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We derive an exact propagation scheme for nonlinear Schrodinger equations. This scheme is entirely analo-
gous to the propagation of linear Schrodinger equations. We accomplish this by defining a special operator
whose algebraic properties ensure the correct propagation. As applications, we provide a simple proof of a
recent conjecture regarding higher-order integrators for the Gross-Pitaevskii equation, extend it to multicom-

ponent equations, and to a new class of integrators.
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I. INTRODUCTION

Nonlinear Schrodinger equations play a special role in
physics. At a fundamental level, it has been suggested that a
weak violation of the linearity of quantum mechanics might
allow new physics to emerge. Theoretical studies have a long
and continuing history [1-3], and have resulted in several
precise experimental tests of linearity using neutrons [4—6]
and ions [7,8]. Of course, concrete evidence for such nonlin-
earity has not been found. At a practical level, nonlinear
differential equations have found numerous applications in
nonlinear optics, plasma physics, molecular dynamics in bi-
ology, and fluid dynamics [9].

Most spectacularly, the dynamics of the quantum matter
wave in dilute Bose-Einstein condensates (BECs) has been
described by the time-dependent Gross-Pitaevskii (GP) equa-
tion [10] as follows:

oW (r,t) B
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m

(1)

Among the novel phenomena successfully observed in BECs
are four-wave mixing [11], solitons [12-14], and vortices
[15,16]. Each has been accurately modeled by the GP equa-
tion (1), or its multicomponent generalizations.

It is natural to believe that the novel dynamics is a direct
result of some intrinsic complexity in the time evolution. In
this paper, we consider the general set of nonlinear
Schrodinger equations of the form (h=1)

10,0 = [Hy + V(P ]V, )

where the Hamiltonian H, is a linear, time-independent Her-
mitian operator, the nonlinear term V(W) is a real wave-
function-dependent (local) potential energy operator, such
that the normalization of W is preserved, and we have em-
ployed a simplified notation that suppresses the space or spin
components of ¥ (in which case H, and V(¥) may be ma-
trices; see also below). We find that the exact propagation of
Eq. (2) can be accomplished by defining a surprisingly
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simple nonlinear operator V, and is given by the familiar
expression

V(1) = exp[— it(H, + V)]¥(0). (3)

Thus, while the resulting evolution of Eq. (2) may be com-
plex, the underlying rules are quite simple.

The motivation for our work is both practical and funda-
mental. At the practical level, by understanding the underly-
ing structure of nonlinear evolution equations such as Eq. (2)
we can design more sophisticated numerical methods. These
methods can be much more efficient the more we know
about the formal solution. We note two recent examples.

For real time propagation, it was recently conjectured by
Javanainen and Ruostekoski [17] (JR) that all higher-order
split-operator algorithms for linear Schrodinger equations
can be directly applied to the Gross-Pitaevskii (with the same
order of accuracy), using only a simple “most-recent-update”
rule to evaluate the nonlinear potential. We prove this con-
jecture for all orders, and for multicomponent equations in
any dimension.

For imaginary time propagation, standard higher-order
split-operator methods can become unstable, due to the pres-
ence of negative time steps. A new class of fourth-order,
positive time-step algorithms has recently been extended to
the GP equation in a rotating harmonic trap by Chin and
Krotscheck (CK) [18]. Using our knowledge of the underly-
ing integration properties, we show how to implement the
positive time-step algorithms (in real time) for all trapping
potentials. Physical results using these methods will be pre-
sented elsewhere.

At the fundamental level, our work addresses the ques-
tion: from where does the complexity of nonlinear
Schrodinger equations arise? Our presentation shows that
while the complexity emerges with time, it is not from the
short-time evolution. This is done by bridging the gap be-
tween the functional Lie theory of partial differential equa-
tions known in the mathematics literature and the operator
picture that is more common in the physics literature. This
simple picture explicitly demonstrates that there is no extra
computational complexity to the propagation of nonlinear
equations like the GP equation.

The structure of this paper is the following. In Sec. II we
review the propagation law for linear, time-independent
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Hamiltonians. In Sec. IIl, we present our main result, the
propagation law (3) for nonlinear equations, illustrated by
the Gross-Pitaevskii equation. In Sec. IV, we prove the
propagation law by introducing the Lie operator formalism,
and review the Hamiltonian structure of nonlinear
Schrodinger equations. In Sec. V, we study the split-operator
methods for real-time propagation, and prove the JR conjec-
ture, and its extension to time-dependent and multicompo-
nent equations. In Sec. VI, we extend our results to algo-
rithms with positive time steps, and conclude in Sec. VII.

II. LINEAR PROPAGATION

First, we recall that the linear Schrodinger equation
(hi=1)

iV =HyW, (4)

with time-independent H,, can be exactly propagated by the
scheme

W(t) = exp(— iHyt) W (0). (5)

To prove Eq. (5) we can either take the time derivative to
show that Eq. (4) is satisfied, or we may use the Taylor series
expression

V() = E (a"qr)t_ (6)

By iterating Eq. (4) we find that the nth time derivative of
W is
AV = (= i)"HyW, (7)

and thus Eq. (6) can be evaluated as

V() = E ( H"‘I’(O) (8)

which is precisely what is meant by Eq. (5).

III. NONLINEAR PROPAGATION
For the nonlinear Schroédinger equation
iV =[Hy+ V(¥)]¥, )

the correct propagation is, at first sight, quite complex. Re-
call that in writing Eq. (9) we use a simplified notation that
suppresses not only the spin and spatial coordinates of W, but
also the fact that the local nonlinear potential V(W)
=V(¥,¥") depends on both ¥ and W". In this paper we will
consider only real potentials, which also satisfy the following
reality condition:

A% A%
— -
v A%

"=0. (10)

This is somewhat more general than the restriction that the
potential depends only on the local absolute value of W, i.e.,
V(¥,¥")=f(|¥]?). For multicomponent equations (to be
considered in Sec. V), where W has components ¢, and the
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nonlinear potential has matrix elements Vj, this condition
generalizes to

Wik ﬂL)
E(Mndn Pye (11)

Returning to the propagation of Eq. (9), we know that a
Taylor expansion such as Eq. (6) still holds as follows:

(1) = E (&"‘I’)z -0» (12)

but a simple form for J'¥ such as Eq. (7) does not seem
readily available.

If we treat V(£)=V(W(r)) as a time-dependent potential,
we find J'V by the repeated application of Eq. (9) as
follows:

GV =—i(3,V)V - (Hy+ V)*¥,

SV =—i(BV)¥ - 2(3,V)(Hy+ V)T
—(Hy+ V(@V)V +i(Hy+ V)*W,

W =—i(@ V)V = 3(3V)(Hy+ V)V = 3(9,V)*¥
+3i(8,V)(Hy + V)?¥ — (Hy+ V)(FV)¥
+2i(Hy+ V)(0,V)(Hy + V)W

+i(Hy+ V)’ (V) + (Hy+ V)*W. (13)

It appears that the number of terms in J'V grows with n, by
way of the time derivatives of the potential, which must fi-
nally be evaluated by differentiating ¥ again. Any hope of
achieving an expression as simple as Eq. (7) appears small.

However, due to the deep Lie structure to the nonlinear
Schrodinger equation (to be described in the next section), a
much simpler formulation can be given. That is, there exists

a single nonlinear operator V such that
G = (= i)' (Hy+ V)"V, (14)

and whose properties we now describe.
By comparing Eq. (9) to Eq. (14) with n=1, it is clear that

VW = V()W (15)

where we have “hatted” the operator on the left to indicate
that as an operator it is nonlinear in W, while the unhatted
operator on the right can be considered a W-dependent linear

operator. Note also that Eq. (15) does not uniquely specify 14

That is, we must still define the higher powers of V and its
products with H,, each of which occur in the expansion of
Eq. (14).

For example, a naive application of Eq. (15) to H,W¥
would yield

VH,Y=V(H,¥)H,WV. (16)

As indicated by the question mark, this result must be in
error, for purely dimensional reasons. That is, Hy'W has dif-
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ferent units than W. Thus, any definition should distinguish
between W and operators on W. Furthermore, our definition
should be sufficiently simple in form, yet powerful enough to
generate all of the correct terms needed to satisfy Eq. (14).

The correct definition for V is achieved in the following
way. Let K, j=1,2,...n, be an element of some set K of
operators, to be specified. The action of Vis given by the
following composition rule:

A " . .
VK, - KW) = i"——————[V(e"™MEKI ... o= MK
(K- K =it Ve e Nknp)

1

Xe_i)\lK] e e_i)‘nKn\If])\l:.”:)\n:O’ (17)
where we recall that
V( e MK K = V( e MK oMK
ei}\lKl cee eiA"K"‘I’*). (18)

Should any K; itself be nonlinear, its action is defined by
using Eq. (17) recursively. Note that we must also specify the
set K. For the nonlinear Schrodinger equation, we require
that IC={C,H0,‘7} and their linear combinations, where ¢ is
any complex scalar. This specification of K uniquely identi-
fies H%:HO X H,, which might otherwise be ambiguous.
The definition (17) for V is the main result of this paper. V
is a manifestly nonlinear operator, due to its dependence on
W and its algebraic structure. Nevertheless, it has much in
common with linear operators, due to the following remark-
able properties. First, the composition rule is dimensionally
correct, and commutes with scalar multiplication as follows:

Vel = V(W)W (19)

Note that ¢ here is to be treated as an operator, and thus we
use V(e W) =V(e MW ¢MP™) in Eq. (17), which by the
condition (10) leads to Eq. (19). Second, it is operator linear
as follows:

V(K| + K,)W = VK,V + VK, V. (20)
Third, V satisfies the conjugation identity
"}g—i)\ll(l e g NEp = V(e—i)\ll(l ... e—ixnknq,)
Xe MK pmNKingr (21)

Conversely, by assuming these three properties we could de-
rive the composition rule (17).

Finally, note that if the function V satisfies V(e=*V¥))
=V(W¥) (which is true for the Gross-Pitaevskii form V(W)

=g|¥|?, but not for certain multicomponent equations), then
V satisfies the power identity
Vi = [V(0) ], (22)
in which case
e‘”‘{/‘lf = "NV (23)

Using the rule (17), the exponential propagation law (3)
can be verified by simply taking its time derivative as fol-
lows:
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i0,¥(1) = (Hy + V)exp[- it(Hy + V)]¥(0)
— [HO + V(e—it(H0+\})\I,(O))]e—it(H0+\})\I,(O)
=[Hy+ V(¥ (1)) ]V (7). (24)

In deriving Eq. (24), we have used the properties of the ex-
ponential function, operator linearity (20), and the conjuga-
tion identity (21).

This derivation of the exponential propagation law, while
correct, is only an implicit demonstration that the rule (17)
generates the higher derivatives d/'W. An explicit demonstra-
tion, for the Gross-Pitaevskii equation, is reproduced in the
Appendix , where we show that

V(1) = exp[— it(Hy + V)]¥(0) + O(F). (25)

In the next section we will provide an independent argument
to show that this is correct to any order in ¢ and for any
nonlinear Schrddinger equation.

IV. LIE OPERATOR PROOF

To explicitly prove Eq. (14) for general n, and therefore
the exact exponential evolution (3), we use the Lie operator
formalism, which easily handles nonlinear evolution equa-
tions, and has found great use in the mathematical study of
differential equations [19,20]. In fact, all linear and many
nonlinear Schrddinger equations can be written as the Hamil-
tonian evolution of a classical field [1,21-24], and this evo-
lution (in an infinite-dimensional phase space) can in turn be
described using Lie operators [25,26]. These formal methods
will justify the presentation of the previous section. While
there have been other general studies of nonlinear wave
equations using Lie operators [27-30], the new approach de-
veloped here directly shows how to convert the Lie differen-
tial structure into a novel algebraic structure, a nontrivial
conceptual shift that can simplify many calculations.

The pair of differential equations

o = — i[Hy + V(W) ],

W = +i[Hy+ V(¥)]¥", (26)

[note that we consider V(¥")=V"(¥)=V(¥)] can be suc-
cinctly written as

oW =L,

AR (27)

where the Lie operators £=Ly+ Ly are functional derivative
operators, defined by

) d « 0
£H=—l<HO\Pa\P—HO\P (9\If*>, (28)
L= '(V(qf)qfi Vw2 ) (29)
v="t oV ov*)

The Lie operators (28) and (29) arise naturally by treating
V¥ as a classical field. Note that, in coordinates, Eq. (28)
represents
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) N )
SV (r) = (HyW")(r) &P*(r)>’

(30)

Ly=—i f d3r<(Ho\If)(r)

with a similar expression for Eq. (29). The form of this ex-
pression can be understood by introducing the Poisson
bracket [21]

AB—'fd3(5A B B 5A>
MBI =1 [T S o ()~ ov() o ()

(31)

where A and B are functionals of W(r). This bracket intro-
duces a symplectic (i.e., canonical) structure on a phase
space where W(r) and W (r) play the role of coordinates and
momenta. The dynamical evolution of any phase-space func-
tion(al) is generated by a Hamiltonian functional, which for
the Gross-Pitaevskii equation is

H= f d3r(\lf*(r)H0\If(r) + %g|‘l’(r)|4>. (32)

For example, the time evolution of W(r) is given by
W (r) ={W¥(r),H} = L¥(r), (33)

where we implicitly defined the Lie operator, i.e., L={-,H}
=—{H, -}. Substituting H of Eq. (32) in the bracket (31) will
produce the Lie operators Ly [Eq. (28)] and Ly [Eq. (29)]
with V(W) =g| W%

This quick review shows how nonlinear Schrodinger
equations can be understood as the Hamiltonian dynamics of
a classical field. Furthermore, linear Schrodinger equations
correspond to Hamiltonians which are quadratic (or bilinear)
in the field variables. We now show that this Hamiltonian
dynamics can be represented by an exponential propagation
law.

First, we find that &/¥ can be elegantly written in terms of
L=Ly+ Ly as follow:

IV = (Ly+ Ly)"W. (34)

This is proven by induction. That is, we write the right-hand
side of Eq. (34) as some function F,(¥, V"), which we as-
sume is £"V. We then compute

Fo (W, W) = 6,F, (P, 7)
= 9y F (W, W)V + dy+F, (¥, "), ¥"
=—i[HyW + V(W) W]oyF,(¥,¥")
+i[HyW" + V(V)W )9y F, (W, W)
=LF,(V, W) = L, (35)

Then, using Eq. (34) in the Taylor expansion Eq. (12), we
find

V(1) = [exp(tLy + tLy)V Jy_wo)- (36)

This demonstration in fact directly implies our earlier
claim [Eq. (3)], but to show this we must convert the Lie

operators Ly and Ly into the original operators H, and V.
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We recall a key property of Lie operators: for any function
f(1), we have [25,26]

Mf(W) = f(M D). (37)

We also define a set of Lie operators corresponding to our
original set IC of Hermitian operators, i.e.,

) J . 0
Then, since all Lie operators act linearly, we have the
identity

J

—(e)‘l['l e e)\nﬁnﬁv\lf)

Ly LLV =
1 n~v 19)\1)\,,

A= =), =0
(39)

To proceed, consider the case n=2 with each K;a linear
operator. In this case we have £;W=(~i)"K}V¥. In addition,
Ly V=V(¥)¥, and using Eq. (37) we compute

MLl L = MEMLY(P)P = MY (rE2p) Ml
= MLV (e MK MoKy
= V(e MKagM L) g MaKogh L1
— V(e—i)\sze—i)\lK,q,)e—i}\sze—i)\lKnI, ) (40)

Thus, the Lie operators £j act from left to right, while the
linear operators K; act from right to left. Pursuing the calcu-
lation to general n we find

e)\lﬁl - e)‘"ﬂnﬁv‘lf — V(e—i)\nl(n .. e—i)\lKl\I,)
e_i)‘"K"---e_i}‘lKl‘If. (41)

Substituting Eq. (41) in Eq. (39) and comparing with Eq.
(17), we see that we should make the following identifica-
tion:

Ly L, Ly =(-i)"VK, - K,WP. (42)

Finally, we observe that our assumption of linear K; was not
essential and can be dropped, so long as we recursively use
Eq. (17). Using this correspondence we can now conclude
that Eqs. (14) and (34) are equivalent.

To summarize, we have shown how the Lie formalism
directly yields a simple expression for the &'V [Eq. (34)] and
exponential propagation [Eq. (36)]. We have also converted
the formal Lie products into a simple operator expression by
Eq. (42). Thus, we can associate every term in the Lie op-
erator expansion of Eq. (36) with every term in the expan-
sion of Eq. (3). Each term is found to be identical using the
rule given by Eq. (17). Altogether, we have shown how the
nonlinear Schrédinger equation can be exactly propagated, to
all orders in ¢, by a simple exponential.

V. SPLIT-OPERATOR ALGORITHMS

Recently, Javanainen and Ruostekoski (JR) have studied
the properties of higher-order split-operator approaches to
the Gross-Pitaevskii equation [17]. A split-operator scheme
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approximates an exponential operator ¢4+ by a product of
the (hopefully) simpler individual exponentials ¢™ and 8
in the following way:

N,

e)\(A+B) — H NUANB 0()\n+1)’ (43)
k=1

where the coefficients a; and b, and the number N, have
been chosen to achieve the specified order of accuracy. Such
an approximation is known as an nth-order splitting scheme.
These schemes have been extensively studied in the case that
A and B are linear operators, and many properties of this
expansion have been established. A review of splitting meth-
ods can be found in [31]; a complete classification of meth-
ods with n=6 and N, =6 has been performed by Omelyan,
Mryglod, and Folk [32].

Much less familiar is the case when either A or B is a
nonlinear operator. It was observed in [17] that the standard
split-operator approach works for the one-dimensional
Gross-Pitaevskii equation with A=—iH, and B=-iV(V¥V)=
—ig|W|?, if the most recent update of the wave function is
used to evaluate B. For example, the second-order splitting
(due to Strang [33]) is

e)\(A+B) — e)\A/Ze)\Be)\A/Z + 0()\3). (44)

To use this to propagate the Gross-Pitaevskii equation, the
correct rule is

V(1 +7) = e M2V VT (1) + O(F),  (45)

where @, =exp(—iTH,/2)V(¢) is the most recent wave func-
tion. JR found that this prescription will also work for the
fourth-order splitting (due to Forest and Ruth [34] and others
[35-38]) as follows:

e}\(A+B) — e)\s'A/Ze)\s'Be)\(l—s)A/Ze)\(l—Zs)Be)\(l—s)A/Ze)\sBes)\A/Z

+O0\Y), (46)

with s=1/(2-2'3), and conjectured that this was true for all
higher-order algorithms (note that fourth-order schemes for
nonlinear equations were previously studied in [39]).

The results of the previous section show that this conjec-
ture is indeed true for all split-operator schemes, for (nearly)
all nonlinear Schrodinger equations, and for multicomponent
wave functions of any dimension. That is, we have shown
that the exact time propagation of the GP equation is an exact

exponential. While V is a nonlinear operator, it satisfies the
important property of operator linearity. Thus, any split-
operator scheme for linear operators can be directly applied
to the nonlinear Schrodinger equation. These propagation
schemes are particularly simple should the nonlinear opera-
tor satisfy the power identity (22).

PHYSICAL REVIEW E 76, 046701 (2007)

The explicit argument is the following. We have proven
the exponential propagation law

V(1 +7) = e T HHW (f) (47)

Then, using Eq. (43) with N\=-i7, A=H,,, and B=V we find

N,

W(r+ 7 =[] e e ™ () + O(71). (48)
k=1

To evaluate the exponentials, we use the conjugation [Eq.
(21)] and power [Eq. (22)] identities, such that

e_irbk‘}Uk‘P(t) — e_iTth(Uk\I,(Z)) qu,(t)’ (49)
where
Uy = I eimitog-inn. (50)
i<k

By iterating Eq. (49) down to k=1, we find that the split-
operator scheme (48) becomes

N,

W(t+ 1) = [| e ™oV @y (1) + O+, (51)
k=1

where ®, is an auxiliary wave function given by the “most-
recent-update” rule as follows:

CDk — H e_iT“/HOe_infV((Df)\If(t). (52)

j<k

Note that no assumptions regarding the dimensionalities
of Hy, V, and ¥ have been introduced. The only property
that is somewhat special to the GP equation is the power
identity (22). Any nonlinear Schridinger equation satisfying
this identity can be easily integrated using the split-operator
schemes (51) and (52). Previous split-operator approaches to
the nonlinear Schrodinger equation [40-42] have typically
used only low-order splittings such as Eq. (44). The first
important studies of higher-order methods include Bandrauk
and Shen [39], who treat the nonlinearity as a time-
dependent potential, and McLachlan [27] who applied Lie
operator methods more generally.

To highlight the generality of this approach, we apply it to
two multicomponent examples. First, consider the coupled
nonlinear Schrodinger equations studied in [39].

i,y = (Hy +g11|1|* + g2l o) 1,

10,y = (Hy + 801 1]* + 822 a]*) 2. (53)

By treating ¢, and ¢, as elements of a two-component wave
function W, this equation takes the same form as Eq. (2) but
where H( and V are now matrices as follows:

H0=<0 H2>’ (54)

and
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gll|¢1|2+312|¢2|2 0 ) (55)
0 gl dil* + gul bl )

One can easily show that the corresponding nonlinear opera-

|

tor V satisfies the power identity (22), and therefore the in-
tegration scheme presented above can be implemented di-
rectly, since each matrix is diagonal.

A nontrivial example is the following four-component
equation:

id,py = (H, + U)) b, + 28 hr b,
id,py = (Hy + Uy) by + 28 by 3 s,
i0,p3 = (Hs + Us) b3 + 28 by by .

10,y = (Hy + U4)¢4+28¢§¢1¢2- (56)

Equations of this form arise in four-wave mixing in BECs
[11,43]. Note that the potentials U; can depend on ¢, but take
forms similar to previous example; they are known as the
phase-modulation terms, while the mixing terms have been
written out explicitly. A direction matrix formulation of this

equation does not obviously lead to an operator V that satis-
fies the power identity (22). However, one can split the non-
linear interactions into separate noncommuting terms which
individually satisfy the identity. That is, an equivalent evolu-
tion equation reads

i(?t\l,=(H0+‘/}0+‘/}1+‘A/2+‘73+‘>4)\P, (57)

where H, and V (V) are matrices similar to Egs. (54) and
(55), and

0 0 ¢y O
V() = 0 0 0 0 (58)
P g 0 0 0|
0 0 0 0
0 00 ¢ty
0 00 0
Vo(W) =g 0 00 0 , (59)
¢y 0 0 0
0 0 0 0
V) = 0 0 ¢y 0 (60)
T 0 g 0 0
0 0 0 0
0 0 0 0
0 0 0 ¢¢s
iW=gl o 10 (61)
0 ¢3¢, 0 0

Each of these matrices represents a rotation between two
components of W, with a rotation angle determined by the
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other two components (which remain unchanged). As non-
linear operators, each satisfies the power identity (22) and
thus their exponential has a simple implementation. There-
fore, an integration routine for this set of equations can be
immediately implemented, using simple generalizations of
splitting formulas such as Eq. (43), e.g.

\I’(l‘ + ’T) — e—iTHO/Ze—iTVO/Ze—iTVl/Ze—iTVZ/Z

W giTVal2 i1V =iTV3/2 j=iTV )2

X e V1272 HI2Y (1) 1 O(F).  (62)

Finally, we observe that this approach treats the nonlinear

operator V as a time-independent operator. For problems
which have an explicit time dependence (but not through W),
one can use standard sequencing techniques (as indicated in
[34], see also [44]) to evaluate the operators. However, as
observed by JR, if V is treated as a time-dependent operator,
such sequencing does not produce expressions as simple as
Egs. (51) and (52).

VI. POSITIVE TIME-STEP ALGORITHMS

A peculiarity of the general splitting (43) is that, for meth-
ods of third-order or higher, negative time steps must appear,
i.e., one of each of the coefficients {a;} and {b;} must be
negative [45-47]. These negative time steps have two other
negative effects: they introduce potential instability in imagi-
nary time evolution, and generate large error terms. By in-
troducing the new operator [B,[B,A]] into the product can
one find positive time-step algorithms of third and fourth
order [48,49], which typically have nicer errors than schemes
like Forest-Ruth [44]. One especially simple product is

e)\(A+B) — e)\B/Ge)\A/2e)\23/36)\A/2e)\3/6 + 0()\5) , (63)

with
- 1
B=B+ 4—8)\2[3,[B,A]]. (64)

Recently Chin and Krotscheck (CK) [18] have shown how to
use this factorization for imaginary-time propagation of
Bose-Einstein condensates in a rotating harmonic trap. In
their approach, V is treated as a time-dependent potential
whose action is evaluated by a self-consistent iterative
procedure.

Letting A=-V?, i.e., the kinetic energy operator (with 7
=2m=1), and B=(V,,,+V), and using the composition rule
(17), we find that the relevant commutator for the Gross-
Pitaevskii equation, when acting on VW, is

[B.(B.A1] - (V) - (VW) + 22 W2V
+ 2g|qf|2V2Vext - (VVext) ! (VVext)- (65)
Using this expression in Egs. (63) and (64), we can again
construct an integrator using the “most-recent-update” rule
just as in the previous section. Using this result, we can also

use the full family of integrators classified in [32]. Further-
more, this approach is somewhat simpler than the self-
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consistent iteration method used by CK and can be applied to
any potential, though at the cost of computing additional
derivatives.

There is an important distinction, however, between this
approach and the methods developed by CK. The approach
presented here is not directly applicable to imaginary time
propagation. That is, simply considering the transformation
7=ir in Eq. (2) leads to an equation that does not preserve the
norm of the wavefunction. While an exact exponential
propagation law such as Eq. (3) for such an equation does
exist, it requires a composition rule slightly different from
Eq. (17). In addition, what is really implemented by CK’s
method is an integrator for the following nonlinear and
nonlocal equation:

J¥(r,7) ( V>
ar 2m

+ V(1) + N(‘P,r))‘[’(r, 7),

(66)
with

2
NW,r) = g AU 67)

f &Ir' v, 7

Development of explicit integration schemes for this opera-
tor is left for the future.

VII. CONCLUSION

In this paper we have presented an approach to the propa-
gation of nonlinear Schrodinger equations. By translating the
functional Lie theory of differential equations to a nonlinear
operator, we have shown how to encode the propagation law
as an exact exponential, just like linear Schrédinger equa-
tions. This formalism was then applied to the construction of
higher-order split-operator methods. In particular, the “most-
recent-update” conjecture was proven to any order, and
methods were proposed for multicomponent equations aris-
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ing in nonlinear pulse propagation and four-wave mixing of
BEC:s. Finally, it was shown how these methods could sim-
plify the implementation of a more efficient fourth-order al-
gorithm for real-time propagation in arbitrary potentials (al-
beit not for imaginary-time). As the propagation of nonlinear
Schrddinger equations remains an important topic for many
physical applications, we believe this approach can be a pro-
ductive tool not only for numerical methods but also for
analytical approximations; applications to wave mixing in
BECs will be presented elsewhere.
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APPENDIX

In this Appendix we show how the rule (17) correctly
generates the higher derivatives J'¥ via

W = (= i)"(Hy + V)", (A1)

for n=1 to n=4. We consider the important example of the
Gross-Pitaevskii equation, which has V(¥)=g|W¥|?> (recall
that we have suppressed the position dependence). The J/'V
of Eq. (13) take the complex form

PV = - HoW — gH(|V[*¥) — 2g| W [*H, W
t 0 0

+ gV HW" - |V, (A2)

GV = iHYW + igHy(|V[*W) + 2igHy(|V|*Hy W)
— igHy(V2H W) + 2ig| WP HAV + 2ig V™ (H,W)?
— 4igW(H W) (HoW") + igW2HW™ + ig*H,(| W [*¥)
+2ig?|WHo (| [*W) + 3ig?|P[*(H, W)
— 4ig? VWA (HGW) + ig* WP Ho(| W [*W7) +ig’|W[W,
(A3)

GV = HyW + gH(|W*W) + 2g Hi(|W[PHo W) — gHo(W2H W) + 2gHo(|W P HyW) + 2gHo[ W™ (HyW)*] - 4gHo[ W (Ho W) (Hy¥™)]
+ gHy(V2HYV™) + 28|V PHIW + 6" (Hy W) (HZW) — 6g(Hy W) (Hy W) — 6V (H W ) HEY + 6gW (H W) Ho W™
- gVPHW" + g Hi(|W[*W) + 28 Ho[ [ W [ Ho(|W[*W)] + g Ho[W>Ho(|W [*W")] + 6g*W " (Hy W) Hy (| W [*¥)
— 68 W (H W ) Hy(| VW) + 68 W (H W) Hy(| VW) + 6% W [*W2HFW™ — 4g°Hy(|W|*W2H, W) + 22| W |2 Hy(| W [* W)
- g WHG(|WPW") + 3g°Hy(|W[*HoW) - 28°[W | Ho(W2H W) + 4g°|W*Ho (| W [*Hy W) + 4¢° W W (H, W)
+ 32| WHAW + 42V (HyW™)? = 228 |V (H W) (Hy W) + g W2H (V2 H W) — 28°W2H (| |?Hy W)
- 28° W2 H\(|WPHo ") + & Ho(|W[W) + 2¢°| W Ho (| W[*P) + 37| W[*Ho (| W [*P) — 118°[W[*W*(H, P ™)

+ 68 (WY H([W W) — W2 Ho(|W W) + 48°[ W[ Ho W + g* P[P

(A4)
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To compare these with Eq. (A1), we construct the following

nontrivial products of V and H,, using the composition
rule (17):

VHW =2g|W[2HyW — gW2H, ¥, (A5)
V2H W =32V [*H ¥ - 2g2| PPV H ",  (A6)
V3 H,W = 483\ W [°H, ¥ - 3g3| W [*W2(H,¥"), (A7)
VHAY = g W2 H2W" — 4% (H,W)(H, V")
+ 2V (HyW)? + 28| W|PH W, (A8)
VH VY = g2 W2H (| W2V — 262 W W2(H, ")
+2¢°| WP Ho(| W [P), (A9)
VHW = — gWHIW" + 6V (H W) (HoW")
—6gV(HyW" ) (HYW) + 28|V HIW

— 6g(HyW)*(HyW") + 62" (HyW)(Ho W),

(A10)

VHVW = — g W2HA(|WPW) + 4620 (H W) Hy (| ¥ 2 P)
+ 22 WPV HAY" — 4g> W (Hy W) H (| P[> P)
+ 28|V PH (WP — 287 W > W™ (HW)?
— 4% VPV (H W) (Hy W)

+4¢*V (HyW)Hy (| [*W), (A11)

PHYSICAL REVIEW E 76, 046701 (2007)

VH VHW = — 2¢*W2H(|W|*Hy W) + g W2 Hy (V2 H, W)
+ 28| WPV HIY " + 28°W(HyW) Ho(|W[*¥™)
- 2g2\lf(H0\If*)H0(|\I’|2‘lf) +28* W (H W)
+ 42| W H(|W[PHoW) — 2¢%|W|*Ho(V>Ho ™)
- 6g2|\1i|2\II(H0\If)(HO\I/*)

+ 28V (HyW)H (| W [*¥) (A12)

V2HAW = 26°W3 (HyW™)? + 282 | WP W2 HA*
- 1282|‘P|2\P(H0‘I’)(H0\I’*) + 682|‘P|2‘I’*(H0‘P)2
+3g2V[*HYW, (A13)

VHVAW = — W2 H(|W W) + 4% @[22 H (| ¥ [*¥")
— 4@ W WA(HGW) + 28° [ W PH (W [* W),
(A14)

V2H VW = 23| W2 W2H (| P> ") - 4¢° | W[ W2 H, W™
+ 38 WIH ([P W), (A15)

Using Egs. (A5)-(A15) in Eq. (A1), we do indeed reproduce
the exact expressions for 'V found in Egs. (A2)—(A4).
Thus, we have explicitly shown that, for the Gross-Pitaevskii
equation, the definition for V [Eq. (17)] and Taylor expansion
of the exponential yields

W (1) = exp[— it(Hy+ V)]¥(0) + O(%).  (A16)
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