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We describe the application of the reduced-basis method in rapid and accurate determination of band
energies in band structure calculations. The method is well suited for problems requiring repetitive evaluations
of the band energies, especially in the many-query limit. We demonstrate the efficacy of the method in the
determination of the spectral properties of crystalline silicon.

DOI: 10.1103/PhysRevE.76.046704 PACS number�s�: 02.70.�c, 71.15.Dx, 71.15.Ap

I. INTRODUCTION

Studies of periodic structures frequently require evalua-
tions of band energies Ei�k�, 1� i�nb, at many different
wave vectors k, evaluations of which require solutions of an
eigenvalue problem derived from a quantum model. Here, nb
is the number of lowest band energies we are interested in
given a k point. In many cases, the number of evaluations
required is large. For example, in �1�, an accurate determina-
tion of the anomalous Hall conductivity requires solutions at
millions of k points. In the determination of the dielectric
function of nanostructures �2,3�, the number of evaluations
required is further augmented by the dependency of the di-
electric function on space. Certainly, accurate yet rapid meth-
ods to evaluate band energies and associated eigenvectors are
highly desirable.

In �4�, the use of the maximally localized Wannier func-
tions �MLWFs� �5� and the Slater-Koster interpolation
scheme �6� was proposed for rapid evaluations of band en-
ergies. This approach is used in �1� to evaluate the anoma-
lous Hall conductivity. However, the efficiency of the
method is contingent on finding “good” MLWFs through a
nonconvex optimization procedure. While difficulties related
to nonconvex optimization are partially alleviated through
the use of the simultaneous diagonalization procedure �7�,
the Slater-Koster interpolation scheme is a nonvariational
approach—the interpolated solutions do not satisfy the mod-
el’s governing equations. In addition, an a posteriori error
estimation procedure is also absent.

In this paper, we introduce the reduced-basis method as a
good alternative to the above approach. To motivate the ap-
plication of the reduced-basis method, it is advantageous to
first facilitate the band structure calculation with an input-
output abstraction: the input parameter is the wave vector k
and the outputs are the band energies Ei�k� or functionals of
the wave functions ui�x ;k�; to determine Ei�k� and ui�x ;k�,
we must solve a linear eigenvalue problem parametrized by
k. In this paper, we emphasize the rapid evaluations of func-
tionals involving ui�x ;k� and not on the evaluations of the
wave functions ui�x ;k�, which are functions of the spatial
variable x, in addition to the parameter k. To underscore this

emphasis and for notational simplicity, we denote ui�x ;k� by
ui�k�.

A. Background on reduced-basis method

The reduced-basis method exploits dimension reduction
afforded by the low-dimensional and smooth parametrically
induced solution manifold. More precisely, to approximate
solutions of an underlying parametrized partial differential
equation, we use a basis set consisting of solutions at a num-
ber of judiciously selected parameter points instead of using
general basis sets consisting of, say, Fourier basis functions.
An approximation is then obtained by a projection onto a
finite and low-dimensional vector space spanned by the so-
lutions at these selected points.

The reduced-basis method was first introduced in the late
1970s in the context of nonlinear structural analysis �8,9� and
subsequently abstracted, analyzed, and extended to a much
larger class of parametrized partial differential equations
�10–14�. In the more recent past the reduced-basis approach,
and in particular associated a posteriori error estimation pro-
cedures have been successfully developed for �i� linear ellip-
tic and parabolic partial differential equations �PDEs� that
are affine in the parameter �15–18�; �ii� PDEs that are at most
quadratically nonlinear in the first argument �19–21�; and
�iii� general nonaffine PDEs �22,23�. Application of the
reduced-basis method and associated rigorous a posteriori
error bounds to the determination of the first eigenvalue of a
linear eigenvalue problem has also been examined in �16�. In
these cases a very efficient offline-online computational
strategy can be developed. The operation count for the online
stage—in which, given a new parameter value, we calculate
the reduced-basis output and associated error bound—is in-
dependent of Nt, the dimension of the underlying “truth”
approximation. This will be further elaborated in Sec. III.

B. Examples

To illustrate the utility of the reduced-basis method, we
shall examine the determination of the integrated density of
states,

I�E� = �
−�

E � 1

�D��i=1

nb �
D

�„E − Ei�k�…dk	dE; �1�

the joint density of states,
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J�E� = �
i=1

nv

�
j=nv+1

nb 1

�D��D
�„Ej�k� − Ei�k� − E…dk; �2�

and the complex component of the dielectric function,

�2�E� = �2�

E 	2

�
i=1

nv

�
j=nv+1

nb 1

�D��D
��

�=1

3 
�
�

�uj�k�
�x�

ui
��k�
2	

��„Ej�k� − Ei�k� − E…dk . �3�

Here nv is the number of valence bands, nb is the total
number of bands required to compute the quantities accu-
rately, and D is the parameter domain in which k varies—in
the above examples, D is given by the first irreducible Bril-
louin zone since, through symmetry arguments, any k�” D
can be mapped to a point in D. To evaluate �2� and �3�, we
employ the tetrahedron method �24,25�—we discretize D by
constructing a tetrahedral mesh T consisting of nk mesh
points, evaluate Ei�k� at these nk k points, and assume a
linear interpolation of Ei�k� within each of the tetrahedra.
Depending on the desired accuracy, nk can be large—�26�
found that 4000 k points are needed to sufficiently resolve
the van Hove singularities in the density of states.

There are other applications in which the reduced-basis
method for linear eigenvalue problems can be useful within
the computational chemistry context. For example, in ab ini-
tio calculations based on density functional theory models,
each fixed point iteration in the self-consistent field �SCF�
scheme may require solutions to a linear eigenvalue problem
at nk k points—these solutions are then used to accurately
determine the electron density and related functionals �27�. If
nk required is large, a reduced-basis approximation within
each iteration can significantly speed up evaluations of the nk
eigensolutions, thus improving the overall efficiency of the
SCF algorithm.

For simplicity, we shall perform band structure calcula-
tions based on the empirical pseudopotential model where
the effective background potential is defined in �28�. We note
that the method is not limited to this particular model. In Sec.
V we examine how the current approach can be extended to
more realistic density functional theory models, especially as
a postprocessing tool. Note that we will work in atomic units
but, in Sec. IV B, the atomic unit for the energy has been
converted to eV to facilitate comparison with results in the
existing literature.

II. PROBLEM FORMULATION

Consider a crystal structure defined by the Bravais lattice
vectors �ai�R3 , 1� i�3� and the basis vectors �

�	1 , . . . , 	n	

�. For any given k
�k1 ,k2 ,k3��D, we would
like to find the band energies Ei�k�, 1� i�nb, given by

Ei�k� = 
i�k� +
1

2
�k�2, �4�

where D�R3 is a bounded domain given by the irredu-
cible Brillouin zone of the Bravais lattice; and �û�k�

 (u1�k� , . . . ,unb

�k�) , �̂�k�
 (
1�k� , . . . , 
nb
�k�)�� �Ynb

�Rnb� satisfies

�−
1

2
� − ik · � + Veff�x;���ui�k� = 
i�k�ui�k�, 1 � i � nb,

�
�

ui
��k�uj�k� = �ij, 1 � i � j � nb. �5�

Here, Y 
Hper
1 ��� is the space of �ai�i=1

3 -periodic complex
functions in H1�R3�; � is the primitive unit cell; x is a point
in �; Veff�· ;���Cm is a real periodic function dependent on

�; and � denotes complex conjugation. Components in �̂�k�
are real and arranged such that 
1�k��
2�k�� ¯ �
nb

�k�.
We note that �5� is a linear eigenvalue problem.

A. Parametrized weak form

The parametrized weak form of �5� is obtained as follows.

For a given k�D, find (û�k� , �̂�k�)� �Ynb �Rnb� that satis-
fies

�v�A�k��ui�k�� = 
i�k��v�ui�k��, ∀ v � Y , �6�

�uj�k��ui�k�� = �ij, i � j � nb, �7�

for 1� i�nb where

�v�A�k��w� 

1

2
�

�

�w � v� + �
�

Veffwv� − i�
j=1

3

kj�
�

�w

�xj
v�,

�8�

�v�w� 
 �
�

wv�, �9�

for any w�Y and v�Y.

B. Affine parameter dependence

We note that the functional form of A�k� is affine with
respect to the parameter k—we can express �·�A�k�� · � as

�v�A�k��w� = �v�A1�w� + �
j=1

3

kj�v�A2
j �w� , �10�

where the k-independent forms �v�A1�w�, and �v�A2
j �w�, 1

� j�3, are given by

�v�A1�w� 

1

2
�

�

�w � v� + �
�

twv�, �11�

�v�A2
j �w� 
 − i�

�

�w

�xj
v�. �12�

This affine parameter dependence property allows �·�A�k�� · �
to be expressed as �q=1

Q �q�k��·�Aq� · � for some finite Q,
where �q :D→R , 1�q�Q, are smooth parameter-
dependent functions, and �·�Aq� · � :Y �Y →R , 1�q�Q,
are parameter-independent continuous bilinear forms. Here
Q=4, �1=1, �2=k1, �3=k2, and �4=k3. We note that
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�q�k� , 1�q�Q, are usually simple algebraic expressions
that can be readily evaluated in O�1� operations. We will
exploit this property in formulating an efficient computa-
tional strategy in Sec. III C.

C. Numerical example

We consider the band structure calculation for the dia-
mond structure of silicon based on the empirical pseudopo-
tential model in �28�. The Bravais lattice vectors are defined
by

a1 =
a

2
�0,1,1�, a2 =

a

2
�1,0,1�, a3 =

a

2
�1,1,0� , �13�

where a is the lattice length, of magnitude 10.32. In addition,
there are two atoms per unit cell and the set of basis vectors
� is given by �−	0 ,	0�, where 	0=�i=1

3 ai /8. As such, Veff�· ;��
can be written as Veff�· ;	0� for this particular example.

The parameter k lies in the domain D given by the irre-
ducible Brillouin zone of the fcc structure defined by the
polyhedron with vertices given by the high-symmetry points:
L
�2� /a��1/2 ,1 /2 ,1 /2�, 

�2� /a��0,0 ,0�, X
�2� /a�
��1,0 ,0�, W
�2� /a��3/4 ,3 /4 ,0�, K
�2� /a��1,0 ,1 /2�,
and U
�2� /a��1,1 /4 ,1 /4�. As described in Sec. I B, we
will subsequently discretize D into a set of tetrahedra so that
we can evaluate �2� and �3� by the tetrahedron method.

The effective potential Veff �as defined in �28�� is given by

Veff�x;	0� = �
G

S�G;	0�V�G�eiG·x. �14�

Here G=�i=1
3 mibi where �bi�i=1

3 are the reciprocal lattice vec-
tors satisfying the relations aib j =2��ij, 1� i , j�3;
S�G ;	0�=cos G	0; and V�G� is given by

V�G� =�
− 0.21, �G�2 = 3�2�

a
	2

,

0.04, �G�2 = 8�2�

a
	2

,

0.08, �G�2 = 11�2�

a
	2

,

0, otherwise.

� �15�

We note that Veff�· ;	0� is smooth and represented by just 44
Fourier modes.

D. “Truth” approximation

We now consider the approximation of �7� by the plane-
wave method. We define our Fourier approximation space
YN�Y of dimension N as

YN 
 span���G 
 eiG·x�x � �,
1

2
�G�2 � Ecut� �16�

where Ecut is a user-defined cutoff kinetic energy of the plane
waves—N is then the number of G’s that satisfy the inequal-
ity 1

2 �G�2�Ecut. Our plane-wave approximation to �7� is then

given by: for a given k�D, find (ûN�k� , �̂N�k�)� (�YN�nb

�Rnb) that satisfies

�v�A�k��ui
N�k�� = 
i

N�k��v�ui
N�k��, ∀ v � YN,

�uj
N�k��ui

N�k�� = �ij, i � j � nb, �17�

for 1� i�nb. The above then gives an N�N algebraic sys-
tem which can then be diagonalized to obtain the desired
eigensolutions.

We now determine convergence of the solutions with re-
spect to N. In Fig. 1, we show the convergence of the abso-
lute error

max
1�i�nb

�
i
N�k0� − 
i

box�k0�� �18�

where k0 is the Baldereschi mean value point �29� given by
�2� /a��0.6223,0.2953,0�, and 
i

box�·�, 1� i�nb, is a plane-
wave approximation based on

Ybox 
 span��G 
 eiG·x�x � ��, G 
 �
i=1

3

mibi, mi � Z,

− 9 � mi � 10, 1 � i � 3� . �19�

We see that the error �18� for nb=20 is of O�10−12� at N
=1807.

We now denote an approximation based on YNt where
Nt=1807 as the “truth” approximation; the subscript t de-
notes truth. The point of departure for the reduced-basis
method is this truth approximation. We build our reduced-
basis approximation on, and measure the error in the
reduced-basis approximation relative to, this truth approxi-
mation. Note that, since the reduced-basis approximation is
built upon this truth approximation, it cannot perform better
than this truth approximation. Thus, Nt must usually be large
in order to obtain an accurate reduced-basis approximation.
Thankfully, however, we shall see that, once the reduced-
basis approximation has been built, the computational costs
will be independent of Nt. To simplify the notation, we drop
the superscript Nt from all subsequent formulations, with the
understanding that the truth approximation in fact refers to
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FIG. 1. �Color online� Convergence of the approximation error
�18� with N for nb=20 and k0= �2� /a��0.6223,0.2953,0�.
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the plane-wave approximation with N=Nt. Thus, Y, û, and �̂

will now be understood as YNt, ûNt, and �̂Nt.

III. REDUCED-BASIS METHOD

In the plane-wave method described in Sec. II D, we have
represented ui�k�, 1� i�nb, by a linear combination of
�G�Y—ui�k� is an arbitrary member of Y. However, the
solution û�k� can in fact be localized to a much lower-
dimensional manifold M
�û�k� , k�D� residing in Ynb. In
the case of a single parameter, M can be visualized as a
one-dimensional filament that winds through Ynb as sketched
in Fig. 2. Presuming that M is sufficiently smooth, we can
then look for an approximation of û�k� in a finite-
dimensional space spanned by elements in M. The reduced-
basis approach explicitly recognizes this computational op-
portunity.

To consolidate the above argument, we introduce the no-
tion of the Kolmogorov N width dN �30–32�:

dN�A,Y� 
 inf
YN�Y

sup
x�A

inf
y�YN

�x − y �Y , �20�

where A is a subset of Y and YN is an arbitrary
N-dimensional subspace of Y. The Kolmogorov N width dN
measures the extent to which A may be approximated by a
finite-dimensional space of dimension N in Y. We will have a
rapidly convergent approximation if dN approaches zero rap-
idly as N increases. For our case where A
M, we can at-
tribute this to the smoothness of the solutions with respect to
k, as demonstrated for a single-parameter elliptic problem in
�33�. In �34�, it is further shown that dN is almost realized if
YN is spanned by elements in M. The construction of
YN�M that minimizes dN is, however, combinatorially dif-
ficult. The reduced-basis method then provides an efficient
procedure by which we can construct a good surrogate to YN.

A. Approximation

We first introduce nested sample sets

SN = �k1, . . . ,kNs
�, 1 � Ns � Ns,max, �21�

and define the associated nested reduced-basis spaces as

WN = span�ui�k j�, 1 � i � nb, 1 � j � Ns�

= span��n, 1 � n � N 
 Nsnb� , �22�

where 1�Ns�Ns,max; û�k j�
 (u1�k j� , . . . ,unb
�k j�) is the so-

lution of �7� at k=k j; and �n, 1�n�N, are basis functions
obtained after ui�k j�, 1� i�nb, 1� j�Ns, are orthonormal-
ized with respect to �· � · �. An approximation of ui�k� in WN is
then given by uN,i�k�=�n=1

N �in�k��n. By construction, WN is
hierarchical, i.e., WnbNs

�Wnb�Ns+1�, and a different set of
WnbNs

, 1�Ns�Ns,max, are constructed for each nb. Here, nb

can be specified according to the applications that we look at.
For example, for studying ground state properties, nb=nv
=4 is sufficient. For studying optical properties, nb may need
to be as high as 10. In calculations involving metallic struc-
ture, it is necessary to predetermine the highest band number
with the maximum band energy we are interested in. Of
course, an approximation based on WnbNs

can be used to
approximate any ith eigensolutions for which i�nb.

The reduced-basis approximation to �û�k�,
̂�k�� is given

by: for a given k�D, find (ûN�k� , �̂N�k�)� �WN�nb �Rnb

such that

�v�A�k��uN,i�k�� = 
N,i�k��v�uN,i�k��, ∀ v � WN,

�uN,j�k��uN,i�k�� = �ij, i � j � nb, �23�

for 1� i�nb.

B. Discrete equations

We expand our reduced-basis approximation as

uN,i�k� = �
n=1

N

uN,in�k��n, 1 � i � nb, �24�

and insert this representation into �23� to obtain

�
n=1

N �Am,n
N,1 + �

�=1

3

k�Am,n
N,2,�	uN,in�k�

= 
N,i�k��
n=1

N

Mm,n
N uN,in�k�, 1 � m � N, 1 � i � nb;

�
n=1

N

�
m=1

N

uN,in
� �k�Mn,m

N uN,i�m�k� = �i,i�, 1 � i,i� � nb;

�25�

where

AN,1 � CN�N, �26�

AN,2,� � CN�N, 1 � � � 3, �27�

MN � CN�N �28�

are given by

Am,n
N,1 = ��m�A1��n�, 1 � m,n � N , �29�

Am,n
N,2,� = ��m�A2

���n�, 1 � m,n � N , �30�

Y nb

M = {û(k) | k ∈ D}

û(k1) û(k2)

û(kNs
)

û(knew)

FIG. 2. �Color online� Conceptual drawing of the solution mani-
fold M. The solution û�knew� is approximated by a reduced-basis
space constructed from û�ki�, 1� i�Ns.
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Mm,n
N = ��m��n�, 1 � m,n � N . �31�

Since �m, 1�m�N, are orthonormalized, MN is an identity
matrix. We can then solve �25� using any eigenvalue solver.

C. Offline-online computational framework

We observe that we can now develop an efficient offline-
online computational strategy for the rapid evaluation of

N,i�k� for any k in D—a strategy where the operation count
in the online stage is independent of Nt and dependent only
on N, which we expect to be much smaller than Nt.

In the offline stage—performed once—we generate nested
reduced-basis spaces WN
��1 , . . . , �N�, 1�N�Nmax, at the
cost of NsNt

•—the • denotes the actual computational com-
plexity of the truth approximation, which due to sparsity,
should be less than 3. We then form and store AN,1, AN,2,�,
and MN at the cost of �Q+1�N2Nt. The storage of each ma-
trix requires a space of N�N.

In the online stage—performed many times for each new
k—we solve �25� for 
N,i�k� , 1� i�nb. The reconstruction
of the reduced-basis system is QN2 and the solution of the
resulting discrete equations is of O�N3�. The total operation
count of the online stage is then O�QN2+N3�; we thus
achieve a computational complexity that is independent of
Nt and dependent only on N. The ability to calculate
��m�Aq��n� offline liberates the online computation from the
O�Nt� complexity.

During the online stage, we also obtain the solution
uN,in�k�, 1�n�N, 1� i�nb. The reduced-basis approxima-
tion of the wave functions is then simply given by �24�.
However, its evaluation will be of O�NNt� due to the spatial
dependence of the wave functions.

D. Convergence

For our convergence analysis, we introduce a test sample
�T consisting of 488 k points distributed uniformly in D. We

will also define the reduced-basis approximation error in �̂N
as

�N,nb


 = max
k��T

�N,nb


 �k� , �32�

where

�N,nb


 �k� = max
1�i�nb

�
N,i�k� − 
i�k�� . �33�

From Fig. 3, we observe a rapidly convergent reduced-
basis approximation as demonstrated by the convergence of
�N,nb


 at different nb. In Table I, for a tolerance criterion of
�N,nb


 �1�10−7, we see that Ns decreases with increasing nb.
However, for a coarser tolerance criterion of �N,nb


 �1
�10−2, Ns remains the same for all nb. This suggests two
things. First, Ns must be above some critical value of Ns in
order to achieve a reasonable approximation. Second, for Ns
greater than this critical value, incremental improvement in
the solutions can be obtained through inclusion of either so-
lutions at more k points, higher eigenmodes, or both. This
indicates that the modes have more general approximation

properties—indeed, function approximation based on eigen-
modes is a common technique in spectral methods, for ex-
ample, expansion in Fourier modes or eigenfunctions of a
suitable Sturm-Liouville problem �35�.

We now examine the reduced-basis approximation error
in ûN, defined as

�N,nb

u = max
k��T

�N,nb

u �k� , �34�

where

�N,nb

u �k� =

�
i=1

nb

�uN,i�k� − vi
��k��Y

�
j=1

nb

�uj�k��Y

�35�

and

vi
��k� = arg min

v�Pi�k�
�uN,i�k� − v�Y . �36�

Here, Pi�k� is the invariant eigensubspace associated with

i�k�. If 
i�k� has multiplicity np, Pi�k� will be of dimension
np and will consist of all eigenvectors uj�k� for which

 j�k�=
i�k�. Equations �35� and �36� have taken into ac-
count the degeneracy property of the wave functions. In par-
ticular, �36� removes the arbitrary phase factor present in the

0 50 100 150 200 250
10-8

10-6

10-4

10-2

100

nb = 5
nb = 6
nb = 7

nb = 9
nb = 10
nb = 11
nb = 12
nb = 13
nb = 14

nb = 15
nb = 16
nb = 17

nb = 8

nb = 4

ελ N
,n

b

N

FIG. 3. �Color online� Convergence of the reduced-basis error in


̂N, �N,nb


 �given by �32��, with N for 4�nb�17.

TABLE I. Ns required to reduce the reduced-basis error in �̂N,
�N,nb


 �given by �32��, to below 1�10−2, 1�10−4, and 1�10−7 for
nb=4, 8, 12, and 16.

Ns

nb �N,nb


 �1�10−2 �N,nb


 �1�10−4 �N,nb


 �1�10−7

4 5 10 23

8 5 10 20

12 5 9 16

16 5 8 15
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numerical solutions, and determines a linear combination of
eigenvectors in Pi�k� such that the resulting vi

� is optimally
aligned with uN,i�k� before �35� is evaluated. Note that the
determination of vnb

� �k� may involve Pnb
�k� consisting of

ui�k� for which i�nb. We determine vi
��k� based on an align-

ment procedure detailed in �36�.
Tables II and III show the error �N,nb

u at different Ns for

nb=4 and 8. We observe that �N,nb

u is of order ��N,nb


 for
sufficiently large N, consistent with the general approxima-
tion results for linear eigenvalue problem �37�.

E. Sampling procedure

So far, we have not mentioned how the nested reduced-
basis sample sets SN are chosen. A sample set must be well
chosen in order to obtain a rapidly convergent reduced-basis
approximation, and a well-conditioned reduced-basis dis-
crete system. In particular, we seek a sampling procedure
that ensures “maximally independent” snapshots. We shall
use the “greedy” adaptive sampling procedure outlined in
�18,19,21�.

We first assume that we are given a sample SN and hence
a reduced-basis space WN, and the associated reduced-basis

approximation �procedure to determine� ûN�k� and �̂N�k�,
∀ k�D. We recall that N=Nsnb. Then, for a suitably fine
grid �T over the parameter space D, we determine kNs+1

�

=arg maxk��T
�N

• �k�, where �N
• �k� is an error measure of the

reduced-basis approximation. Then we append kNs+1
� to SN to

form SN+nb
and hence WN+nb

. The procedure is repeated until
�max=�N

• �kNs+1
� � is below �tol, the tolerance we desire. This

tolerance �tol determines the size of Nmax. Figure 4 summa-
rizes the greedy sampling procedure.

We may define �N
• �k� in several ways. For example, we

may use the reduced-basis approximation error in �̂, �N,nb


 �k�,
given by �33�. However, evaluations of �N,nb


 �k� are in fact
expensive since truth solutions must first be obtained for all
k��T. However, if an a posteriori error estimator is avail-
able for which the evaluation does not require knowledge of
the truth solutions, a more efficient procedure is possible
�18,19�. In this work, all quoted offline computational cost
will be based on the use of the O�Nt�-independent a poste-
riori error estimator in the greedy algorithm. The derivation
of the error estimator and the offline-online computational
procedure for efficient evaluation of the error estimator are
detailed in the Appendix.

This sampling procedure is relatively insensitive to the
starting sample set Snb

and thus the starting reduced-basis
space Wnb

. This is because subsequent k points are deter-
mined by the sampling procedure; the selection criteria used
ensure that solutions at these k points will form a good ap-
proximation space for û�k�, k�D. Even if k1 proves to be a
poor choice, k2 will always lead to a better reduced-basis
approximation space. In addition, the presence of ui�k1� , 1
� i�nb in WN�nb

will not adversely affect subsequent ap-
proximation based on WN�nb

because the reduced-basis
method is a projection method—it will simply select an op-
timal combination of the basis functions in WN. The effect of
a poor starting reduced-basis space is then limited to increas-
ing the required Ns by 1. Indeed, for the case of nb=4 with a
requirement of �N,nb


 �1�10−4, the Ns required varies be-
tween 10 and 11 for 50 different starting k points.

IV. RESULTS

A. Comparison with plane-wave method

We first consider only the online computational cost
needed to approximate Ei�k�, 1� i�nb, at a single k point.
In Table IV, we compare the computational cost required
by the reduced-basis method and the plane-wave method
to achieve similar approximation errors for k= �2� /a�

TABLE II. The reduced-basis error in ûN, �N,nb

u �given by �34��
at different Ns for nb=4. The reduced-basis error in �̂N, �N,nb


 , and
ln��N,nb

u � / ln��N,nb


 � are listed as well for comparison.

Ns �N,nb

u �N,nb


 ln��N,nb

u � / ln��N,nb


 �

4 5.71�10−1 5.58�10−2 0.19

8 1.33�10−2 4.51�10−4 0.56

12 2.99�10−3 2.88�10−5 0.56

16 8.04�10−4 1.52�10−6 0.53

20 2.33�10−4 1.84�10−7 0.54

23 9.20�10−5 3.29�10−8 0.54

TABLE III. The reduced-basis error in ûN, �N,nb

u �given by �34��
at different Ns for nb=8. The reduced-basis errors in �̂N, �N,nb


 , and
ln��N,nb

u � / ln��N,nb


 � are listed as well for comparison.

Ns �N,nb

u �N,nb


 ln��N,nb

u � / ln��N,nb


 �

4 3.73�10−1 1.18�10−2 0.22

8 1.33�10−2 4.05�10−4 0.55

12 2.97�10−3 1.44�10−5 0.52

16 2.36�10−4 6.71�10−7 0.59

19 9.92�10−5 8.74�10−8 0.57

FIG. 4. The greedy sampling procedure to construct an optimal
SN and WN where N=nbNs.
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��0.2,0.2,0.2� and nb=4. For this purpose, we introduce the
error measure

�N,nb


 = max
k��T

max
1�i�nb

�
i
N�k� − 
i�k�� , �37�

for the plane-wave approximation based on YN. We observe
that the computational saving achieved ranges from a factor
of 15 to 35. For both, we use the eigenvalue solvers in
MATLAB.

We now take the computational cost of the offline stage
into consideration. Since we use an a posteriori error estima-
tor, we only need to determine Ns truth solutions, where Ns is
usually very small. The total offline computational cost is
also determined by the maximum Ns, Ns,max, usually chosen
based on the highest accuracy we want for our approxima-
tion. In this section, we choose Ns,max to be 14 so that it
corresponds to the maximum value of N in Table IV.

For nb=4, the offline stage requires a total computational
time of 67 s. Even with the a posteriori error estimation
procedure, there must be a need to evaluate �7� at more than
1000 k points in order to justify the offline computational
cost, assuming we only require �N,nb


 to be of O�10−4�. This
emphasizes the many-query limit where the reduced-basis
method is most useful. We shall provide in the next section
some examples where we indeed need to determine band
energies at many k points.

B. Sample problems

To evaluate �1�–�3� efficiently, we approximate Ei�k� by a
reduced-basis approximant EN,i�k�. In addition, for compari-
son we also introduce a plane-wave approximation based on
YN for which N�Nt. The truth approximations to the quan-
tities �1�–�3� are obtained from a plane-wave approximation
based on YNt with nk=nk,t=13 200. The offline computa-
tional cost is based on the greedy sampling algorithm out-
lined in Sec. III E with a convergence criterion given by
�N,nb


 �2�10−2, where �N,nb


 is the a posteriori error estima-
tor.

1. Integrated density of states

Here, we look at a hypothetical problem of determining
Idif�6 eV� where Idif�E�= I�E�− I�E4�0�� and E4�0� is the
highest valence band energy. Nevertheless, typical applica-

tions look at the inverse problem, i.e., determining an E0
such that I�E0� is equivalent to a certain value—in the case
of the Fermi level, we determine an E0 that satisfies I�E0�
=nv.

We denote a reduced-basis approximation to Idif by Idif,nk,N

and a plane-wave approximation by Idif,nk

N ; nk denotes the
number of k points used. The truth approximation is denoted
by Idif

0 = Idif,nk,t

Nt . To achieve a convergence criterion of �Idif,N

− Idif
0 ��0.01, a reduced-basis approximation requires N=36

and nk=572; the online computational cost is 3.8 s. For the
plane-wave method, a combination of N=137 and nk=572 is
required; the computational cost is 26 s. Thus, the reduced-
basis method is seven times faster than the plane-wave
method. Here, nb=9.

However, we note that the offline computational cost of
the reduced-basis approximation is 102 s. The reduced-basis
method is thus competitive only if we need to evaluate the
integrated density of states for larger nk.

2. Joint density of states

We denote a reduced-basis approximation of J by JN,nk
, a

plane-wave approximation by Jnk

N, and a truth approximation
by J0
Jnk,t

Nt . Figure 5 shows that a good approximation of
JN,nk

is obtained when nb=12, N=36, and nk=8800—the ap-
proximation is close to the truth solution for the entire range

TABLE IV. Comparison of the computational cost of reduced-basis method and plane-wave method required to achieve a similar level
of accuracy. Comparison is made based on a single k point given by �2� /a��0.2,0.2,0.2� and nb=4.

WN Plane wave

N Time �s� �N,nb


 N Time �s� �N,nb




16 0.001 8.88�10−3 65 0.029 9.37�10−3

24 0.002 1.72�10−3 113 0.053 1.95�10−3

32 0.004 8.08�10−4 137 0.063 6.99�10−4

40 0.008 4.83�10−4

48 0.013 9.23�10−8 531 0.457 9.34�10−8

56 0.020 2.98�10−8 609 0.584 1.76�10−9

4 4.5 5 5.5 60.8

1.0

1.2

1.4

1.6

1.8

JN=36,nk=8800

JN=113
nk=8800

JN=113
nk=4400

JN=113
nk=1100

JN=59
nk=1100

J0

E

FIG. 5. �Color online� Different approximations to the joint den-
sity of states—JN,nk

, Jnk

N, and J0—versus energy E in eV.
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of E between 4 and 6 eV. Based on the same criterion, a good
plane-wave approximation Jnk

N is obtained when nb=12, N
=113, and nk=8800.

For the above two approximations, we show the compu-
tational cost in Table V. For the reduced-basis approxima-
tion, the convergence criterion used in the offline stage gives
Ns,max=7 and an offline computational cost of 85 s. The on-
line computational cost is 123 s, thus giving a total compu-
tational cost of 208 s. For the plane-wave approximation, the
computational cost is 458 s; we achieve a factor-of-2 saving
in the computational cost.

3. Dielectric function

Again, we shall denote a reduced-basis approximation of
�2 by �2,N,nk

, a plane-wave approximation by �2,nk

N and a truth
approximation by �2

0=�2,nk,t

Nt . Compared to the determination
of the joint density of states, we need to approximate
����uj�k� /�x��ui

��k�, 1� i�nv, nv+1� j�nb, in addi-
tion to Ei�k�. However, the approximation error in
����uj

N�k� /�x��ui
N��k� �or ����uj

N�k� /�x��ui
N��k�� is of the

same order as the error in EN,i �or Ei
N�; as such, the accuracy

requirement is not higher than in the previous two problems.
We reuse the reduced-basis approximation we have con-

structed for the joint density of states. From Fig. 6, we see
that a good reduced-basis approximation is obtained when
N=36 and nk=8800, while a good plane-wave approxima-
tion is obtained when N=113 and nk=8800. Table VI shows
that we obtain a factor-of-1.5 saving in the computational

cost. The decrease in the gain obtained through the reduced-
basis method is due to increase in the overhead computa-
tional cost unrelated to approximation of the ui and 
i. In the
reduced-basis approximation of �2, this overhead cost
amounts to nearly 80% of the total computational cost. On
the other hand, for the reduced-basis approximation of J, this
overhead cost is only 54% of the total computational cost.

V. EXTENSION

In a typical calculation based on pseudopotential density
functional theory model �27�, Veff is either not explicitly con-
structed or not easily accessible to the user. The inaccessibil-
ity of Veff does not allow the construction of the discrete
reduced-basis matrix Am,n

N,1 = ��m�A1��n�, 1�m , n�N, as out-
lined in Sec. III. Here we shall demonstrate a trick by which

we obtain AN,1 based solely on the solutions (û�k� , �̂�k�),
k�SN, which are typical outputs of any electronic structure
calculation.

Suppose we are given a sample set SN= �k1 , . . . ,kNs
� and

associated solutions (û�kn� , �̂�kn�)� �Ynb �Rnb�, 1�n�Ns.
From �7�, we can write

�um��kn���A1�um�kn�� = 
m�kn��um��kn���um�kn��

− �
l=1

3

kl,n�um��kn���A2
l �um�kn�� ,

�38�

for 1�m , m��nb and 1�n , n��Ns, since all um�kn�, 1
�m�nb, 1�n�Ns reside in the same space Y. In addition,

�i = �
m=1

nb

�
n=1

N

�m,n
i um�kn�, 1 � i � N , �39�

where N=Nsnb and �m,n
i are known from our orthogonaliza-

tion procedure. The matrix AN,1 is then simply given by

Ai,j
N,1 = �

m=1

nb

�
n=1

N

�
m�=1

nb

�
n�=1

N

�m,n
i �m�,n�

j �um��kn���A1�um�kn��,

1 � i, j � N . �40�

We have found the reduced-basis solutions obtained through
this procedure to be identical to those from the procedure
outlined in Sec. III. We note that the above construction is
well defined only if Y remains the same for all k when de-
termining the truth approximation.

TABLE V. Comparison of the cost required to compute
JN=36,nk=8800 and Jnk=8800

N=113 .

JN,nk
Jnk

N

Dimension N=36 N=113

nk 8800 8800

Computational time Online: 123 s

Offline: 85 s Total: 458 s

Total: 208 s

4 4.5 5 5.5 60

0.2

0.4

0.6

0.8

1.0

1.2

1.4

�2,N=36,nk=8800

�N=113
2,nk=8800

�N=113
2,nk=4400

�N=113
2,nk=1100

�N=113
2,nk=1100

�0
2

E

FIG. 6. �Color online� Different approximations to the dielectric
function—�2,N,nk

, �2,nk

N , and �2
0—versus energy E in eV.

TABLE VI. Comparison of the cost required to compute
�2,N=36,nk=8800 and �2,nk=8800

N=113 .

�2,N,nk
�2,nk

N

Dimension N=36 N=113

Computational time Online: 266 s

Offline: 85 s Total: 553 s

Total: 351 s
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APPENDIX: A POSTERIORI ERROR ESTIMATION

A posteriori error estimation procedures are well devel-
oped for algebraic eigenvalue problems �38–40� and ap-
proximation of eigenvalue problems based on, say, the finite-
element method �41,42�. Simple error estimates for a
computed eigenvalue can be determined from the residual
vector. Within the reduced-basis context, asymptotic error
bounds are first formulated for a symmetric positive definite
eigenvalue problem in �16�. In addition, �16� provides a very
efficient procedure by which these bounds can be computed
through the offline-online computational framework. How-
ever, these error estimates usually do not provide rigorous
bounds that can function as a certificate of fidelity for our
reduced-basis approximation. Thus, previous work on
reduced-basis approximation of partial differential equations
�15,17–21� places significant emphasis on obtaining inexpen-
sive and sharp error bounds for the output of interest.

Nonrigorous error bounds can nonetheless be very useful.
In the greedy adaptive sampling procedure outlined in Sec.
III E, an asymptotic error bound may be sufficient to serve as
a guide in the construction of the reduced-basis sample set.
Here, we shall construct an asymptotic a posteriori error

bound for �̂N�k� to be used in our sampling procedure. The
development of the bound parallels that of algebraic eigen-
value problems.

1. Derivation

For i=1, . . . ,nb, we define the residual as

Ri�v;k� = �v�A�k��uN,i�k�� − 
N,i�k��v�uN,i�k�� , �A1�

for ∀ v�Y. We also define a reconstructed error êi in Y,
such that

�v�Â�êi� = Ri�v;k�, ∀ v � Y , �A2�

where

�v�Â�w� = �v�A1�w� + ��w�v��, � = 1 + �
1�0�� , �A3�

�Ri�· ;k�� 
 sup
v�Y

Ri�v;k�

�v�Â�v�1/2
= �êi�Â�êi�1/2, �A4�

and � · �= �·�Â� · �1/2.
We now define �v�A+�k��w�= �v�A�k��w�+��v �w� and in-

troduce the following eigenvalue problem: for k�D, find

(û+�k� , �̂+�k�)� �Ynb �Rnb� such that

�v�A+�k��ui
+�k�� = 
i

+�k��v�ui
+�k��, ∀ v � Y , �A5�

�uj
+�k��ui

+�k�� = �ij, i � j � nb, �A6�

for 1� i�nb. It is clear that û+�k�= û�k� and 
i
+�k�=
i�k�

+�.

Proposition 1. Given �v�Â�w�= �v�A1�w�+��v �w� and �
=1+ �
1�0��, we have

�v�A+�k��v� 
 �v�Â�v� � �v�v� � 0. �A7�

Proof. First, we note that �v�A2
j �v�=0, for j=1, . . . ,3: let

v=v1+iv2, and v1 ,v2�R; then

�v�A2
j �v� = − i�

�

� �v1

�xj
+ i

�v2

�xj
	�v1 − iv2�

= − i�
�

� �v1

�xj
v1 +

�v2

�xj
v2	

− �
�

�v1

�xj
v2 + �

�

�v2

�xj
v1 = 0, �A8�

since

�
�

�v1

�xj
v2 = − �

�

�v2

�xj
v1,

�
�

�v1

�xj
v1 = 0, �

�

�v2

�xj
v2 = 0.

We can now prove the left equality:

�v�Â�v� = �v�A1�v� + ��v�v� = �v�A�k��v� + ��v�v�

= �v�A+�k��v� , �A9�

since �v�Â�v�= �v�A1�v�+� j=1
3 �v�A2

j �v� based on �A8�
To prove the right inequality, we note that

�v�A1�v� � 
1�0��v�v� . �A10�

Then,

�v�Â�v� = �v�A1�v� + �1 + �
1�0����v�v�

� �1 + 
1�0� + �
1�0����v�v� � �v�v� , �A11�

since 
1�0��0. This concludes the proof of Proposition 1.�
Proposition 2. Assume that our reduced-basis approxima-

tion is convergent in the sense that


N,i�k� → 
i�k�, 1 � i � nb as N → � . �A12�

Then, for large N and i=1, . . . ,nb,



i�k� − 
N,i�k�

i�k� + �


 �
�Ri�· ;k��

�
N,i�k� + ��1/2 . �A13�

Proof. For i=1, . . . ,nb, we define ẽ�Y as

�v�A+�k��ẽi� = Ri�v;k�, ∀ v � Y , �A14�
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� �Ri�· ;k��� 
 sup
v�Y

Ri�v;k�
�v�A+�k��v�1/2 = �ẽi�A+�k��ẽi�1/2,

�A15�

and �� · ��= �·�A+�k�� · �1/2. From �A7�, we then have

� �Ri�· ;k��� � �Ri�· ;k�� . �A16�

Let uN,i�k�=� j=1
Nt � juj�k� and ẽi=� j=1

Nt � juj�k�. By substituting
them into �A14�, we obtain

� j = � j�
 j�k� − 
N,i�k�

 j

+�k� 	 . �A17�

Then,

� �Ri�· ;k���2 = �ẽi�A+�k��ẽi� = �
j=1

Nt

� j
2
 j

+�k��uj�k��uj�k��

= �
j=1

Nt

� j
2�
 j�k� − 
N,i�k�


 j
+�k� 	2


 j
+�k� . �A18�

Dividing by 
N,i�k�+�, we obtain

� �Ri�· ;k���2


N,i�k� + �
=

1

�uN,i�k��A+�k��uN,i�k���j=1

Nt

� j
2�
 j�k� − 
N,i�k�


 j
+�k� 	2


 j
+�k�

� min
1�j�Nt

�
 j�k� − 
N,i�k�

 j

+�k� 	2 �
j=1

Nt

� j
2
 j

+�k�

�
j�=1

Nt

� j�
2


 j�
+ �k�

= min
1�j�Nt

�
 j�k� − 
N,i�k�

 j

+�k� 	2

. �A19�

Therefore, in the asymptotic limit as defined by �A12�, i
=arg min1�j�nb

��
 j�k�−
N,i�k�� /
 j
+�k�� and



i�k� − 
N,i�k�

i�k� + �


 �
� �Ri�· ;k���

�
N,i�k� + ��1/2 �
�Ri�· ;k��

�
N,i�k� + ��1/2 ,

�A20�

from �A16�. This proves �A13�. �
Remark 1. In the asymptotic limit defined by �A12�, we

can also write �A13� as

�
i�k� − 
N,i�k�� � �Ri�· ;k���
N,i�k� + ��1/2. �A21�

2. Offline-online computational framework

We can also construct very efficient offline-online compu-
tational strategies for the evaluation of our error estimators.
From �A2� and our reduced-basis approximation, we have

�v�Â�êi� = �
q=1

Q

�q�k��v�Aq�uN,i�k��

− 
N,i�k��v�uN,i�k��, v � Y , �A22�

for 1� i�nb. It follows from linear superposition that

êi�k� = �
q=1

Q

�
n=1

N

�q�k�uN,in�k��n
q − 
N,i�k��

n=1

N

uN,in�k��n
0,

�A23�

where

�v�Â��n
q� = �v�Aq��n�, 1 � q � Q , �A24�

�v�Â��n
0� = �v��n� , �A25�

for 1�n�N and ∀ v�Y. Then, �Ri�· ;k��
�êi�Â�êi� is
given by

�Ri�· ;k��2 = �
n=1

N

�
n�=1

N

�
q=1

Q

�
q�=1

Q

uN,in�k�uN,in��k��q�k��q��k�Ân,n�
q,q� + �

n=1

N

�
n�=1

N


N,i
2 �k�uN,in�k�uN,in��k�Ân,n�

0,0

+ �
n=1

N

�
n�=1

N

�
q=1

Q

uN,in�k�
N,i�k��q�k�Ân,n�
q,0 ; �A26�
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where Âq,q��RN�RN, 0�q , q��Q are given by Ân,n�
q,q�

= ��n�
q��Â��n

q�, 0�q ,q��Q, 1�n ,n��N. We now see that the
dual norm of the residual is the sum of products of
parameter-dependent functions and parameter-independent
functionals. The offline-online decomposition is now clear.

In the offline stage, we compute �n
q, 0�q�Q, 1�n�N,

based on �A22� at the cost of O(�Q+1�NNt
•), where the •

denotes the computational complexity of the linear solver

used to obtain �n
q. We then evaluate Âq and M̂ at the cost of

O(�Q+1�N2Nt
2). We store the matrices Âq and M̂ at a total

cost of �Q+1�N2.
In the online stage, we simply evaluate the sum �A23�

for a given uN,i and 
N,i, 1� i�nb. The operation count is
only O�nbQ2N2�. The online complexity is thus indepen-
dent of Nt. Unless Q is large, the online cost to compute the
error estimator is then a fraction of the cost required to ob-
tain uN,i and 
N,i.

3. Numerical results

We define our error estimator �N,nb


 �k� as

�N,nb


 �k� = max
1�i�nb

�Ri�· ;k���
N,i�k� + ��1/2, �A27�

and the effectivity measure as

�N,nb


 �k� =
�N,nb


 �k�

�N,nb


 �k�
. �A28�

For brevity, we present in Tables VII and VIII the results for
nb=4 and 8 and define �̄N,nb


 as the mean of �N,nb


 �k� for
k��T. We obtain an error estimator with effectivity closer
to 1 at smaller N. However, this effectivity diverges as N
increases since �
N,i�k�−
i�k�� is of O(�uN,i�k�−ui�k��Y

2)
�O(�Ri�· ;k��2) and �N,nb


 �k� is of O(�Ri�· ;k��). As a result,
the use of �A27� as an error measure in the greedy sampling
procedure may lead to unnecessarily large N. Thus, we
would like to emphasize that, for the current problem, the
error estimation procedure is only used to determine a good
set of sample points given Nmax; it is not used to determine
the size of Nmax.
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