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Hole structures in nonlocally coupled noisy phase oscillators

Yoji Kawamura™
Department of Physics, Graduate School of Sciences, Kyoto University, Kyoto 606-8502, Japan
and The Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan
(Received 15 December 2006; published 2 October 2007)

We demonstrate that a system of nonlocally coupled noisy phase oscillators can collectively exhibit a hole
structure, which manifests itself in the spatial phase distribution of the oscillators. The phase model is de-
scribed by a nonlinear Fokker-Planck equation, which can be reduced to the complex Ginzburg-Landau equa-
tion near the Hopf bifurcation point of the uniform solution. By numerical simulations, we show that the hole
structure clearly appears in the space-dependent order parameter, which corresponds to the Nozaki-Bekki hole

solution of the complex Ginzburg-Landau equation.
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One representative class of coupled oscillator systems is
the coupled phase oscillators [1-4]. For example, globally
coupled phase oscillators, such as the Kuramoto model, have
attracted the attention of many researchers for a long time
[5-7]. Recently, while coupled phase oscillators on complex
networks have been investigated widely [8—11], nonlocally
coupled phase oscillators have also been studied, which ex-
hibit a remarkable class of patterns called chimera where
phase-locked oscillators coexist with drifting ones [12-16].

In this paper, we demonstrate that nonlocally coupled
noisy phase oscillators can collectively exhibit a hole struc-
ture in their phase distribution. After briefly reviewing sev-
eral results on the phase model [15,17], we will present our
new findings obtained from numerical simulations of the
Langevin-type equation and its corresponding nonlinear
Fokker-Planck equation describing the phase model. We will
show that a hole structure clearly appears in a properly de-
fined order parameter under suitable conditions, and compare
it with the Nozaki-Bekki hole solution of the complex
Ginzburg-Landau equation, for which the modulus displays
regions of local depression.

A system of nonlocally coupled noisy phase oscillators is
described by the following Langevin-type equation (LE) for
a phase ¢(x,7) at location x and time t:

0p=w+ f“ dx'G(x = x")I'(p(x,1) — P(x",1)) + E(x,1).
(1)

Here the first term w represents the natural frequency com-
mon to all the oscillators, the second term the nonlocal cou-
pling, and the last term the additive noise. The phase cou-
pling function I'(¢), which is a 27-periodic function of ¢,
satisfies the in-phase condition, i.e., dI'(¢)/d¢|s0<0 [2].
The spatial coupling function G(x) is given by

G(x) = 5 exp(- ), 2)

which is normalized in the infinite domain. The noise is as-
sumed to be Gaussian-white, whose statistics are specified by
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(Ex,0)=0, (Exnéx,1")=2Dox—-x")ot—-1"). (3)

Equation (1) can be derived from a certain class of reaction-
diffusion systems under suitable conditions, using the phase
reduction method after adiabatically eliminating a highly dif-
fusive chemical component [15].

In Refs. [15,17], it was shown that the LE (1) is equiva-
lent to a single-oscillator nonlinear Fokker-Planck equation
(FPE) given by

YxD [vwx D+ D f;fhf D4y

% 2
V(¢,x,t)=w+f dx’G(x—x’)f dy'T (=" ) (Y ,x' 1),
0

(5)

where f(i,x,1) is a space-time-dependent single phase dis-
tribution function of ¢, i.e., the normalized probability den-
sity that ¢(x,r) takes a value ¢ (see also Refs. [18,19]).
The phase model (1) is capable of sustaining traveling
waves below a critical noise strength, D=D,, where the uni-
form solution of the FPE (4) undergoes a Hopf bifurcation
[15,17]. In the vicinity of this Hopf bifurcation point, we can
derive a complex Ginzburg-Landau equation (CGLE)

8A(x,1) =\X(D,— D)A + d*A — g|A|A, (6)

from the FPE (4) by applying the center-manifold reduction
method [2], where we introduced the complex amplitude
A(x,1) representing the fluctuation of f(i,x,7) in the phase
direction as

_ + —[A(x l)ez)u//+zﬂt+A (x l) —z)u//—lﬂt]

fhx,0) =
(7)

Here \ is the wave number of the phase fluctuation, () the
Hopf frequency, and A” the complex conjugation of A. The
parameters of the CGLE (6) are given by
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d=—- i)\F)\, g= (9)
where A=arg max; Im I';/[, and T; is the Fourier component
of the phase coupling function defined by

T(y)= 2 Tpel. (10)

|=—x

In what follows, we restrict ourselves to the case of A=1 and
positive Re g, i.e., the case that the first Fourier component
of the phase distribution function has the largest critical
noise strength, and the Hopf bifurcation of the uniform solu-
tion is supercritical.

Since we assume A=1, Egs. (8) and (9) depend only on
the first and second harmonics of the phase coupling func-
tion, I'.; and I',. In this case, without loss of generality, the
phase coupling function can be expressed as

I'(y) =-sin(¢+ a) + usini+ B). (11)

Now let us introduce a space-time-dependent complex order
parameter with modulus R(x,7) and phase O(x,) as

©

R(XJ)@L@(X’[)EJ dx'G(x — x")e! "0

-0

el 2
=f dx’G(x—x')f dy' e (' x',1)
0

=f dx'G(x —x")A"(x",1)e ™ = A (x,1)e™™ ¥,

(12)

In deriving the last expression, we utilized the fact that the
spatial characteristic length of the complex amplitude be-
comes sufficiently long compared to the nonlocal coupling
length near the critical point [15,17]. Thus, the order param-
eter corresponds to the complex conjugation of the complex
amplitude, which is governed by the CGLE (6). As is well
known, the CGLE admits the Nozaki-Bekki hole solutions
[20-25], for which the existence of the amplitude degree of
freedom is crucial. In the following, we will show that the
phase model (1) can exhibit a hole structure in its space-time
phase distribution, despite its lack of apparent amplitude
variables.

First of all, let us identify the Hopf bifurcation point pre-
dicted from the FPE (4) by numerical simulations of the LE
(1). In the numerical simulations, our continuous medium of
size L is replaced with a long array of N oscillators with
sufficiently small separation Ax between the neighboring os-
cillators, i.e., L=NAx, and the periodic boundary condition is
imposed. In the continuous limit, N— % with L fixed, the
Langevin simulation would exactly correspond to the
Fokker-Planck simulation, but we can use only finite values
of N in actual Langevin simulations. Thus, we must consider
the effect of finite-size fluctuations, which comes from the
finiteness of the oscillator number within the nonlocal cou-
pling range. Applying the finite-size scaling argument devel-
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FIG. 1. Dependence of the order-parameter modulus on the
noise strength, obtained from the Langevin-type equation (1) using
different values of the number of oscillators N. The data are plotted
using rescaled variables, revealing the scaling function given by Eq.
(13).

oped in Ref. [26] (see also Ref. [27]) to the space-time-
averaged modulus (R) of the order parameter, we can obtain
a scaling form

N"R)y=F(N"*(D.- D)), (13)

where F is a scaling function depending on N and (D,.—D)
only through the combination N'2(D,~D). We fix our sys-
tem size L to be 8.0 and vary the number N of the oscillators,
i.e., L=NAx=38.0. For this Langevin simulation, we fix the
parameter values as

a=0.5, u=0.0, (14)

which yield the critical noise strength
D, =c0s(0.5)/2, (15)
and the two essential parameters of the CGLE [2,23],

¢; =Imd/Re d=tan(0.5), c¢,=1Im g/Re g=-tan(0.5)/2.

(16)

With these parameter values, spatially uniform oscillations
are realized in the Langevin simulation, as expected from the
phase diagram of the CGLE [25]. Figure 1 summarizes the
numerical results in the rescaled variables, where NY/*(R) is
plotted as a function of N'2(D,—D) for several values of N.
All curves collapse onto a single identical curve after rescal-

FIG. 2. Instantaneous spatial profile of the phase distribution
function f(i,x,t) obtained from a numerical simulation of the non-
linear Fokker-Planck equation (4).
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FIG. 3. (Color online) Instantaneous spatial
profile of the order-parameter modulus (a). In-
stantaneous phase portrait of the order parameter
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(b). They are obtained from Fig. 2 using the rela-
tion given in Eq. (12). Solid lines are drawn using
the Nozaki-Bekki hole solution of the CGLE
given by Egs. (22) and (23), where the parameter

Nozaki-Bekki solution
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ing, which agrees well with the prediction based on the FPE
(4). This gives good evidence for the existence of the Hopf
bifurcation at D=D.,..

Now we demonstrate that the phase model (1) can exhibit
a hole structure. We first carry out a Fokker-Planck simula-
tion. The parameter values are chosen as

a=arctan(0.5), B=23, u=1.8, (17)

which give

D, = cos(arctan(0.5))/2, (18)

¢;=Imd/Red=0.5, c¢,=Img/Reg=2.0. (19)

The corresponding CGLE (6) has stable hole solutions with
these parameter values [25]. In our numerical simulations of
the FPE (4), periodic boundary conditions are imposed for
both phase ¢ and space x. The intervals of the phase and the
space are 27 and L=102.4, respectively. The pseudospectral
method with M=32 modes is applied for the phase. The
number of spatial grid points is N=512, i.e., Ax=0.2. Our
numerical results are unchanged if we further increase the
number of modes M, the number of grid points N, or the
system size L. The initial condition is given by

F(hx,t=0)=C[2 + B(x)exp(ih) + B" (x)exp(- igh)],

(20)
where C, is a normalization constant, and
4(x—=L/4)/L (0=x<L/2),
B(x) = , (21)
exp[2mi(x— L/2)/L] (LR2=x<L).

Note that this B(x) has one “phase singularity” and satisfies
the periodic boundary condition. The noise intensity is cho-
sen as D/D,=0.9.

Figure 2 displays the spatial profile of the phase distribu-
tion function f(i,x,t) obtained from a numerical simulation
of the FPE (4). Figure 3 displays the spatial profile of the
order-parameter modulus [Fig. 3(a)] and the phase portrait of
the order parameter [Fig. 3(b)], which are obtained from Fig.
2 using the relation given in Eq. (12). We can confirm that a
hole structure actually appears in the order parameter. The
small bump at the right of the hole is a shock structure due to
the collision of counterpropagating plane waves emitted
from the hole structure. Once such a hole structure is formed,
it stably persists throughout our numerical simulation. This

values are estimated as app=0.45, bpp=0.23,
Cpp—= 26, and SFP:OIS

hole structure can be well fitted by a nonpropagating Nozaki-
Bekki hole solution [23] in the form

Wy(x) = a tanh[b(x — ¢)Jexp[i6(x)], (22)

dO/dx = s tanh[b(x - c)], (23)

where a, b, ¢, and s are real parameters. These parameters
are estimated as app=0.45, bpp=0.23, and spp=0.15 from
the numerical simulation of the FPE (4), while the theoretical
values for the reduced CGLE (6) are given by ag =0.58,
bgL=0.27, and sg; =0.12. The agreement between the simu-
lation and the theory seems reasonable, in consideration of
various approximations used in deriving the CGLE (6) from
the FPE (4)".

We also carried out Langevin simulations with periodic
boundary conditions. We prepared an appropriate initial dis-
tribution of the oscillators using the hole solution of the FPE
(4). Figure 4 displays a snapshot of the local oscillator phase
obtained after the initial transient for L=102.4 and N=2"".
The spatial profile of the local oscillator phase well corre-
sponds to the spatial phase distribution shown in Fig. 2.
However, this phase distribution corresponding to the hole
structure eventually collapses to that corresponding to a
plane wave due to the finite-size fluctuation that we men-
tioned above. The lifetime of the hole structure clearly in-
creases with N, so that the hole structure is expected to exist
stably in the N— limit®.

In summary, we studied a system of nonlocally coupled
noisy phase oscillators based on the LE (1) and its corre-
sponding FPE (4). We confirmed that the onset of the coher-
ence in the order parameter of the LE (1) is identical to the
Hopf bifurcation of the FPE (4), using the finite-size scaling
relation for the numerical data obtained from the Langevin
simulation. We then demonstrated that a stable hole structure

'"The main cause of the discrepancy is the CGLE approximation.
The center-manifold reduction to the CGLE (6) implicitly assumes
that Red and Re g are of the same order [2,23]. Our parameter
condition (17) for a hole solution gives Re d/Re g=4, which is
rather large.

Tt is very difficult to precisely determine how the lifetime of the
hole structure increases with the number of oscillators N by numeri-
cal simulations of the Langevin-type equation (1). To derive the
dependence of the lifetime of the hole structure on N is a challeng-
ing, difficult task. For this purpose, investigations on a complex
Ginzburg-Landau equation with external noise would be more
suitable.
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FIG. 4. Instantaneous spatial profile of the local oscillator phase
obtained from a numerical simulation of the Langevin-type equa-
tion (1).
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can appear in the order parameter calculated from the FPE
(4), which corresponds to the nonpropagating Nozaki-Bekki
hole solution of the CGLE (6). Phase models generally lack
the amplitude variables, which are crucial for hole solutions
with phase singularities. In the noisy phase model (1), how-
ever, the external random force effectively produces the am-
plitude degrees of freedom in the phase distribution of the
oscillators. The phase model (1) can exhibit yet another in-
teresting phenomenon called noise-induced turbulence
[15,17]. Detailed numerical and theoretical analysis of this
phenomenon was recently reported in Ref. [28].

The author is grateful to Y. Kuramoto, T. Mizuguchi, H.
Nakao, D. Tanaka, and K. Arai for useful discussions.
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