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We consider a random walk in confined geometry, starting from a site and eventually reaching a target site.
We calculate analytically the distribution of the occupation time on a third site, before reaching the target site.
The obtained distribution is exact and completely explicit in the case or parallelepipedic confining domains. We
discuss implications of these results in two different fields: The mean first passage time for the random trap
model is computed in dimensions greater than 1 and is shown to display a nontrivial dependence with the
source and target positions. The probability of reaction with a given imperfect center before being trapped by
another one is also explicitly calculated, revealing a complex dependence both in geometrical and chemical
parameters.
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How many times, up to an observation time t, has a given
site i of a lattice been visited by a random walker? The study
of the statistics of this general quantity, known in the random
walk literature as the occupation time of this site, has been a
subject of interest for a long time, both for mathematicians
�1,2� and physicists �3–10�. As a matter of fact, the occupa-
tion time has proven to be a key quantity in various fields,
ranging from astrophysics �11�, transport in porous media
�12�, and diffusion limited reactions �13�. The point is that as
soon as the sites of a system have different physical or
chemical properties, it becomes crucial to know precisely
how many times each site is visited by the random walker.

An especially important situation concerns the case when
the observation time t up to which the occupation of site i is
considered is itself random and generated by the random
walker. To settle things and show how the occupation time
Ni comes into play in various physical situations, we first
give two different examples.

The first one concerns the case of the so-called random
trap model �problem I�, which is a very famous model of
transport in quenched disordered media �12�. In this random
trap model, a walker performs a symmetric lattice random
walk, jumping toward neighboring sites. In addition, the time
the walker spends at each site is a random variable �i, drawn
once and for all from a probability distribution �, which is
identical for all sites. A quantity which has proven to be
especially important in transport properties is the first pas-
sage time, the time it takes to reach a given target site. It is
the key property in many physical applications �14,15�, rang-
ing from diffusion-limited reactions �16–19� to search pro-
cesses �e.g., animals searching for food� �20�. The mean first
passage time �MFPT� for the random trap model has been
studied �21,22� but, to our knowledge, these determinations
have been strictly limited to the very specific one-
dimensional �1D� case, and higher dimensional computations
in confining geometries like in Fig. 1 are still lacking �see
nevertheless �23� for a d-dimensional related problem�. The
relation with the occupation time is the following: The
MFPT at the target rT starting from site rS can be written
down as �T�=�i=1

V �Ni��i, where V is the volume of the con-

fining system, Ni is the number of times the site i has been
visited before the target is reached, and �¯� stands for the
average with respect to the random walk. Concerning the
distribution of the MFPT with respect to the disorder, that is
with respect to the �i’s, we are finally back to summing a
deterministic number V of independent random variables
�Ni��i but nonidentically distributed �because of the factor
�Ni��, which requires the determination of the mean occupa-
tion times �Ni� we introduced before.

The second situation has to deal with a very different
problem �problem II�, which is involved for diffusion limited
reactions in confined media. We consider a free diffusing
reactant A that enters in a cavity, and which can react with a
given fixed center i. We assume that each time the walker
reaches the reactive site i, it has a probability p to react,
which schematically mimics an imperfect reaction in con-
fined geometry. Actually, numerous chemical reactions, rang-
ing from trapping in supermolecules �24� to activation pro-
cesses of synaptic receptors �25,26� can be roughly rephrased
by this generic scheme. The question we address here is the
following: What is the probability for A to react with the
center i before exiting the cavity? More generally, for a ran-
dom walker starting from a site S, what is the probability Q
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FIG. 1. �Color online� Schematic picture of the problem: the
random walk begins at the site S, and the occupation time Ni is the
number of times it visits the site i before reaching the target T. In
this picture Ni=2.

PHYSICAL REVIEW E 76, 050102�R� �2007�

RAPID COMMUNICATIONS

1539-3755/2007/76�5�/050102�4� ©2007 The American Physical Society050102-1

http://dx.doi.org/10.1103/PhysRevE.76.050102


to react with i before reaching a target site T, possibly dif-
ferent from S. Partitioning over the number of times the re-
active site i has been visited, we have

Q = 1 − �
k=0

�

P�Ni = k��1 − p�k. �1�

Once again, the random variable Ni is involved, but that time
the determination of the entire distribution P�Ni=k� is
needed.

In this Rapid Communication, we propose a method of
computation of the statistics of Ni in confining geometry. In
particular, we obtain explicitly the exact distribution in the
case of parallelepipedic confining domains. Applications to
the above-mentioned examples are discussed.

We start with the computation of the mean �Ni�, assuming
for the time being that the starting and target sites are differ-
ent �S�T�. We note by wij the transition probabilities from
site j to site i. We have �iwij =1, and we take wij =wji. These
general transition probabilities can take into account reflect-
ing boundary conditions. We consider an outgoing flux J of
particles in S. Since the domain is finite, all the particles are
eventually absorbed in T, and, in the stationary regime, there
is an incoming flux J of particles in T. The mean particle
density �i thus satisfies the following equation:

�i = �
j

wij� j + J�iS − J�iT, �2�

with the boundary condition �T=0 �it is the absorbing site�.
To find the mean occupation time, we can simply notice that

the mean particle density �i is equal to �Ni�J. To solve this
problem, we use the pseudo-Green function H �27,28�, which
satisfies

H�ri�r j� = �
k

wikH�rk�r j� + �ij −
1

V
, �3�

where V is the total number of sites of the lattice. It is also
symmetrical in its arguments, and the sum �iH�ri �r j� is a
constant independent of j. Using the concise notation Hij
=H�ri �r j�, it can be seen by direct substitution that �i is
given by

�Ni� =
�i

J
= HiS − HiT + HTT − HST, �4�

which satisfies Eq. �2� as well as the boundary condition
�T=0. Note that these results also give the mean occupation
time of a subdomain, which is simply the sum of the mean
occupation time of all the sites in the subdomain. In particu-
lar, we can check that the mean occupation time for the
whole domain, �i=1

V �Ni�=V�HTT−HST�, gives back the MFPT
from S to T �28,29�.

Before we go further, it is necessary to give a few ele-
ments on the evaluation of H for isotropic random walks.
The following exact expression �28,30� is known in two di-
mensions for rectangles:

H�r�r�� =
4

N
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where X and Y are the dimensions of the rectangle, and the
coordinates x and y are half-integers going from 1/2 to X
−1/2 or Y −1/2. There is also a similar expression for par-
allelepipedic domains in three dimensions. In more general
domains, the most basic approximation �which usually gives
a good order of magnitude� is to approximate H by the
infinite-space lattice Green function G0 �27�, G0 being evalu-
ated as G0�r �r��=3/ �2� �r−r� � � for r�r�, and G0�r �r�
=1.516. . . in three dimensions, and G0�r �r��=−�2/��ln �r
−r�� for r�r�, and G0�r �r�=1.029. . . in two dimensions.
More accurate approximations can be found �28�, but the
above approximations are good enough to capture the quali-
tative behavior of the pseudo-Green function and of the dis-
tribution of the occupation time.

It is indeed possible to obtain not only the mean, but also
the entire distribution of the occupation time. The idea to
tackle this a priori difficult problem is to use recent results

concerning the so-called splitting probabilities �14,28,29�. In
the presence of two targets T1 and T2, the splitting probabil-
ity P1 to reach T1 before T2 is �28,29�

P1 =
H1S + H22 − H2S − H12

H11 + H22 − 2H12
. �6�

Denoting here Pij�i �S� the splitting probability to reach i
before j, starting from S, we have P�Ni=0�= PiT�T �S�, and
for k�1:

P�Ni = k� = PiT�i�S����
j

wjiPiT�i�j��k−1��
j

wjiPiT�T�j�� .

�7�

The three terms of this last equation correspond, respectively,
to the probability to reach i before T, starting from S, the
probability to return to i before reaching T, starting from i, to
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the power k−1, and the probability to reach T before return-
ing to i. It can thus be written

P�Ni = k� = AB�1 − B�k−1 for k � 1, �8�

with

A 
 PiT�i�S� =
HiS + HTT − HST − HiT

Hii + HTT − 2HiT
, �9�

and

B 
 �
j

wjiPiT�T�j�� = 1 − � wjiPiT�i�j�� �10�

=
� j

wjiHTj − HiT − � j
wjiHji + Hii

Hii + HTT − 2HiT
�11�

=
1

Hii + HTT − 2HiT
, �12�

using Eq. �3�, and �iwij =1. It can also be noted that P�Ni

=0�=1−A. The distribution of the occupation numbers given
by Eqs. �8�–�12� is the main result of this Rapid Communi-
cation, and several comments are in order. �i� Expressions of
H given in Eq. �5� make this result exact and completely
explicit for parallelepipedic domains. �ii� Computing �Ni�
with this distribution gives back the expected result �4�. �iii�
It can be noted here that B, which characterizes the decay of
the probability distribution of Ni, is independent of the
source. In addition, qualitatively, the basic evaluations of H
following Eq. �5� �namely H=G0� give for B the following
order of magnitude, if i and T are at a distance R:

B � ��2G0�0� − 3/��R��−1 in 3D,

�2G0�0� + �4/��ln R�−1 in 2D,
�13�

where G0�0�=G0�r �r� is a dimension-dependant constant,
given in the discussion on the evaluation of H. This shows
that B decreases with the distance between i and T: a larger
distance corresponds to a slower decay; but, while it tends
towards 0 in two dimensions �which corresponds to a wide
distribution of Ni, and a large variance�, it tends to a finite
value in three dimensions. It can thus be said that the sites
much further from the target than the source have, in three
dimensions, a significant probability to be visited, but a low
probability to be visited many times, whereas, in two dimen-
sions, they have a low probability to be visited at all, but a
comparatively high probability to be visited many times.
This is connected with the transient or recurrent character of
the free random walk in two or three dimensions. �iv� The
results obtained here for different starting and target sites
may easily be adapted to identical starting and target sites
�S=T�:

P�Ni = 0� = 1 − B; P�Ni = k� = B2�1 − B�k−1 for k � 1.

�14�

Note that this gives in particular a mean occupation time of 1
for all sites, a result which could be derived from an exten-
sion of Kac’s formula �1,28�. However, here, we obtain not

only the mean occupation number but the entire distribution
of this occupation number, which appears to vary from site to
site: the further the site is from the target, the slower the
probability distribution decays.

We now discuss the applications of these general results
to the examples mentioned in the introduction. As for the
random trap model �problem I�, we focus here on the espe-
cially interesting case of a one-sided Levy stable distribution
�2� ��t�= f��t ,�0� cos��� /2� ,1 ,0�� �0	�	1�, which cor-
responds to an algebraic decay:

��t� �
��0

�


�1 − ��t1+� �15�

and whose Laplace transform is �̂�u�=exp�−�0
�u�� ��0 can be

seen as the typical waiting time�. The Laplace transform
�̂�u� of the distribution of the MFPT with respect to the
disorder reads

�̂�u� = �
i=1

V

�̂��Ni�u� = exp�− �Ttypu��� . �16�

The probability density of the MFPT is then as could have
been expected a one-sided Levy stable law, but with a non-
trivial typical time:

Ttyp = �0	�
i=1

V

�HiS − HiT + HTT − HST��
1/�

. �17�

For large size domain V, this result can be applied to any
wide-tailed distribution of the waiting times satisfying Eq.
�15� �12�. It can be shown that Ttyp is bounded by
�0V1/��HTT−HST�, and tends towards this upper bound as V
grows, which provides a simple estimation of Ttyp and indi-
cates that for large enough domains, the scaling of Ttyp with
the source and target positions is the same as for the discrete-
time random walk �pure systems� �28,29�. We thus showed
that the random trap problem in confined geometries, with a
wide-tailed waiting time distribution, has a Levy distribution
of mean first-passage times, with a nontrivial typical time.
The scaling with the size V is V1/�. The scaling with the
source and target positions is modified by the disorder in
small confining domains, while it is the same as for pure
systems in large enough domains.

Concerning the application to diffusion-limited reactions
�problem II�, the probability Q to have reacted with i before
reaching T writes, using Eqs. �1� and �8�:

Q =
Ap

1 − �1 − p��1 − B�
. �18�

The expression �18� displays a subtle interplay between
the geometrical factors, involved through the terms A and B,
and the reactivity p. Focusing now on the specific case of
identical starting and target points �meaning A=B, cf. Eq.
�14��, we exhibit two interesting limiting regimes. In the “re-
activity limited regime,” defined by p�B, we have Q� p. In
particular, in that regime Q does not depend on the reactive
site i. In other words, for a fixed reactivity p, all sites i such
that p�B have the same probability of reaction Q, and the
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detailed position of i does not come into play. On the con-
trary, the “geometrically limited regime” p�B leads to Q
�B, which no longer depends on p, but only on the geom-
etry. Given the order of magnitude of B �cf. Eq. �13��, this
can essentially happen in two dimensions, when R�exp�
−� / �2p��. This can be explained by the recurrent character
of the two-dimensional random walk: when the reacting site
i is far enough from the target, if a random walker reaches it,
it is likely to visit it many times before returning to T, and is
thus almost sure to react whenever i is reached. The reaction
probability Q then becomes the probability to reach the site i.
Consequently, the position of the reacting site has a low in-
fluence on reactivity in three dimensions, or when the react-
ing site is within a disk of radius R=exp�−� /2p� around the
target in two dimensions. If the reacting site is further, the
geometrical effects become preeminent. We show in Fig. 2 a
graph of Q, as a function of p, for different positions of i
�near the target, in the middle of the domain, and at the
opposite�, the source and target point being identical. The
limiting regimes can be well-identified.

To conclude, we have computed the distribution of the
occupation time of a given site i, for a random walk in con-
fined geometry, eventually trapped at a target. This distribu-
tion is exact and completely explicit in the case of parallel-
epipedic confining domains. While the mean occupation
time, unsurprisingly, is higher when i is near the source and
lower near the target �and uniform if the source and target are
identical�, the distribution of the occupation time is essen-
tially exponential, with a slower decay when the point is far
away from the target. We have also presented important ap-
plications of these results in two different fields. The first one
is transport in quenched disorder media: The mean first pas-
sage time for the random trap model has been computed in
dimensions greater than 1, and has been shown to display a
nontrivial dependence with the source and target positions.

The second application is to diffusion limited reactions in
confined geometry: The probability of reaction with a given
imperfect center before being trapped by another one has
been explicitly calculated and has proven to present a com-
plex dependence both in the geometrical and chemical pa-
rameters. We believe that the results obtained in this Rapid
Communication could be relevant to systems involving dif-
fusion in confining domains, displaying inhomogeneous
physical or chemical properties.
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FIG. 2. �Color online� Simulations �symbols� versus analytical
prediction �lines� Eq. �18� of the probability Q to react before re-
turning to the target site as a function of the probability to react at
site i. The confining domain is a square of side 51, and the target is
at the middle of an edge, of coordinates �0,25�, the site �0,0� being
a corner site. The three curves correspond to different positions of
site i: �1,25� �red, upper curve�, �25,25� �blue, midcurve�, and
�50,25� �green, lower curve�.
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