force
around F=0.007 is as usual in the direction of F' for low
temperatures, but upon increasing the temperature first turns
opposite to F, and then switches again to normal. Note that
of the temperatures 7>0 shown in Fig. 4 only the largest
one falls into the ranges with positive v at F'=0.007.

VII. ABSOLUTE NEGATIVE CONDUCTANCE
IN A JOSEPHSON JUNCTION

As a concrete experimental example of the predicted ab-
solute negative mobility we consider the Stewart-McCumber
or RCSJ (resistively and capacitively shunted junction)
model [22,49] for the phase difference ¢ across a Josephson
junction with capacity C, resistance R, critical current /.
(maximal Josephson current), and externally imposed current
I(r). Within this model, the ¢ dynamics is governed by the
dimensionless equations (1) and (2) via the identifications

e(tlw,) =x(1), 1(t/w,)=I[f{) +F],

n=(RCw,)™", T=C(w/1)ksT", (13)

where ), := (2l /PyC)""* is the plasma frequency, P,
:=h/2e is the flux quantum, and kzT" is the thermal energy.

As far as the RCSJ model is concerned [22,49], the volt-
age U(r) across the junction is given by ®,¢(r)/2 7 (second
Josephson relation) and hence its average according to Egs.
(3) and (13) by

W)=

v. 14
Cur (14)

Hence, absolute negative mobility for a Brownian particle
(1) and (2) corresponds to absolute negative conductance in a
Josephson junction, characterized by a dc component of the
current I(¢) in Eq. (13) with sign opposite to the average
voltage in Eq. (14).

Using the relations (13) and (14), our predictions from
Fig. 4 can be realized by a Josephson junction with resis-
tance R=0.2 (), capacity C=~250 pF, critical current I,
~ 180 unA, temperature 7~4.2 K, driven by an ac current of
frequency 28 GHz and amplitude 220 uA. The theoretically
predicted I-V curve is shown in Fig. 16.

Additionally, by varying the ac amplitude, noisy I-V char-
acteristics corresponding to bifurcation diagrams in the A
direction should be accessible using the same junction. We
remark that it is not necessary to hit the given parameters
exactly as can be inferred from Fig. 6. Parameter values as
exemplified in Fig. 16 are quite realistic and the resulting
voltages (U) easily detectable.

Such an experiment [50] is presently under construction
in the group of Dieter Kolle and Reinhold Kleiner in Tiibin-
gen (Germany). In fact, the effect might have already been
implicitly observed (without further discussion or explana-
tion) in the experimental work [51].

VIII. SUMMARY AND CONCLUSIONS

In conclusion, we have unraveled in Figs. 4, 14, and 15
three rather astonishing transport properties of the one-
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FIG. 16. (Color online) Same data as the green symbols in Fig.
4 but presented according to the Stewart-McCumber model (1), (2),
(13), and (14) for a Josephson junction with resistance R=~0.2 (),
capacity C=250 pF, critical current /.~ 180 nA, temperature T
~4.2 K, driven by an ac current of frequency 28 GHz and ampli-
tude 220 uA.

dimensional stochastic dynamics (1) and (2): (i) a transport
opposite to the static bias F (absolute negative mobility, Fig.
4), (ii) anomalous nonlinear response in the form of an av-
erage particle velocity that follows the direction of F for
small F, but switches direction upon increasing F (Fig. 14),
and (iii) a reversal of the transport direction from normal to
anomalous at a fixed bias force F but for increasing tempera-
ture T (Fig. 15).

Apart from our own brief account [14] on such phenom-
ena and the independent discovery of effect (i) by Machura
et al. [15] (see Sec. V D), further preliminary hints to the
existence of effects (i) and (ii) in a one-dimensional model
(1), and an experimental trace of effect (i) are also implicitly
contained already in the previously existing literature on Jo-
sephson junctions (see [34,48,51]). These findings are, how-
ever, not further discussed or explained in those works, be-
cause their focus is on other (dynamical) aspects of
Josephson junctions. In fact, these “accidental” observations
of the above effects (i),(ii) point to their remarkably common
occurrence in dynamical systems like Eq. (1), as demon-
strated by our present paper.

The above effects (i)—(iii) are observed for system param-
eters that are all of the order of magnitude of unity. This fact
makes analytical studies extremely difficult; for instance, a
perturbational approach becomes completely impossible. Ac-
cordingly, our detailed analysis of the model (1) and (2), its
deterministic limit, and the effects of noise due to finite tem-
peratures relies on extensive numerical simulations. An im-
portant exception is our strict proof using mathematical and
physical arguments that the model (1) is minimal, in the
sense that any of the terms in Eq. (1) are indispensable for
the occurrence of the above phenomena.

Based on the numerical findings, we were able to develop
a simple intuitive physical picture for the mechanism behind
the observed response phenomena. Their occurrence is traced
back to a subtle interplay of deterministic phase locked at-
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tractors, transient chaos on chaotic repellers, and noise-
induced metastability of these dynamical “states.” The latter
has been shown to be well described by a simple rate-
theoretical approach (see Sec. V A).

Apart from their fundamental interest [11,12,31] the ef-
fects (i)—(iii) may be applied for particle sorting [10], stabi-
lization of unstable states, and making work (transport)
available upon request [7]. For instance, one can see from
Fig. 6 that particles with different friction coefficients (e.g.,
due to different sizes) can easily be guided into opposite
directions by a suitable choice of the driving amplitude A.

As an experimental realization of the predicted effects we
propose resistively and capacitively shunted Josephson junc-
tions. Their dynamical behavior is characterized by the RCSJ
or Stewart-McCumber model which is mathematically
equivalent to our model (1) and (2). Suitable parameter val-
ues for which the above effects are predicted to occur are
quite realistic experimentally.

Further experimental realization may be cold atoms in
resonance with laser-induced optical lattices [52,53] and dif-
fusion of single atoms and molecules on atomically clean
crystal surfaces [54-56]. In such systems, the bias F and/or
the driving f(¢) in Eq. (1) may also be substituted [57] by
suitable “traveling-wave potentials” (pump) in place of the
static V(x). More precisely, —=V'(x(¢))+f(¢)+F in Eq. (1) is
replaced by —V'[x(¢f)—vot—g(r)], with average velocity v
and superimposed sinusoidal oscillations g(z). Indeed, for the
transformed variable y(r) := x(r) —vyt—g(¢) one readily recov-
ers [57] the original dynamics (1) with F=—7v, and a suit-
ably chosen A in Egs. (2). The effects predicted in the
present work would result in averaged velocities that are
considerably faster than the traveling velocity v, of the “en-
training” potential, so that the particle is “running ahead” of
the traveling-wave potential.

Finally, the basic physical mechanism as identified in our
discussion of Figs. 1-3 is clearly quite robust against a large
variety of modifications and generalizations of the dynamics
(1) and (2). The only indispensable prerequisites are deter-
ministic chaos, phase locking, and the symmetry properties
V(-x)=V(x) and f(t+7/2)=—f(t). For example, we have
found similar effects for various nonharmonic V(x) and f(r)
in Eq. (1) and also when the “periodically rocking force
field” —V'(x)+f(¢) in Eq. (1) is replaced by a “pulsating
field” of the form =V’ (x)[1+f(2)].
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