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Nonlinear longitudinal relaxation of a spin in a uniform external dc magnetic field is treated using a master
equation for the quasiprobability distribution function of spin orientations in the configuration space of polar
and azimuthal angles �analogous to the Wigner phase space distribution for translational motion�. The solution
of the corresponding classical problem of the rotational Brownian motion of a magnetic moment in an external
magnetic field essentially carries over to the quantum regime yielding in closed form the dependence of the
longitudinal spin relaxation on the spin size S as well as an expression for the integral relaxation time, which
in linear response reduces to that previously given by D. A. Garanin �Phys. Rev. E 55, 2569 �1997�� using the
density matrix approach. The nonlinear relaxation is dominated by a single exponential having as time constant
the integral relaxation time. Thus a simple description in terms of a Bloch equation holds even for the nonlinear
response of a giant spin.
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I. INTRODUCTION

Spin relaxation is fundamental in the physics and chem-
istry of condensed phases, e.g., on an atomic level, nuclear
magnetic and related spin resonance experiments probe the
time evolution of the elementary spins of nuclei, electrons,
muons, etc. �1,2�. On a larger scale the time evolution of
magnetic molecular clusters exhibiting relatively large quan-
tum effects �3� with spins of order 15–25�B is currently of
interest in the context of molecular magnets. Finally, on a
nanoscale level, we have magnetic fluids composed of single
domain ferromagnetic particles �constituting a single giant
spin of magnitude 104–105�B� in a colloidal suspension.
Here relaxation experiments detect �4,5� both the Arrhenius
or solid-state-like �Néel� mechanism �6� of relaxation of the
magnetization, which may overcome via thermal agitation
anisotropy, potential barriers inside the particle and the De-
bye �or Brownian� relaxation �7� due to physical rotation of
the suspended particles in the presence of an applied field
and the heat bath. Here quantum effects are expected to be
much smaller.

Spin relaxation experiments in nuclear magnetic or elec-
tron spin resonance are usually interpreted via the phenom-
enological Bloch �8� equations and their later modifications
�1,2�. They describe relaxation of an assembly of elementary
spins in a sample subjected to an external magnetic field and
coupled to a heat bath. These simple linear equations of mo-
tion for the nuclear magnetization were originally proposed
on phenomenological grounds. The main assumption is that
the effects of the heat bath can be described by two time
constants, the so-called relaxation times. They provide a sub-
stantially correct �1� quantitative description for liquid
samples. Microscopic theories of the relaxation in quantum
spin systems have been developed by Bloembergen, Purcell,
and Pound �9�, and other authors �see, e.g., �10–12��.

Proceeding to larger scales, in magnetic molecular clus-
ters comprising a few spins the relaxation behavior as a func-
tion of spin is of paramount importance as strong quantum
effects are expected to manifest themselves as the spin de-
creases, while in single domain �giant spin� nanoparticles
suspended in a fluid carrier the relaxation is usually assumed
to be classical. Thus the Néel mechanism of the magnetiza-
tion reversal �6� occurring inside the ferromagnetic particles
is described by a classical Langevin equation for the time
evolution of the magnetization as adapted to magnetic mo-
ments by Brown �13,14� while the Debye theory �7� of di-
electric relaxation of polar molecules is used to describe the
relaxation by physical rotation of the suspended particles
�4,15�. In the description of the Néel mechanism �13,14�, the
Langevin equation is the phenomenological Landau-Lifshitz
�16� or Gilbert equation �17� for the magnetization M�t�
�used originally to study the motion of a domain wall� aug-
mented by random magnetic fields due to the heat bath �18�.
This equation leads �4,13,14� to the Fokker-Planck equation
in the space of polar angles for the surface distribution of the
magnetic moment orientations. For simplicity it is commonly
assumed that the solid state and Brownian relaxation mecha-
nisms may be treated independently. A discussion of the limi-
tations of that assumption has been given in Refs. �4,15�.
Moreover, memory effects are ignored, however, they may
also be included as in �19–21�. It is immediately apparent
that treating magnetization relaxation via the Landau-
Lifshitz equation augmented by stochastic terms is essen-
tially just another problem concerning the rotational Brown-
ian motion under the combined effect of an external field and
the internal magnetocrystalline anisotropy. Many particular
cases have been treated �5,13,14� by using the Kramers es-
cape rate �22� as adapted to magnetic relaxation �14,23,24� in
order to calculate the reversal time of the magnetization over
the internal potential barrier. Moreover, the results have been
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exhaustively compared �5� with exact solutions yielded by
the Fokker-Planck equation. Now it has been suggested by
Bean and Livingston �25� that in addition to the overbarrier
relaxation mechanism mentioned above the magnetization
may also reverse by quantum tunneling through the barrier.
This relaxation mechanism represents macroscopic quantum
tunneling since a giant spin is always involved �26�.

These considerations merit a systematic way of introduc-
ing quantum effects into the spin dynamics simultaneously
linking to the classical representation and allowing one to
study quantum effects. The method proposed here utilizes the
coherent state representation of the density matrix introduced
by Glauber and Sudarshan commonly used in quantum op-
tics �see, e.g., �27,28��. This method when applied to spin
systems �29,30� allows one to analyze quantum spin relax-
ation using a master equation for a quasiprobability distribu-
tion function W��� ,� , t� of spin orientations in a phase �here
configuration� space �� ,��; � and � are the polar and azi-
muthal angles, constituting the canonical variables. Here �
parametrizes quasiprobability functions of spins belonging to
the SU�2� rotation group, and �=0 and �= ±1 correspond to
the Stratonovich �31� and Berezin �32� contravariant and co-
variant functions, respectively �the latter are directly related
to the P and Q symbols, which appear naturally in the co-
herent state representation; see Refs. �33,34� for a review and
Appendix A for details. We consider W−1�� ,� , t� only and
drop the superscript. Such a mapping of the quantum spin
dynamics onto c-number quasiprobability density evolution
equations clearly shows how these reduce to the Fokker-
Planck equation in the classical limit �29,30�. The function
W�� ,� , t� was originally introduced by Stratonovich �31� for
zero dissipation, i.e., for closed systems, and further devel-
oped both for closed and open spin systems �e.g.,
�29,30,32–42� and is entirely analogous to the translational
Wigner distribution W�x , p , t� in phase space �x , p� �43�,
which is the quasiprobability representation of the density
operator except that certain differences arise �29� because of
the angular momentum commutation relations. The Wigner
function W�� ,� , t� of spin orientations in a configuration
space, just as the Wigner function W�x , p , t� for the transla-
tional motion of a particle in phase space, enables the ex-

pected value �Â��t� of a quantum spin operator Â to be cal-
culated via the corresponding �c number� function A�� ,��.
For example, for the spin operator ŜZ, the correspondence

rules of operators and c numbers yield ŜZ→ �S+1�cos �,

while the expected value �ŜZ��t� is

�ŜZ��t� =
2S + 1

4�
�

0

� �
0

2�

�S + 1�cos �W��,�,t�sin �d�d�

�see Appendix A for details�. The phase-space formalism al-
lows quantum mechanical averages involving the density
matrix to be calculated just as classical ones and so is emi-
nently suited to the calculation of quantum corrections be-
cause it formally represents quantum mechanics as a statis-
tical theory on classical phase space �44�. Indeed W�x , p , t�
has been recently used �45–48� for quantum corrections to
the classical theory of the translational Brownian motion via

perturbation theory in �2 �� is Planck’s constant�. The for-
malism is easy to implement because semiclassical master
equations in phase space enable techniques �e.g., continued
fractions �49�� originally developed for the solution of the
Fokker-Planck equation to be seamlessly carried over into
the quantum domain �45,47�. In particular �which is relevant
in the present context�, we note the semiclassical quantum
master equation in phase space for the translational harmonic
quantum oscillator in the weak coupling limit �originally
studied by Agarwal �50��

�W

�t
+

p

m

�W

�x
− m	0

2x
�W

�p
=




m

�

�p
�pW + �p2�eq

�W

�p
	 , �1�

where 
, m, and 	0 are the “friction” coefficient, mass,
and oscillator frequency, respectively, �p2�eq

= �m�	0 /2�coth���	0 /2�, �=1/ �kT�, and kT is the thermal
energy. Equation �1� is the same as the Fokker-Planck equa-
tion �here the Klein-Kramers equation� for a classical
Brownian oscillator �5� except the diffusion coefficient Dpp
=
�p2�eq/m is altered to include the quantum effects. Thus it
is unnecessary to resort to perturbation theory because the
dynamical equation for the Wigner function for a quadratic

Hamiltonian Ĥ= p̂2 /2m+m	0
2x̂2 /2 in the absence of dissipa-

tion �
=0� coincides with the corresponding classical Liou-
ville equation.

Now for a spin in an external uniform field if the coherent
state representation is transferred to the conventional polar
and azimuthal angle representation �� ,��, the master equa-
tion describing the time evolution of W�� ,� , t� again has
essentially the same form as the corresponding classical
Fokker-Planck equation �30�. Hence the problem is analo-
gous to the Agarwal harmonic oscillator model �50� thus
serving as the most simple example of the application of the
phase-space method to open spin systems �29,30,41,42� as
we demonstrate here. We remark that the master equation has
been solved by continued fractions in Ref. �41� for the lon-
gitudinal relaxation for particular small values of the spin
S=1/2, 1, and 3/2. Here we shall present both the exact and
an approximate general solution for the linear and nonlinear
relaxation of the averaged longitudinal component of the

spin �ŜZ��t� as a function of all spin values S in a uniform
magnetic field of arbitrary strength. We shall show how the
solution of the corresponding classical problem �5,51–54�
carries over into the quantum domain and how the exact
solution for the integral relaxation time for an arbitrarily
strong change in the uniform field may be obtained. In the
linear response approximation the exact solution reduces to
that previously given by Garanin �55� using the spin density
matrix in the second order of perturbation theory in the spin
bath coupling and later rederived by García-Palacios and Zu-
eco �56� who �again using the density matrix� considered the
linear longitudinal relaxation for arbitrary S. Furthermore,

we shall demonstrate that the relaxation of the spin �ŜZ��t�,
comprising 2S exponentials, may be accurately approxi-
mated by a single exponential with a definite relaxation time
T1, which strongly depends on S and the field strength for
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arbitrary S. In other words, even for a giant spin �S�1�,
�ŜZ��t� still obeys the Bloch equation

d

dt
�ŜZ��t� + ��ŜZ��t� − �ŜZ�eq� 
 T1 = 0, �2�

where �ŜZ�eq is the equilibrium average of the operator ŜZ.
We remark in passing that Garanin and García-Palacios et al.
�55–57� evaluated the response for a more general spin sys-
tem �a uniaxial paramagnet in a uniform field�. They have
given a quantum treatment of the spin dynamics by proceed-
ing from the quantum Hubbard operator representation of the
evolution equation for the spin density matrix. However,
they considered a small longitudinal ac field superimposed
on a longitudinal dc field so that by linear response theory
their solution is strictly limited to the response consequent on
a small perturbation in the dc field unlike ours, which is valid
for arbitrary changes in the dc field, thus no longer necessar-
ily bearing any relation to the ac response.

II. BASIC EQUATIONS FOR THE LONGITUDINAL
RELAXATION

Following �30,41,42� we consider the dynamics of a spin

Ŝ in an external dc magnetic field H0 directed along the Z
axis and a random field h�t� characterizing the collision
damping �due to the heat bath� incurred by the precessional

motion of the spin so that the Hamiltonian Ĥ is

Ĥ = ĤS + ĤSB + ĤB,

where ĤS=−�	0ŜZ, 	0=�H0 is the precession �Larmor� fre-

quency, � is the gyromagnetic ratio, the term ĤSB=−��h · Ŝ
describes interaction of the spin with the thermostat, and ĤB
characterizes the thermostat. The equation of motion for the
density matrix �̂ is then

��̂

�t
+

i

�
�ĤS, �̂� = Q̂��̂� , �3�

where Q̂��̂�=−�i /���ĤSB+ ĤB , �̂� is the collision kernel op-
erator. The reduced density matrix �̂=TrB �̂ �i.e., that aver-
aged over the density matrix of the bath� obeys the following
equation �30�:

��̂

�t
= i	0�Ŝ0,�̂� + B*e��	0�Ŝ+�̂, Ŝ−� + Be��	0�Ŝ+,�̂Ŝ−�

+ B�Ŝ−�̂, Ŝ+� + B*�Ŝ−,�̂Ŝ+� + C�Ŝ0�̂, Ŝ0� + C*�Ŝ0,�̂Ŝ0� ,

where Ŝ+, Ŝ−, and Ŝ0= ŜZ are the spin operators in spin co-
herent state representation �defined in Ref. �30�� and

B = ��/2�2�
0

�

�h−�t�h+�0��Be−i	0tdt ,

C = �2�
0

�

�h0�t�h0�0��Bdt .

Here the averages are over the equilibrium bath density ma-
trix �assuming axial symmetry about the Z axis and that the
averaged field components �h±�t��B=0 and �h0�t��B=0�. In
the longitudinal relaxation, the azimuthal dependence of W
may be ignored so that the corresponding evolution equation
for W�� , t� is �30�

�W

�t
=

b�e��	0 − 1�
sin �

�

��

�sin ��coth���	0/2� + cos ���

�W

��

+ 2S sin2 �W� , �4�

where b=Re�B� is the effective “diffusion” coefficient re-
lated to the random magnetic field imposed by the reservoir
on the spin. Equation �4� applies in the narrowing limit case
when the correlation time �c of the random field h�t� acting
on the spin satisfies the condition �H�c�1, where H is the
averaged amplitude of the random magnetic field. The left
hand side of Eq. �4� is the quantum analog of the Liouville
equation for a spin, which in this instance is the same as the
classical case just as the corresponding result for particles
with quadratic Hamiltonians, while the right hand side �col-
lision kernel� characterizes the interaction of the spin with
the thermal bath at temperature T. Conditions for the validity
of Eq. �4� are discussed in detail elsewhere �see, e.g., �30��.
Essentially, Eq. �4� follows from the equation of motion of
the reduced density matrix where the interactions between
the spin and the heat bath are small enough to allow one to
use the weak coupling limit and the correlation time charac-
terizing the bath is so short that we can regard the stochastic
process originating in the bath as Markovian �30�. Thus one
may assume frequency independent damping. This approxi-
mation may be used in the high temperature limit. In the
parameter range, where such an approximation is invalid
�e.g., throughout the very low temperature region�, a more
general form of the master equation with time dependent
diffusion coefficients �41,42� should be used. We have cho-
sen Eq. �4� in the approximation of frequency independent
damping because our objective is merely to understand in
semiclassical fashion how quantum effects alter the rota-
tional Brownian motion and nonlinear longitudinal relax-
ation of a classical spin. We also remark that in the case of
longitudinal relaxation, Eq. �4� may be plausibly derived �see
Appendix B� by postulating �just as in the phase space treat-
ment of the quantum translational Brownian motion �46,48��
a master equation for the Wigner function W with collision
terms given by a Kramers-Moyal expansion truncated at the
second term. The various drift and diffusion coefficients in
the truncated expansion may then be calculated by requiring
that the equilibrium Wigner distribution Weq, corresponding

to the equilibrium spin density matrix �̂eq=e−�ĤS /Tr�e−�ĤS
,
renders the collision kernel equal to zero.

Now the Wigner function Weq���, which is the stationary
solution of Eq. �4�, is �30�
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Weq��� = ZS
−1�cosh�1

2
��	0� + sinh�1

2
��	0�cos �	2S

,

�5�

where

ZS = �S +
1

2
��

−1

1 �cosh�1

2
��	0� + sinh�1

2
��	0�z	2S

dz

= sinh��S +
1

2
���	0	� sinh�1

2
��	0�

is the partition function. The average longitudinal component
of the spin at equilibrium is

�ŜZ�eq = �S +
1

2
��

0

�

�S + 1�cos �Weq���sin �d�

= SBS���	0S� , �6�

where BS�x� is the Brillouin function defined as �49�

BS�x� =
2S + 1

2S
coth�2S + 1

2S
x� −

1

2S
coth� x

2S
� . �7�

Equation �6� is in complete agreement with the well-known
result for the equilibrium magnetization of a spin in a uni-
form magnetic field �58�. In the classical limit, �→0, S
→�, and �S=const, the equilibrium distribution Weq��� and
the Brillouin function BS�x� tend, respectively, to the Boltz-
mann distribution, i.e., �S+ 1

2
�Weq���→Zcl

−1eS��	0 cos �, and
the Langevin function, i.e., BS�x�→L�x�=coth�x�−1/x,
where Zcl is the classical partition function. Quantum effects
become important when ��H0 / �kTS��1, i.e., either at small
S or at very low temperatures T or for an intense field H0.

III. EXACT SOLUTION OF THE MASTER
EQUATION (4)

We suppose that the magnitude of an externally uniform
dc magnetic field is suddenly altered at time t=0 from HI to
HII �the magnetic fields HI and HII are assumed to be applied
parallel to the Z axis of the laboratory coordinate system�.
Thus we study as in the classical case �5,59� the transient
longitudinal relaxation of a system of spins starting from an
equilibrium state I with the distribution function Weq

HI �t�0�
to a new equilibrium state II with the distribution function
Weq

HII �t→��. Here the longitudinal component of the spin

�ŜZ��t� relaxes from the equilibrium value �ŜZ�eq
I to the value

�ŜZ�eq
II , the transient being described by an appropriate relax-

ation function �see Fig. 1�. The transient response so formu-
lated is truly nonlinear because the change in amplitude HI
−HII of the external dc magnetic field is arbitrary �the linear
response can be treated as the particular case �HI−HII�→0�.

The master equation �4� for the evolution of W�z , t� �with
z=cos �� can be given in the form of a single variable
Fokker-Planck equation for t�0 �30�,

�W

�t
=

�

�z
�D�2��z�

�

�z
W − D�1��z�W� , �8�

where D�1��z� and D�2��z� are, respectively, the drift and dif-
fusion coefficients given by

D�1��z� = S�e�/S − 1��1 − z2�/�2�N� , �9�

D�2��z� = �e�/S + 1��1 + z tanh��/2S���1 − z2�/�4�N� ,

�10�

�N=1/ �4b� is the characteristic time of the free rotational
“diffusion” of the spin, and the dimensionless field parameter
� is defined as

� = ���HIIS . �11�

We remark that the explicit form of D�1��z� and D�2��z� can be
obtained from the Fokker-Planck equation �8� using the equi-
librium distribution Eq. �5� alone exactly as in the transla-
tional Brownian motion �48� �see Appendix B�.

The solution of Eq. �8� is obtained by expanding the dis-
tribution function W�z , t� in a series of Legendre polynomials
Pn�z�

W�z,t� = Weq
� �z� + �

n=0

2S
2n + 1

2S + 1
Pn�z�fn�t� , �12�

where the equilibrium distribution Weq
� �z� is defined as �c.f.,

Eq. �5��

Weq
� �z� = ZS

−1�cosh��/2S� + sinh��/2S�z�2S

= �
n=0

2S
2n + 1

2S + 1
Pn�z��Pn�eq

� , �13�

and

�Pn�eq
� = �S +

1

2
��

−1

1

Pn�z�Weq
� �z�dz �14�

is the equilibrium average of Pn�z�. In particular, we have
�P1�eq

� = �S / �S+1��BS�� /S�. Substituting Eq. �12� into Eq. �8�
and noting the orthogonality and recurrence properties of the
Legendre polynomials �60� as in the classical case �5� we

0 t

H0

HIIHI

IIˆ
Z

eq
S

ˆ ( )ZS t

0 t

Iˆ
Z

eq
S

FIG. 1. Schematic representation of the longitudinal nonlinear
transient response.
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have a differential-recurrence relation for the relaxation
functions fn�t�= �Pn��t�− �Pn�eq

� , viz.,

�n ḟn�t� = qn
−fn−1�t� + qnfn�t� + qn

+fn+1�t� , �15�

where 1�n�2S, f0�t�= f2S+1�t�=0,

�n = 2�N/�n�n + 1��, qn = − �1 + e�/S�/2,

qn
± = �

2S ± n + �3 ± 1�/2
2�2n + 1�

�e�/S − 1� ,

and the brackets � ��t� designate statistical averaging defined
as ����t�= �S+ 1

2
��−1

1 �W�z , t�dz.
Using the properties of the one-sided Fourier transform,

we have from Eq. �15�

�i	�n − qn� f̃ n�	� − qn
− f̃ n−1�	� − qn

+ f̃ n+1�	� = �nfn�0� ,

�16�

where f̃ n�	�=�0
�e−i	t fn�t�dt. The inhomogeneous three-term

recurrence Eq. �16� can be solved exactly for f̃1�	� using
continued fractions just as the corresponding classical prob-
lem �see for details Ref. �5�, Chap. 2� yielding

f̃1�	� =
2�N

�e�/S − 1��n=1

2S

an�
k=1

n

�k
� �	,�� . �17�

Here the finite continued fraction �n
� �	 ,�� is defined by the

recurrence relation

�n
� �	,�� = qn

−�i	�n − qn − qn
+�n+1

� �	,���−1,

with �2S+1
� �	 ,��=0 and

an =
fn�0�

n�n + 1��S + 1��k=1

n
qk−1

+

qk
−

= �− 1�n+1fn�0�
�2n + 1��2S + n + 1�!�2S − n�!
n�n + 1��S + 1��2S + 1�!�2S�!

.

Noting that the initial value for the distribution function is
W�z ,0�=Weq

�+��z�, where �=���S�HII−HI� �that is, the per-
turbation strength�, the initial values for the fn�t� are

fn�0� = �Pn�eq
�+� − �Pn�eq

� . �18�

The equilibrium averages �Pn�eq
� given by Eq. �14� can also

be evaluated in terms of �n
� �0,�� since �Pn�eq

� satisfies the
three-term recurrence relation

qn
−�Pn−1�eq

� + qn�Pn�eq
� + qn

+�Pn+1�eq
� = 0, �19�

so that �n
� �0,��= �Pn�eq

� / �Pn−1�eq
� and

�Pn�eq
� = �

k=1

n

�k
� �0,�� . �20�

Equation �17� is the exact solution for the one-sided Fou-
rier transform of the nonlinear relaxation function f1�t� in
terms of continued fractions. Having determined f1�t�, vari-
ous transient nonlinear responses of the longitudinal compo-

nent of the normalized magnetization �M̂Z��t�= �ŜZ��t�
− �ŜZ�eq

� may be evaluated because

�M̂Z��t� = �S + 1�f1�t� , �21�

where �ŜZ�eq
� =SBS�� /S�. In particular, we mention the rise,

decay, and rapidly reversing field transient responses. In
some cases, the general equation �17� can be considerably
simplified. For example, let us now suppose that a strong
constant field HII is suddenly switched on at time t=0 �so
that HI=0 or �=−��. Thus we are interested in the nonlinear
relaxation of a system of spins starting from an equilibrium
state I with the isotropic distribution function Weq

0 = �2S
+1�−1 �t�0� to another equilibrium state II with the distri-
bution function Weq

� �t→��. Noting Eq. �20�, Eq. �17� be-
comes

f̃1�	� = i��1
� �0,�� − �1

� �	,���/	 . �22�

Equation �22� allows one to easily calculate f̃1�	� for the rise
transient.

IV. NONLINEAR LONGITUDINAL RELAXATION TIME

The overall transient behavior of the relaxation function

f1�t� �hence the magnetization �M̂Z��t�� is characterized by
the integral relaxation time �the area under the normalized
relaxation function f1�t� / f1�0�� �5�

�int =
1

f1�0��0

�

f1�t�dt =
f̃1�0�
f1�0�

, �23�

where f1�0�= �BS��+��−BS����S / �S+1�. This time can be
evaluated from Eqs. �17� and �20� and is given by

�int =
2�N

�e�/S − 1�f1�0��n=1

2S

an�Pn�eq
� . �24�

This expression can also be presented in an equivalent inte-
gral form by noting that the master equation �8� has the form
of a single variable Fokker-Planck equation. As shown in
Refs. �5,59�, for any system, with dynamics governed by a
single variable Fokker-Planck equation, e.g., Eq. �8�, the in-
tegral relaxation time �int characterizing the nonlinear relax-
ation behavior of f1�t�= �P1��t�− �P1�eq

� can be obtained in
closed integral form �just as for linear response� in terms of
the equilibrium distribution and the diffusion coefficient
D�2��z� only. Hence on applying these results to Eq. �8�, we
obtain just as in the classical case �5,59� the exact equation
for �int, viz.,

�int =
�S + 1/2�

f1�0� �
−1

1 ��z���z�
D�2��z�Weq

� �z�
dz , �25�

where ��z�=�−1
z �x− �P1�eq

� �Weq
� �x�dx and ��z�=�−1

z �Weq
�+��x�

−Weq
� �x��dx. For the limiting case S=1/2, �int is independent

of the perturbation strength � and is given by

�int = 2�N/�e2� + 1� , �26�

while in the classical limit �S→��
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�int =
2�N

f1�0��−1

1 ��z���z�e−�z

1 − z2 dz , �27�

where ��z�=�−1
z �Wcl

�+��x�−Wcl
� �x��dx, ��z�=�−1

z �cos z�
− �P1���e�z�dz�, f1�0�= �P1��− �P1��+�, �P1��=coth �−1/�, and
Wcl

� �z�=�e�z / �2 sinh ��, agreeing entirely with the classical
result �59�.

Numerical calculations show that both Eqs. �24� and �25�
yield exactly the same result. Thus �int for various nonlinear
transient responses �such as the rise, decay, and rapidly re-
versing field transients� may be easily evaluated from Eq.
�25�. The normalized relaxation time �int /�N from Eq. �25� is
shown in Fig. 2 as a function of S and � for various values of
�. The figure indicates that the relaxation time decreases with
increasing field strength � and, moreover, strongly depends
on both S and �. The nonlinear effect comprising accelerated
relaxation in the external field also exists for classical dipoles
�5,59�. An explanation may be given as follows. In the ab-
sence of the field HII ��=0�, the relaxation time of the spin is
the free diffusion relaxation time �N, viz., �int=�N. In a strong
field ���1� and S�1, the relaxation time is determined by
the damped diffusion of the spin in the field HII and the
characteristic frequency is now the frequency of the spin
oscillation about HII �in the vicinity of z=0�, which is deter-
mined by the inverse of the field induced probability current
�2D1�0�=� /�N so that �int��N /�. This asymptotic formula
may be used to estimate �int for ��1 and ��0 and �����.
The influence of the parameter �, which enters into the inte-
gral relaxation time due to the initial distribution function
Weq

�+�, is more pronounced for negative values of � and field
strengths ��2–7 �see Fig. 2�. For ��−�, a more accurate
formula is given by �int��N / ��−1−���+���. The enhanced
dependence of �int on � for negative values of � can be un-
derstood because these cases correspond to rise and rapidly

reversing transients, where the initial and final distributions
differ considerably. As far as the spin dependence of �int is
concerned, �int substantially depends on S �due to the strong
spin dependence of the field induced probability current� and
is given for ��1 and ��0 and ����� �where the � depen-
dence of the relaxation time may be ignored in the first ap-
proximation� by,

�int � �2D1�0��−1 = ��N/S��e�/S − 1�−1. �28�

This asymptote is also shown in Fig. 2 �see also Fig. 3�.

V. LINEAR RESPONSE

We may also evaluate the linear response of a spin system
to infinitesimally small changes in the magnitude of the dc
field, which is of particular interest as the corresponding in-
tegral relaxation time becomes the correlation time, which
we stress has already been evaluated �55–57� using the spin
density matrix. Thus we again suppose that the uniform dc
field HII is directed along the Z axis of the laboratory coor-
dinate system and that a small probing field H1�H1 �HII� hav-
ing been applied to the assembly of spins in the distant past
�t=−�� so that equilibrium conditions are fulfilled at time t
=0, is switched off at t=0. Here �→0 and f1�t� / f1�0� re-
duces to the normalized longitudinal dipole equilibrium cor-
relation function C��t� �61�, that is,

lim
�→0

f1�t�
f1�0�

= C��t� =
�−1

��
�

0

�

�M̂Z�− i���M̂Z�t��eq
� d� ,

�29�

where �� is the static susceptibility defined as

�� = �−1�
0

�

�M̂Z�− i���M̂Z�0��eq
� d� = S2 �

��
BS��� �30�

and

S2 �

��
BS��� =

1

4
�csch2� �

2S
� − �2S + 1�2 csch2�2S + 1

2S
��	 .

According to linear response theory �see, e.g., �61��, having

determined the one-sided Fourier transform C̃��	�
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FIG. 2. �Color online� Normalized integral relaxation time
�int /�N from Eq. �25� as a function of S �a� and � �b� for various
values of � �symbols�. Dashed line: Eq. �28�.
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Eq. �32� as a function of � for various values of S �symbols�.
Dashed lines: Eq. �28�.
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=�0
�C��t�e−i	tdt �the spectrum of the equilibrium correlation

function C��t��, one may evaluate the dynamic susceptibility
���	�=����	�− i����	� �61� via

���	�/�� = 1 − i	C̃��	� . �31�

In the linear response approximation, the integral relaxation

time, that is, the correlation time ��int��→0=�cor= C̃��0� of

C��t�, follows from Eq. �25� in the limit �→0 and is given
by

�cor =
�S + 1��S + 1/2�

S�BS���/��
�

−1

1 1

D2�z�Weq
� �z�

�
−1

z �

��
Weq

� �x�dx

 �
−1

z �y −
SBS���
S + 1

�Weq
� �y�dydz , �32�

where

�

��
Weq

� �z� =
csch��/2S� − �2S + 1�csch�� + �/2S��cosh � − z sinh ��

2S�cosh��/2S� + z sinh��/2S��
Weq

� �z� .

For the limiting case S=1/2, �cor is equal to �int from Eq.
�26�, while in the limit S→�,

�cor =
�N� csch �

1 + �−2 − coth2 �
�

−1

1

�z − coth � + e−��1+z��1

+ coth ���2 e�zdz

1 − z2 , �33�

agreeing entirely with the classical result ��5�, Chap. 7�. In
the low field limit ���1�, the correlation time may be ap-
proximated as �cor /�N=1−� / �2S�+O��2�; in the classical
limit S→�, one has �5� �cor /�N=1−�2 /9+O��4�. As far as
the spin and field dependence of �cor for ��1 is concerned, a
simple asymptotic formula for �cor= ��int��→0 is given by Eq.
�28�. It varies smoothly from the power law ��cor��N /�� at
S→� to exponential decrease ��cor�2�Ne−2�� at S=1/2. The
qualitative behavior of �cor= ��int��→0 has been discussed in
Sec. IV. The normalized correlation time �cor /�N from Eq.
�32� is plotted in Fig. 3 as a function of � for various values
of S; the asymptotes from Eq. �28� are also shown here for
comparison.

We remarked above that the linear response had been
studied previously by Garcia-Palacios and Zueco �56� using
the spin density matrix approach. They also gave an explicit
expression for the linear response integral relaxation time
first derived by Garanin �55�. Garanin derived his formula
for a more general Hamiltonian than that treated in the
present paper, namely, that corresponding to a uniaxial para-

magnet in a uniform field ĤS=−�	0ŜZ−DŜZ
2, which is also

valid in the limit D→0, corresponding to the present case
and which reads as follows �in our notation�:

�cor =
2�N

e�/S��
�

m=−S

S−1
1

�mlm
2 � �

k=−S

m

�M − k��k	2

, �34�

where �n=e�n/S /ZS, ZS=�m=−S
S e�m/S, M =�m=−S

S m�m, ��

=�m=−S
S m2�m−M2, lm

2 =S�S+1�−m�m+1�, and we have taken
a normalizing factor ��N. Equations �32� and �34� have out-
wardly different forms; however, calculation shows that both

equations yield exactly the same result establishing an essen-
tial corollary between the phase-space formulation consid-
ered here and the spin density matrix method in the second
order of perturbation theory in the spin-bath coupling.

VI. SINGLE-MODE APPROXIMATION

Although the continued fraction solution given above is
effective in numerical calculations, it has one significant
drawback; namely, the qualitative behavior of the system is
not at all obvious in a physical sense. Thus to gain a physical
understanding of the relaxation process, we show how the
single-mode approximation previously suggested by us to
describe the relaxation of a classical spin ��5�, Chap. 7�, can
be generalized to quantum systems. We first recall that the

spectrum f̃1�	� from Eq. �17� on Fourier inversion indicates
that the time behavior f1�t� comprises 2S exponentials

f1�t� = f1�0��
k=1

2S

cke
−�kt, �35�

where the �k are the eigenvalues of the tridiagonal �transi-
tion� matrix A characterizing the dynamics of the system.
The matrix elements Aq,p of A are defined as

Aq,p = �p,q+1qp
− + �p,qqp + �p,q−1qp

+.

In the frequency domain, the spectrum f̃1�	� is thus the se-
ries of 2S Lorentzians

f̃1�	�
f1�0�

= �
k=1

2S
ck

�k + i	
. �36�

According to Eq. �36�, the finite number of relaxation modes
�corresponding to the discrete eigenvalues �k� each contrib-

ute to the spectrum f̃1�	�. However, as we shall see below,
these near-degenerate individual modes are indistinguishable

in the spectrum f̃1�	� appearing merely as a single band.

Hence f̃1�	� may be approximated by the single Lorentzian
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f̃1�	�
f1�0�

�
�int

1 + i	�int
, �37�

where �int is given by Eq. �25�. In the time domain, the
single-mode approximation Eq. �37� amounts to assuming
that the relaxation function f1�t� as determined by Eq. �35�
�comprising 2S exponentials� may be approximated by a
single exponential, viz.,

f1�t� = f1�0�e−t/�int. �38�

In order to verify the single-mode approximation we plot
in Figs. 4 and 5 the real parts of the normalized spectra

f̃1�	� / f1�0� calculated from the exact continued fraction so-
lution �Eq. �17�� and the approximate Eq. �37�. Thus it is
apparent from Figs. 4 and 5 that no practical difference exists
between the exact solution and the single-mode approxima-
tion �the maximum relative deviation between the corre-
sponding curves does not exceed a few percent�. Similar �or
even better� agreement exists for all values of S, �, and �.
Just as in the classical case ��5�, Chap. 7�, the single-mode
approximation is very accurate because the finite number

�2S� of relaxation modes are near degenerate manifesting
themselves merely as a single high-frequency band in the
spectrum. Thus they may be effectively approximated by a
single mode, i.e., both the linear and nonlinear longitudinal
relaxation of the magnetization for all S is accurately de-
scribed by the Bloch equation �2�. We remark that García-
Palacios and Zueco �56� have also used the single-mode ap-
proximation in the evaluation of the linear response of an
isotropic spin system. In linear response, Eqs. �37� and �38�
can be reformulated for the susceptibility ���	� and correla-
tion function C��t� as

C��t� = e−t/�cor and ���	� � ��/�1 + i	�cor� .

VII. CONCLUSIONS

We have treated nonlinear spin relaxation using phase-
space quasiprobability density evolution equations in con-
figuration space via the extension of Wigner’s phase-space
formulation of quantum mechanics to open systems which,
in particular limiting cases, e.g., the correlation time Eq.
�32�, reduces to previously known results obtained using the
equation of motion of the density matrix in the second order
of perturbation theory in the spin-bath coupling so providing
an important check on the validity of our approach by dem-
onstrating the equivalence of the two methods. Both exact
�continued fraction� and approximate �single mode� solutions
are given. The continued fraction solution yields in closed
form the dependence of the longitudinal spin relaxation on
the spin size S, which is dominated by a single exponential
having as time constant the integral relaxation time. Thus a
simple description in terms of a Bloch equation holds even
for the nonlinear response of a giant spin.

We reiterate that the one-to-one correspondence between
the quantum state in the Hilbert space and a real representa-
tion space function first envisaged for the closed system in
the spin context by Stratonovich �31�, formally represents the
quantum mechanics of spins as a statistical theory in the
representation space of polar angles �� ,�� �which are now
the canonical variables� just as accomplished by Wigner �43�
who represented the quantum mechanics of a particle with

Hamiltonian Ĥ= p̂2 /2m+V�x̂� as a statistical theory in phase
space with the canonical variables �x , p�. Stratonovich �31�
proceeded by introducing a quasiprobability density
�Wigner� function on the sphere, defined as the linear invert-
ible bijective map onto the representation space comprised of
the trace of the product of the system density matrix and the
irreducible tensor operators having matrix elements in the
spherical basis representation given by the Clebsch-Gordan
coefficients �see Appendix A�. Hence the average value of a
quantum spin operator may be calculated just as the corre-
sponding classical function. Moreover, for a general �nonaxi-
ally symmetric� Hamiltonian the evolution equation for the
quasiprobability density function of the closed system pro-
posed by Stratonovich may be expanded for large spins S
�1 �39� in powers of the small parameter !�S−1 with the
term linear in ! being the same as the classical Liouville
equation �analogous to the result for particles�, the next term
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FIG. 4. The real parts of the normalized spectra f̃1�	� / f1�0� vs
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being O�!2� and so on. Thus the Stratonovich representation
for spins �31�, just as the well-known Wigner representation
for particles �43�, is well suited to the development of semi-
classical methods of solution allowing one to obtain quantum
corrections in a manner closely analogous to the classical
case �see, e.g., �5�, Chap. 7�.

Thus one may conclude for spins �just as for particles�
that the existing solution methods �matrix continued frac-
tions which can be evaluated by iterating a simple algorithm,
integral representation of relaxation times, etc.� seamlessly
carry over to the quantum case indeed suggesting new closed
form quantum results via the corresponding classical ones;
for example, the quantum integral relaxation time, Eq. �25�
above. We have illustrated the phase-space method by con-
sidering the simplest possible problem, namely, the longitu-
dinal relaxation of an arbitrary spin in a uniform magnetic
field of arbitrary strength directed along the Z axis �the re-
laxation of the transverse components of the magnetization
can be treated in like manner using Eq. �4� just as in the
classical case �5��. We remark that longitudinal relaxation in
a uniform field is the simplest example of the phase method
for spins as it is the rotational analog of the translational
harmonic oscillator in the weak coupling limit considered by
Agarwal �50� so that the quasiprobability density diffusion
equation has the Fokker-Planck form for all S, hence pertur-
bation theory is not required. This would not be true in gen-
eral, e.g., for relaxation in nonaxially symmetric magneto-
crystalline anisotropy and external field potentials, which
invariably comprise two or more potential wells. Here per-
turbation theory in the small parameter !�S−1 is required in
the evolution equation for the Wigner function �which unlike
axially symmetric problems involves the conservative or
Liouville term� just as perturbation theory in �2 is required in
the corresponding quantum translational Brownian motion in
an arbitrary potential V�x̂�. Nevertheless our simple isotropic
spin problem demonstrates clearly how one may calculate,
using the phase-space method, the influence of spin size �in
the weak bath spin coupling limit� on the relaxation behav-
ior.
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APPENDIX A: PHASE-SPACE DESCRIPTION
OF SPIN SYSTEMS

To provide a phase-space description of spin systems,
Stratonovich in 1956 �31� introduced the quasiprobability
�Wigner� distribution function on the sphere. Alternative
quasiprobability distribution functions for spins have also
been proposed and discussed, e.g., in Refs. �32–40� using the
spin coherent-state representation. Moreover, Várilly and
Gracia-Bondía �33� have shown that the spin coherent-state
approach is equivalent to the Stratonovich formalism �see
also �39,40��. The Wigner quasiprobability distribution func-
tion on the surface of the unit sphere for a spin system given

by Stratonovich �31� is defined by the invertible map �39�

W���,�,t� = Tr��̂ŵ���,��
 , �A1�

where � parametrizes quasiprobability functions of spins be-
longing to the SU�2� dynamical symmetry group, �̂ is the
system density matrix, and ŵ��� ,�� is the Wigner-
Stratonovich operator or kernel of the bijective transforma-
tion given by Eq. �A1� defined as

ŵ���,�� =� 4�

2S + 1 �
L=0

2S

�
M=−L

L

�CS,S,L,0
S,S �−�YL,M

* ��,��T̂L,M
�S� ,

�A2�

such that Tr�ŵ��� ,��
=1 and 2S+1
4� �",�ŵ��� ,��sin �d�d�

= Î. Here Î is the identity matrix, YL,M�� ,�� are the spherical

harmonics �62�, and the T̂L,M
�S� are the irreducible tensor �po-

larization� operators with matrix elements given by �62�

�T̂L,M
�S� �m�,m =�2L + 1

2S + 1
CS,m,L,M

S,m�

−S�m ,m��S−L#M #L, 0�L�2S, and CS,S,L,0
S,S and

CS,m,L,M
S,m� are the Clebsch-Gordan coefficients �62�. The den-

sity matrix �̂ may then be expressed using the kernel Eq.
�A2� as �39�

�̂ =
2S + 1

4�
�

",�
ŵ���,��W−���,�,t�sin �d�d� . �A3�

Knowledge of the function W−��� ,� , t� now allows one

to calculate the average value of an arbitrary spin operator Â
in the same way as the corresponding function for transla-
tional motion �39� because the W−��� ,� , t� provide the over-
lap relation

�Â� = Tr��̂Â
 =
2S + 1

4�
�

",�
A���,��W−���,�,t�sin �d�d� ,

�A4�

where A��� ,�� is the Weyl symbol of the operator Â �see,
e.g., �44�� defined as

A���,�� = Tr�Âŵ���,��
 . �A5�

As an example, we evaluate A��� ,�� for the operator

ŜZ. Noting Eqs. �A2� and �A5� and known relations

ŜZ=�S�S+1��2S+1� /3T̂1,0
�S� and Tr�T̂L1,M1

�S� T̂L2,M2

�S� 

= �−1�M1�L1,L2

�M1,−M2
�62�, we obtain

SZ
���,�� = Tr�ŜZŵ���,��


= �CS,S,1,0
S,S �−��4�S�S + 1�/3Y1,0

* ��,��

= S�1−��/2�S + 1��1+��/2 cos � .

In particular, for �=1 we have SZ
1�� ,��= �S+1�cos �. Fur-

thermore, at equilibrium, the phase-space distribution
Weq���=Weq

−1��� from Eq. �5� corresponds to the equilibrium
density matrix
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�̂eq = e��	0ŜZ/ZS, �A6�

and vice versa. For S=1/2, this can readily be demonstrated
by analytically substituting into Eqs. �A1�–�A3� and �A6� the

known representation of the matrix exponential e$ŜZ in terms

of the irreducible tensor operators T̂L,M
�S� ��62�, Secs. 2.5 and

2.6�, viz.,

e$ŜZ = �2�T̂0,0
�1/2� cosh�$/2� + T̂1,0

�1/2� sinh�$/2�� .

Thus one obtains after some algebra �cf. Eq. �5��

Weq
−1��� = �cosh�1

2
��	0� + sinh�1

2
��	0�cos �	� Z1/2.

In the present paper, we consider W−1�� , t� only �correspond-
ing to Eq. �4��; thus we omit in all equations the superscript
−1 in W−1�� , t� and Weq

−1���.

APPENDIX B: DERIVATION OF D„1…
„z… AND D„2…

„z…

Knowing the functional form of the master equation �8�
for the spin, the next crucial step is to determine the drift and
diffusion coefficients D�1��z� and D�2��z�. Hitherto calcula-
tions of D�1��z� and D�2��z� for a quantum spin subjected to a
dc magnetic field H0 have been undertaken in Refs. �30,42�
by starting from the master equation for the density matrix �̂.
Undoubtedly, many methods of determining these coeffi-
cients exist. Among a wide variety of options for determin-
ing D�1��z� and D�2��z�, we shall select here the extension to
the semiclassical case of a simple heuristic idea originally
used by Einstein, Smoluchowski, Langevin, and Kramers in
order to calculate drift and diffusion coefficients in the clas-
sical theory of the Brownian motion. Recently, we have ap-
plied this approach for the quantum translational Brownian
motion �46,48�.

In order to determine the explicit form of D�1��z� and
D�2��z� in Eq. �8�, we first recall that the equilibrium distri-
bution Weq�z� from Eq. �13� must be the equilibrium solution
of the generic master equation �8�, i.e., it must satisfy

�

�z
�D�2��z�

�

�z
Weq�z� − D�1��z�Weq�z�� = 0. �B1�

One may seek a solution for D�1��z� and D�2��z� in the form

D�1��z� = �1 − z2��a0
S + a1

Sz + a2
Sz2 + ¯ � , �B2�

D�2��z� = �1 − z2��b0
S + b1

Sz + b2
Sz2 + ¯ � . �B3�

By substituting Eqs. �B2� and �B3� into Eq. �B1�, one then
finds if Weq�z� from Eq. �13� is a solution of Eq. �B1�, that
only the coefficients a0

S, b0
S, and b1

S are nonzero and D�1��z�
and D�2��z� are given by

D�1��z� = 2Sb0
S�1 − z2�tanh

�

2S

and

D�2��z� = b0
S�1 − z2��1 + z tanh

�

2S
	 .

In order to define the normalizing coefficient b0
S one can use

the fluctuation-dissipation theorem �30� and the additional
condition that in the classical limit ��→0, S→�, and �S
→const�, the drift and diffusion coefficients D�1��z� and
D�2��z� must reduce to their classical counterparts for the
rotational Brownian motion of a classical spin �5,18,19,30�

D�1��z� → ��1 − z2�/2�N and D�2��z� → �1 − z2�/2�N,

so that b0
S= �e�/S+1� / �4�N� and D�1��z� and D�2��z� are given

by Eqs. �9� and �10�. In the derivation of D�1��z� and
D�2��z� we have imposed the stationary solution of the master
equation as the distribution Weq�z�, Eq. �5�, corresponding to
the equilibrium density matrix �̂eq given by Eq. �A6�, which
describes the system in thermal equilibrium without coupling
to the thermal bath. It is known from the theory of quantum
open systems �63�, that the equilibrium state, in general, may
deviate from the canonical distribution �̂eq; the latter de-
scribes the thermal equilibrium of the system in the weak
coupling and high temperature limits only. A detailed discus-
sion of this problem is given, e.g., by Geva et al. �64�. The
imposition of the phase-space distribution Weq�z� as the equi-
librium solution of Eq. �B1� so yielding D�1��z� and D�2��z�,
appears to be the exact analog of the ansatz used by Gross
and Lebowitz �65� in their formulation of quantum kinetic
models of impulsive collisions. According to �65�, for a sys-

tem with a time dependent Hamiltonian Ĥ, the equation gov-
erning the time behavior of the density matrix �̂ is Eq. �3�,
where the collision kernel operator Q̂ satisfies the condition

Q̂��̂eq�=0. Equation �B1� is entirely analogous to this condi-

tion. The condition Q̂��̂eq�=0 has also been used by Redfield
�11� in the calculation of the matrix elements of the relax-

ation operator Q̂ in the context of his theory of relaxation
processes.
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