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Analysis of the movement of particles in a nonuniform field requires accurate knowledge of the electric field
distribution in the system. This paper describes a method for analytically solving the electric field distribution
above interdigitated electrode arrays used for dielectrophoresis �DEP� and traveling wave dielectrophoresis
�twDEP�, using the Schwarz-Christoffel mapping method. The electric field solutions are used to calculate the
dielectrophoretic force in both cases, and the traveling wave dielectrophoretic force and the electrorotational
torque for the twDEP case. This method requires no approximations and can take into account the Neumann
boundary condition used to represent an insulating lid and lower substrate. The analytical results of the electric
field distributions are validated for different geometries by comparison with numerical simulations using the
finite element method.
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I. INTRODUCTION

In the field of micro total analysis systems ��TAS� or the
lab-on-a-chip �LOC�, the manipulation, separation, and char-
acterization of biological particles can be performed using
electrical techniques based on ac electrokinetics �1�. When
an electric field is applied to a suspension of particles,
charges accumulate at the interface between the particle and
the fluid medium, a phenomenon known as Maxwell-Wagner
interfacial polarization. This produces an induced dipole mo-
ment across the particle, the magnitude and direction de-
pending on the difference in the polarizability of the particle
and the medium. The interaction between the induced dipole
moment and a nonuniform electric field produces an unbal-
anced force on the two poles, which results in the transla-
tional movement of the particles. Applications in this area
include manipulating, separating, trapping and sorting par-
ticles such as cells, bacteria, and viruses �2–8�, using dielec-
trophoresis �DEP� �9,10�, electrorotation �ROT� �11,12�, and
traveling wave dielectrophoresis �twDEP� �13–15�.

DEP is the movement of the particles in the nonuniform
electric field, due to the imbalance of force on the two sides
�poles� of the particle. This movement is towards regions of
high or low field strength depending on whether the particle
is more or less polarizable than the medium at the applied
frequency. The DEP force depends on the in-phase compo-
nent of the effective dipole �16,17�. ROT occurs when the
field has a nonuniform phase, which means that there is a
rotational component to the field. The direction of the effec-
tive dipole lags behind the turning field vector, leading to
torque on the particle which depends on the out-of-phase
component of the dipole �18,19�. For further details on the
relationship between DEP and ROT see Wang et al. �20,21�.
In electric fields with spatially varying phases, a particle ex-

periences a linear force in addition to the DEP force which
depends on the out-of-phase component of the effective di-
pole. This is referred to as traveling wave dielectrophoresis
�twDEP�, since it was first observed in traveling electric
fields �22�. This method can be used to separate or fraction-
ate particles without the need to pump a liquid through the
device.

A number of microfluidic devices with different micro-
channel geometries and microelectrode patterns have been
used for DEP and twDEP. Since the interaction between the
electric field and the induced dipole is the origin of the mo-
tion of the particles, it is important to characterize the
strength and direction of the electric field in the system. Un-
fortunately, accurate analytical electric field solutions are
generally difficult to obtain due to the complicated structures
of the microelectrodes and the geometries of the microde-
vices. Even for the most commonly used interdigitated elec-
trode arrays, no strict and computationally efficient analyti-
cal solution has been reported. Previous analytical solutions
use Green’s theorem �23�, Green’s function �24,25�, half-
plane Green’s function �26� and Fourier series �27,28�. How-
ever, these analytical solutions all involve approximations. In
both the Green’s theorem and Fourier series methods, it is
assumed that the potential varies linearly with distance in the
electrode gaps. In the method of Green’s function, the gradi-
ent of the electric field magnitude squared is influenced by
the choice of a characteristic length scale. In the method of
half-plane Green’s function, a linear approximation for the
surface potential in the gaps between the electrodes is
adopted. Other approaches, such as the charge density
method �29� and numerical simulation �30� are accurate but
computationally expensive.

In this paper, we present analytical solutions of the elec-
tric field distribution above interdigitated electrode arrays in
both DEP and twDEP applications using the Schwarz-
Christoffel mapping �SCM� method. This method requires no
approximations and the results are straightforward to use. In
other analytical solutions �23–27�, the presence of the upper
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surface of the fluidic channel �the insulating lid in real de-
vices� imposes a Neumann condition on the solution of the
potential, a factor that was not considered. In Ref. �28�, this
condition was analyzed using a closed form of Fourier series,
but the solution approximates the potential distribution in the
electrode gaps to a linear function.

When interdigitated electrode arrays are used for the ap-
plication of DEP, two ac voltage signals of angular frequency
� with phases 0° and 180° are alternately connected to the
electrodes to generate a nonuniform electric field with a spa-
tially constant phase. For twDEP, four signals with phase
shifts of 90° are sequentially applied to the electrodes in the
array, generating a traveling electric field with a spatially
dependent phase. Figure 1 shows a schematic of the system
and the geometrical parameters for the electrodes and the
channel with the different potentials for DEP and twDEP,
respectively.

In Sec. II, we briefly review fundamental ac electrokinetic
theory and the principle of SCM method with the common
boundary conditions used in the electric field analysis of
DEP and twDEP electrode arrays. Due to the different ap-
plied potentials in DEP and twDEP electrode arrays, the ge-
ometries of the problem spaces are different and the solu-
tions for the two cases are discussed in Secs. III and IV
separately. Analytical electric field solutions are derived in
both cases and validated by numerical simulations using the
finite element method �FEM�. The field solutions are used to
calculate the DEP force in the DEP and twDEP arrays and
twDEP force and ROT torque in the twDEP array.

II. THEORY

For DEP and twDEP experiments and calculations, the
general approach is to assume that the field is quasi-
electrostatic �1,24,27,30�. This assumes that the electric field
is irrotational �an implicit assumption in the derivation of the
DEP and twDEP forces�, or that the currents in the system
are slow time-varying. As a result, the electric field can be
taken to be the gradient of a scalar potential.

A. Fields and DEP force in interdigitated electrode arrays

For an ac potential of single frequency, the electric field
can be expressed using complex phasor notation �1,11,14� as

E=Re�Ẽej�t�, where j2=−1, � is the angular frequency of
the electric field, t is time, Re �¯� indicates the real part of

�¯� and Ẽ=−��̃=−���R+ j��I� is the general complex

amplitude of the electric field. �̃=�R+ j�I is the complex
electrical potential phasor with �R and �I as the real and
imaginary components respectively.

The time-averaged dielectrophoretic force on the dipole is
�1�

�F� =
1

2
Re��p̃ · ��Ẽ*� =

1

2
v Re��̃�Ẽ · ��Ẽ*� , �1�

where p̃ is the induced dipole moment phasor, v the volume
of the particle, �̃ the effective polarizability, and � indicates
complex conjugate.

Equation �1� can be rewritten as

�F� =
1

4
v Re��̃� � �Ẽ�2 −

1

2
v Im��̃�„� � �Re�Ẽ� � Im�Ẽ��… ,

�2�

where �Ẽ�2= �Re�Ẽ��2+ �Im�Ẽ��2 and Im�¯� indicates the
imaginary part of �¯�.

Equation �2� shows that the dielectrophoretic force con-
sists of two components; the first term on the right is the
conventional DEP force; the second term the twDEP force.
Conventional DEP occurs in a nonuniform electric field. In
order to calculate the DEP force, we need to know the vol-
ume and polarizability of the particle and the field-related

component, ��Ẽ�2, which we term the “dielectrophoretic
force component” in this paper, and obtained from field
analysis. The twDEP force occurs whenever the imaginary
�out-of-phase� part of the effective polarizability is nonzero
and giving a spatial phase variation. As particles move in the
x-y 2D plane �Fig. 1�, they will simultaneously experience an
electrorotational torque in the third direction �z axis�. This
ROT torque is given by

��� =
1

2
Re�p̃ � Ẽ*� = − v Im��̃��Re�Ẽ� � Im�Ẽ�� . �3�

Similarly, the field-related components �� �Re�Ẽ�
� Im�Ẽ�� and Re�Ẽ�� Im�Ẽ� are termed the “traveling wave
dielectrophoretic force component” and the “electrorota-
tional torque component,” respectively, and are obtained
from the analytical electric field solution.

B. Schwarz-Christoffel mapping (SCM) method

The SCM method maps the upper half of a complex plane
�T-plane� into the interior of a given polygon in another com-
plex plane �Z-plane�. The Z-plane represents the real system
in our case. Complex numbers in this plane represent vectors
in the real system, with the real component representing the
horizontal direction �x-axis� and the imaginary component
the vertical direction �y-axis�. A general mathematical de-
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FIG. 1. Diagram showing the experimental system, consisting of
the interdigitated electrode array used for dielectrophoresis �DEP�
and traveling wave dielectrophoresis �twDEP�. For DEP, the elec-
trodes are connected to voltages with 180° phase shifts. For twDEP,
the electrodes are connected to a frequency generator with 90°
phase shift. w is the electrode width, g is the electrode gap, and h is
the height of the channel.
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scription of the SCM method is provided in Appendix A, and
further details can be found in �31�.

For the electric field analysis, a nonuniform two-
dimensional electric field polygonal region is transformed
into an equivalent rectangular region �a parallel plate capaci-
tor�, where the electric field distribution is uniform, as fol-
lows.

�a� Select a basic cell for the physical two-dimensional
geometry using symmetrical axes in the physical plane
�Z-plane�. Determine the boundary conditions �i.e., Neumann
or Dirichlet condition� along each boundary of the cell.

�b� Apply SCM method to map the basic cell from the
Z-plane to the upper half of the auxiliary plane �T-plane�.

�c� Apply a second SCM method to transform the upper
half of the T-plane into a closed parallel plate capacitor re-
gion in the model plane �W-plane�.

The original nonuniform field problem in the Z-plane can
then be easily solved in the W-plane. The details of the trans-
formation procedure along with the analysis of the electric
field are described in the following sections.

The SCM method has been used to solve problems in
electrostatics and magnetostatics �32,33�, transmission lines
and waveguides �34–37�, temperature distribution and heat
transfer �38,39� and fluid flow �40�. Latterly, conformal map-
ping has been used to analyze electromagnetic field problems
in MEMS devices, including coupling capacitance in comb-
finger actuators �41� and forces in electromechanical actua-
tors �42�. Gevorgian’s group �43–46� has used conformal
mapping to model interdigital capacitors �IDC� or coplanar-
strip waveguides �CPW�, which have similar geometry to the
interdigitated electrode arrays. In particular, in Ref. �43�, the
periodical structure of a single-layer substrate IDC has the
same geometry and boundary conditions as the DEP elec-
trode array. However the authors used a metal strip assump-
tion to simplify the problem by changing the closed geom-
etry to a semi-infinite channel, in order to avoid the complex
expressions in the transformations for the original geometry,
which involve both Jacobian elliptic functions and elliptic
integrals. In this paper, we solve the problem of the DEP
electrode array without altering the geometry. The derived
expressions of the elliptic integrals can be also applied to
calculate the capacitances of the IDC in �43� as a complete
solution, but this work is beyond the scope of this paper. We
are interested in utilizing the analytical electric field solution
to characterize the translational motion of the particles in the
electrode arrays. For the twDEP electrode array, to the best
of our knowledge, there is no accurate analytical solution for
four-phase periodic potential.

C. Common boundary conditions for DEP and twDEP
electrode arrays

Before performing the electric field analysis, the boundary
conditions in the corresponding system must be determined.
There are several common boundary conditions to both the
DEP electrode array and twDEP electrode array.

�a� Since the electrodes are long compared to their width,
the problem reduces to two dimensions, allowing the SCM
method to be used.

�b� The electrodes are much thinner than the electrode
width and the gap, so that the electrodes can be represented
by a thin section of the bottom boundary at a fixed potential.

�c� Since the normal component of the total current pass-
ing through the electrolyte-lid and electrolyte-substrate inter-
faces must be continuous and the lid and the substrate are
made from glass, which has a much smaller permittivity and
conductivity than the electrolyte �water� in the channel, the
normal component of the electric field in the electrolyte at
the interface is negligible compared to that of the glass �30�.
Therefore, we assume that Neumann boundary condition �in-
sulating� holds for the potential at the electrolyte-lid and
electrolyte-substrate interfaces: ���̃ /�n=0, where n is the
normal to the boundary�. The maximum error due to the
assumption of Neumann boundary condition at the water-
glass interface is found to be less than 1% of the applied
voltage which occurs at the top lid �47�.

The remaining boundary conditions in DEP and twDEP
electrode arrays depend on the potentials used for each sys-
tem.

III. DIELECTROPHORETIC ELECTRODE ARRAY

The SCM method allows analysis of systems with or
without an insulating lid. Therefore in order to demonstrate
the effect of the lid on the electric field distribution in the
DEP array, we first solve the electric field distribution with
complete boundary conditions including an insulating lid.
Secondly, the same system is solved without the lid, extend-
ing the upper surface to infinity. The resulting analytical so-
lutions of the electric field are compared with numerical
simulations. The effect of the lid is discussed for the near and
far field regions, equivalent to a shallow and deep channel.
The dielectrophoretic force is then calculated from the field
solutions and compared with Fourier series analytical solu-
tions.

A. Boundary conditions for array with lid

The values for the real and imaginary parts of the poten-
tial phasor at each electrode, together with the boundary con-
ditions are shown in Fig. 2�a�. Since the two ac signals of
angular frequency � with phases 0° and 180° are alternately
connected to the electrodes, the boundary conditions are
equivalent to two in-phase signals with opposite sign and the
imaginary part of the potential phasor is zero ��I=0� and
only the real part �R needs to be solved. From symmetry, the
basic cell �ABCDE� is chosen for the electric field analysis.
For a detailed description of the boundary conditions in the
DEP array, see �30�.

Figure 2�b� shows the three complex planes used for the
mapping procedure. The selected cell ABCDE is rotated 90°
and set in the Z-plane with the boundary conditions for �R as
shown: ��R /�n=0, along the insulating walls AE and CD
and the boundary for the axis of even symmetry �BC�. Di-
richlet boundary conditions define the fixed potential �R=V
along the electrode �AB� and the boundary for the axis of odd
symmetry, �R=0 �DE�. The complex coordinates for each
point in the physical plane �according to the geometrical pa-
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rameters of the system� are ZA= jg /2, ZB= j�w+g� /2, ZC=h
+ j�w+g� /2, ZD=h, and ZE=0.

B. SCM procedure for array with lid

The interior of the polygon ABCDE in the Z-plane is
mapped into the upper half of the T-plane using the SCM
method. The polygon ABCDE is opened at point F and the
boundaries of the polygon mapped to the real axis of the
T-plane. The coordinates of the corresponding points ZA to
ZE in the T-plane are TA to TE, respectively. The point F is
mapped to positive and negative infinity. The four interior

angles of polygon ABCDE at points E, B, C, D are all � /2.
According to Eq. �3�, the SCM integral from T-plane to
Z-plane is given by

Z = C1�T

�T − TE�−1/2�T − TB�−1/2�T − TC�−1/2�T − TD�−1/2dT

+ C2, �4�

where Z=Zx+ jZy refers to the complex coordinate of any
point in the interior of polygon ABCDE in the Z-plane. T
=Tx+ jTy refers to the complex coordinate of any point in the
upper half of the T-plane.
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FIG. 2. �a� Schematic of a 2D section of the DEP electrode showing the potentials. The vertical lines mark the period over which the
system repeats. The rectangle ABCDE is the basic cell for analysis. Also shown is the potential �, the potential phasor �̃, and the value of
the real part of the potential phasor �R on each electrode. The imaginary part of the potential phasor �I is zero everywhere. �b� Diagram
showing the three complex planes used for Schwarz-Christoffel mapping �SCM� taking into account the lid. �c� Diagram showing the three
complex planes used for the Schwarz-Christoffel mapping �SCM� procedure for array without the lid.
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Since the SCM method allows up to three points to be
arbitrarily chosen along the real axis of the T-plane, we fix
the coordinates of TD=0, TC=1 and TB=1.2 as shown in Fig.
2�b�. For T	TE	TB	TC	TD, the solution of Eq. �4� is an
elliptic integral �48�:

Z = C3F�
d1,kd1� + C2

= C3�
0

�d1 d�d1

�1 − �d1
2 ��1 − kd1

2 �d1
2 �

d�d1 + C2, �5�

where F�
d1 ,kd1� is the elliptical integral of the first kind
and kd1 is the modulus of the elliptic function. The expres-
sions for the variables C3, 
d1, kd1, and �d1 are given in
Appendix B.

Equation �5� links the T-plane to the Z-plane. The values
of the coefficients C2 and C3 can be solved by a mapping
relationship between the coordinates of the corresponding
points in the two planes, which is shown in Appendix B:

C2 = 0, C3 =
h

K�kd1�
=

w + g

2K�k�d1�
, �6�

where K�kd1� is the complete elliptic integral of the first kind
and kd1� =	1−kd1

2 . The expression for C3 also provides the
relationship between the complete elliptical integral and the
geometrical parameters of the system:

K�kd1�
K�k�d1�

=
2h

w + g
. �7�

The value of the modulus, kd1 can be calculated by inputting
arbitrary geometrical parameters using Hilberg’s approxima-
tion �49�.

The inverse function of Eq. �5� enables us to express T in
terms of Z:

T =

TETBcn2
 Z

C3
,kd1�

TB − TEsn2
 Z

C3
,kd1� , �8�

where sn�…, …� and cn�…, …� are the Jacobian elliptic
functions. The expression for TE is given in Appendix B and
TB=1.2.

The second SCM is used to transform the upper half of
the T-plane into a rectangle in the model plane �W-plane�.
The electric field is uniformly distributed in the interior of
the rectangle, due to the restriction from the transformed
boundaries in the W-plane. The corresponding points are
WA= jYWd, WB=XWd+ jYWd, WD=XWd, and WE=0, where
XWd and YWd are the size of the rectangle along the real and
imaginary axis, respectively. Similarly, the transformation
from the T-plane to the W-plane is given by

W = D1�T

�T − TE�−1/2�T − TA�−1/2�T − TB�−1/2�T − TD�−1/2dT

+ D2. �9�

It should be noted that, compared to Eq. �4�, in this transfor-

mation point A replaces C to become an angle of the rect-
angle. The integral solution of Eq. �9� is

W = D3F�
d2,kd2� + D2

= D3�
0

�d2 d�d2

�1 − �d2
2 ��1 − kd2

2 �d2
2 �

d�d2 + D2. �10�

The expressions for D3, 
d2, kd2, and �d2 are given in Ap-
pendix B. Equation �10� links the T-plane with the W-plane.
The values of the coefficients D2 and D3 can be obtained by
a similar procedure to the first SCM performance:

D2 = 0, D3 =
XWd

K�kd2�
=

YWd

K�k�d2�
. �11�

C. Analytical electric field solution in array with lid

Since Laplace’s equation remains invariant under confor-
mal mapping, the potential gradients in the physical plane,
��Z, and model plane, ��W, are related by �31�

��Z = ��Wf��Z� = ��W
dW

dZ
. �12�

f��Z� is the conjugate of the derivative of f�Z�, which is the
linking transformation equation between the Z- and
W-planes. Using this relationship and combining Eqs. �4�
and �9�, the nonuniform electric field distribution in the
Z-plane, EZd, can be derived as

EZd = − ��Zd = − ��Wd
dW

dT

dT

dZ
�

= j
V

h

K�kd1�
K�k�d2�

�TA�TE − TB��T − TC�
TB�TE − TC��T − TA�
1/2

,

�13�

where �Zd and �Wd are the potentials in the Z- and W-planes,
respectively, and V is the potential difference between the
electrode AB and the axis of odd symmetry, DE. Note that
the expressions for TA and TE are given in Appendix B and
TB=1.2 and TC=1.

Equation �13� is the analytical solution for the electric
field in the basic cell for the interdigitated DEP array. Com-
pared to the previous analytical solution using series expan-
sions, Eq. �13� is significantly simpler. The features of the
electric field distribution that are governed by the geometry
of the device are clearly identified. The electric field magni-
tude approaches zero at point C �when T=TC� and infinity at
point A �when T=TA�, the edge of the electrode.

Substituting Eq. �8� into �13�, we obtain the electric field
expression as a function of position in the interior of polygon
ABCDE in the Z-plane:
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E
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= j
V
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. �14�

To calculate the DEP force in the array, we determine the

value of the dielectrophoretic force component, ��Ẽ�2:

��EZd�2 = ��EZd�x
2 + EZd�y

2 � , �15�

where EZd�x and EZd�y represent the x and y components of
the electric field in the real geometry, respectively.

Separating the real and imaginary parts of Eq. �15� to give
these components requires the formulas for the Jacobian el-
liptic functions �50� �see Appendix B�.

D. Analytical electric field solution in array without lid

One common feature of previous analytical solutions
�23–27� is that the upper boundary, i.e., the lid of the chan-
nel, was not considered in the analysis. Instead, the potential
was assumed to tend to zero as the height goes to infinity,
which is only valid if the lid is far from the electrodes. How-
ever if the height of the channel is comparable to the width
of the electrodes �and gap�, the lid will influence the electric
field distribution.

Equation �14� gives the field distribution for a fixed chan-
nel height. For comparison with existing solutions we also
use the SCM method to derive the electric field solution for
a system without the lid.

The three complex planes for this case are shown in Fig.
2�c�. The boundary conditions are the same as for the previ-
ous case, except for the top Neumann boundary condition. In
the Z-plane, the coordinates of each point are ZA=w /2, ZB
=0, ZC=0+ j�, ZD= �w+g� /2+ j�, and ZE= �g+w� /2. The
SCM integral from the Z-plane to the T-plane is

Z = C1��T

�T − TE�−1/2�T − TB�−1/2dT + C2�. �16�

In the T-plane, the coordinates of point B and E are chosen
at: TB=−1 and TE=0. The points C and D are mapped to
negative and positive infinity on the real axis of the T-plane
respectively. The solution of Eq. �16� is

Z = 2C1� ln�	T + 	T + 1� + C2�, �17�

where the coefficients C1� and C2� are obtained from applying
the mapping to points B and E in the Z- and T-planes:

C1� = j
w + g

2�
, C2� =

w + g

2
. �18�

The inverse function of Eq. �17� is

T = sinh2
Z − C2�

2C1�
� . �19�

This gives the coordinate of point A in the T-plane:

TA = sinh2
 j
g�

2�w + g�� . �20�

The SCM integral from the T-plane to the W-plane is

W = D1��T

�T − TE�−1/2�T − TA�−1/2�T − TB�−1/2dT + D2�.

�21�

For T	TE	TA	TB the solution of Eq. �21� is an elliptic
integral �48�:
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W = D3�F�
d3,kd3� + D2�

= D3��
0

�d3 d�d3

�1 − �d3
2 ��1 − kd3

2 �d3
2 �

d�d3 + D2�. �22�

with

D3� =
2D1�

	TE − TB

, 
d3 = arcsin
	T − TE

T − TA
� ,

kd3 =	TA − TB

TE − TB
, �d3 = sin 
d3.

In the W-plane, WA= jY�Wd, WB=X�Wd+ jY�Wd, WD=X�Wd,
and WE=0. The values of the coefficients D�2 and D�3 are

D2� = 0, D3� =
X�Wd

K�kd3�
=

Y�Wd

K�k�d3�
. �23�

The nonuniform electric field distribution in the Z-plane is
then solved as

E�Zd = − ��Wd
dW

dT

dT

dZ
� =

�V

w + g

1

K�k�d3�

TE − TB

T − TA
�1/2

.

�24�

This is the analytical solution for the electric field in the
basic cell of the DEP electrode array without the insulating
lid. Note that TA is given by Eq. �20� and TB=−1 and TE
=0. Compared to Eq. �13�, the electric field magnitude goes
to infinity at the edge of the electrodes �point A�. However
there is no point of zero field, since point C goes to infinity
in the y direction in the Z-plane. In this paper, calculations of
the electric fields and ��EZd�2 using Elliptic functions were

FIG. 3. The electric field and DEP force component ���EZd�2� in the basic cell of the DEP array without lid. The positions of the
electrodes are drawn on the figures. �a� Electric field vector and magnitude �V/m, log10 scale�, �b� 3D surface plot of electric field magnitude,
�c� DEP force component vector and magnitude �log10 scale�, and �d� 3D surface plot of ��EZd�2.
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performed in MATLAB™ �Mathworks Inc, Natick, MA,
USA�.

E. Electric field distribution and DEP force

Typical experimental values were used in the calculations:
The electrode width and gap were 20 �m and the voltage
applied to the electrode was 1 V. For the case of the array
with lid, the channel height was 60 �m.

Figure 3�a� shows the electric field up to 60 �m in height,
for the basic cell without the lid. The magnitude of the elec-
tric field is symmetrical about the vertical line through the
electrode edge, since the electrode width and the gap are the
same. Figure 3�b� shows the electric field magnitude as a 3D
surface, clearly demonstrating the maximum �theoretically
infinity� at the electrode edge and the exponential decrease
with height in the far field, as reported previously �26,27,30�.

Figure 3�c� is a plot of ��EZd�2, showing that the DEP force
�direction and magnitude� is symmetrical about the vertical
line through the electrode edge, also due to the same length
of the electrode width and the gap. It can also be seen that in
the far field, the DEP force acts only in the vertical direction
and in the near field, ��EZd�2 points towards the electrode
edge. Figure 3�d� shows the magnitude of ��EZd�2 as a 3D
surface, clearly showing the maximum at the electrode edge,
the minima in the corners at the substrate and the exponential
decrease with height in the far field.

Figure 4�a� shows the electric field for the array with the
lid. The bending of the electric field lines by the lid is clearly
observed in the vector plot, where the vectors near the top
boundary tend to lie parallel to the lid. This clearly shows the
consequence of the Neumann boundary condition, imposed
at the lid. In this case, the magnitude of the electric field is
not symmetrical about the vertical line through the electrode

FIG. 4. Solutions of the electric field and DEP force component ���EZd�2� in the basic cell of the DEP array with the lid. �a� Electric field
vector and magnitude �V/m, log10 scale�, �b� 3D surface plot of the magnitude of the electric field, �c� DEP force component, vector, and
magnitude �log10 scale�, and �d� 3D surface plot of ��EZd�2.
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edge, even though the electrode width and the gap are equal.
This can be seen more clearly in Fig. 4�b�, the electric field
magnitude is zero at point C �the point where the lid meets
the even symmetry axis�, since at this point, it has to simul-
taneously satisfy the Neumann boundary condition at the lid
and the even symmetry axis �CD and BC in Fig. 2�b�,
Z-plane�. Close to the electrode surface, there is a maximum
at the electrode edge. Figure 4�c� shows ��EZd�2 for this case,
demonstrating that while the DEP force in the near field is
approximately the same as for the previous case, in the far
field �close to the lid�, the behavior is quite different. The
field minimum in the corner has a strong influence on the
direction of the DEP force, which is no longer only in the
vertical direction, and practically would result in a negative
DEP trap at point C. Figure 4�d� shows the maximum in the
DEP force at the electrode edge and the four minima in each
corner.

Since most analytical solutions ignore the presence of an
upper boundary, a further examination of the effect of the lid
is warranted. If the channel height is of the same order of
magnitude as the electrode width and gap distance, the effect
of the lid is always important. Figure 5�a� shows significant
difference in the electric field magnitude at a height of
10 �m for two different channel heights, with the solution
for a channel height of 20 �m showing considerable dis-
agreement with the no lid case. The 100 �m channel height
case agrees with the no lid situation, showing that the effect
of the lid in the near field region becomes negligible as the

channel height increases. However, this effect still plays an
important role in the far field region, near the top of the
channel. This is demonstrated by Fig. 5�b�, which shows the
electric field magnitude at a height of 90 �m for the 100 �m
high channel compared with the solution for no lid, where
the magnitude of the field is constant. This figure shows that
the presence of the lid cannot be ignored when determining
the DEP force in the region close to the lid.

F. Comparisons with FEM simulations—electric field

The analytical solution for the electric field was compared
with numerical simulations performed using COMSOL

MULTIPHYSICS™ �Comsol Ltd.�, a finite element method
�FEM� solver. In order to ensure the accuracy of the numeri-
cal simulations, the meshing was increased around the elec-
trode edge �point A�, and along paths where the electric field
was sampled. The analytical solutions were validated more
comprehensively by varying the ratio of the electrode width
and gap distance. For the array with lid, the height of the
channel was set to 60 �m, with the sum of electrode width
and gap fixed at 40 �m. The ratios of electrode:gap width
were 1:3, 1:1, and 3:1 and comparisons of the electric field
were performed at heights of 10 �m �near field region�,
30 �m �middle field region�, and 50 �m �far field region�,
respectively.

Figures 6�a�–6�c� demonstrate excellent agreement be-
tween the SCM solutions and the FEM solutions for the three
ratios and heights detailed above. The figures also demon-
strate the relationship between the electric field magnitude
and the ratio of the electrode width and gap. In the near field
region, Fig. 6�a�, the position of the electrode edge deter-
mines the region of maximum field. By extending the edge
of the electrode towards the odd symmetry axis �DE�, the
high field region shifts from the even symmetry axis �BC�
side to the odd symmetry axis side. In the middle and far
field regions �Figs. 6�b� and 6�c��, this effect gradually dis-
appears and the electric field magnitude on the odd symme-
try axis side is always higher than that on the even symmetry
axis side, due to the existence of the zero field point. For the
array without lid, comparisons were performed for the same
electrode width to gap ratios, with the channel height set to
500 �m in the FEM simulations. The values of the electric
field are sampled in the near field region at a height of
10 �m and the results are shown in Fig. 6�d�, again showing
excellent agreements with the analytical model.

G. Comparisons with Fourier series solutions

The results of the comparison of the SCM solutions of
��EZd�2 �the DEP force component� with the simplified
closed form Fourier series �FOU� solution �27� are shown in
Figs. 7�a�–7�d�. The electrode width and gap were both set to
20 �m. In Fig. 7�a�, the magnitude of ��EZd�2 is plotted
along the vertical line through the edge of the electrode,
demonstrating that the FOU and SCM solutions only seem to
agree at intermediate heights �between 10 �m to 50 �m�,
where the magnitude of the force decreases exponentially. In
the far field region, the FOU and SCM solutions without lid
agree but both disagree with the SCM lid solution, as ex-

FIG. 5. Plot showing the influence of the lid on the electric field
distribution for an electrode array with width and gap set to 20 �m.
�a� Near field region for two cases: channel height 20 �m or
100 �m. �b� Far field region at 90 �m for a channel height of
100 �m.
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pected due to the neglected upper boundary condition. In the
near field solution, the SCM solutions with and without lid
agree with each other but deviation of the FOU solution is
readily apparent. Calculation of the magnitude of ��EZd�2
along a horizontal line at a height of 10 �m, Fig. 7�b�, shows
that the FOU solution is not symmetrical about the vertical
line through the edge of the electrode as observed in the
vector plot in Fig. 5 of �27�. For low channels, the FOU
solution is even more inaccurate, since the effect of the lid is
more pronounced, as shown in Figs. 7�c� and 7�d�.

A quantitative discussion of the difference between the
two solution methods can be performed by examining the
difference in magnitude and the angle of deviation in direc-
tion. The magnitude difference was determined as the ratio:
FFOU/FSCM, where FFOU and FSCM are the magnitude of the
DEP forces for the two solutions. The deviation between the
directions of the force vectors was characterized by cos 
,
defined as

cos 
 =
FFOU · FSCM

�FFOU��FSCM�
. �25�

Figure 8�a� shows a surface plot of the magnitude of

FFOU/FSCM. At the electrode edge, the magnitude of the DEP
force from the Fourier series is approximately one order of
magnitude less than that given by the SCM solution. How-
ever, at the three corners of the basic cell �except the corner
on the surface of the electrode�, the Fourier series solution is
approximately two orders of magnitude greater than the
SCM solution. In the mid range of height, Fig. 8�b� shows
that even where the agreement was apparently good in Fig.
7�a�, the difference is still approximately 15%. Figure 8�c�
shows the surface plot of cos 
, demonstrating the misalign-
ment between the direction of the DEP force in the FOU and
SCM solutions in the far field region �close to the lid� and
the near field region in the gap.

IV. TRAVELING WAVE DIELECTROPHORETIC
ELECTRODE ARRAY

In the twDEP electrode array, since the four signals are
phase shifted by 90° and are connected alternately to the
electrodes, both the real and imaginary parts of the potential
phasor must be considered.

A. Boundary conditions

Apart from the common boundary conditions, the values
for the real and imaginary parts of the potential phasor at
every electrode and the additional boundary conditions are
shown in Fig. 9�a�. The basic cell �ABCDEF� chosen for
analyzing the electric field distribution covers the region be-
tween the centers of two adjacent electrodes and the entire
gap between. According to Fig. 9�a�, the boundary conditions
for the imaginary part of the potential phasor, �I, are the
mirror image of those for the real part, �R, about the center
of the gap. This indicates that only the real component of the
potential, i.e., for ER, must be solved, which can then be
transformed to give the solution for the imaginary compo-
nent.

Figure 9�b� shows the three complex planes used in the
SCM method to solve the real part of the electric field. In the
Z-plane, which represents the real system, the basic cell
ABCDEF is rotated 90°. The complete boundary conditions
for the real part of the potential phasor, �R, are as shown.
The Neumann boundary condition ��R /�n=0 �indicated by
dashed lines� holds along the insulating walls AF and CD as
well as the axis of even symmetry, BC. Dirichlet boundary
conditions define the fixed potential �R=V on the electrode
AB and �R=0 on the electrode EF, as well as �R=0 on the
axis of odd symmetry, DE. The coordinates of each point in
the physical plane are ZA= j�2g+w� /2, ZB= j�w+g�, ZC=h
+ j�w+g�, ZD=h, ZE=0, and ZF= jw /2.

B. SCM procedure

In the auxiliary plane �the T-plane�, the polygon
ABCDEF is opened at point G in the Z-plane and mapped
into the upper half of the T-plane, with all the boundaries
mapped onto the real axis. The coordinates of the corre-
sponding points to ZA , . . . ,ZF in the T-plane are TA , . . . ,TF,
respectively. The point G is mapped to positive and negative
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infinity. The four interior angles of polygon ABCDEF at
points E, B, C, and D are all � /2. The SCM integral from the
T-plane to the Z-plane is given by

Z = C1�T

�T − TE�−1/2�T − TB�−1/2�T − TC�−1/2�T − TD�−1/2dT

+ C2. �26�

As in the DEP array, we can arbitrarily choose up to three
points along the real axis of the T-plane, and therefore fix
TB=1.2, TC=1, and TD=0, as shown in Fig. 9�b�. For T
	TE	TB	TC	TD, the solution of Eq. �B1� is an elliptic
integral �48�:

Z = C3F�
t1,kt1� + C2

= C3�
0

�t1 d�t1

�1 − �t1
2 ��1 − kt1

2 �t1
2 �

d�t1 + C2, �27�

where F�
t1 ,kt1� is the elliptical integral of the first kind and
kt1 is the modulus of the elliptic function. The expressions
for C3, 
t1, kt1, and �t1 are given in Appendix B.

Equation �27� links the T-plane with the Z-plane. The val-
ues of the coefficients C2 and C3 can be solved by the coor-
dinates of the corresponding points: B, C, D, and E �see
details in Appendix B�

C2 = 0, C3 =
h

K�kt1�
=

w + g

K�k�t1�
, �28�

where K�kt1� is the complete elliptic integral of the first kind
and kt1� =	1−kt1

2 . Similar to the DEP array case, the expres-
sion for C3 provides the relationship between the complete
elliptical integral and the geometrical parameters of the sys-
tem:

K�kt1�
K�k�t1�

=
h

w + g
. �29�

The factor of 2 difference compared to the relationship for
the DEP array �Eq. �7�� is because the basic cell for twDEP
includes two electrodes. Equation �29� can also be evaluated
using Hilberg’s approximation �49�. The value of the modu-
lus, kt1, is calculated by inputting arbitrary geometrical pa-
rameters.

The inverse function of Eq. �27� gives T in terms of Z:

T =

TETBcn2
 Z

C3
,kt1�

TB − TEsn2
 Z

C3
,kt1� , �30�

where sn�…, …� and cn�…, …� are the Jacobian elliptic
functions. The coordinate of point A and F in the T-plane can
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be obtained from Eq. �30� �see Appendix B�.
The SCM method is then used a second time, with the

upper half of the T-plane transformed into a rectangle in the
model plane �W-plane�, where the electric field distribution is
uniform. The four corner points in the W-plane are: WA
= jYWt, WB=XWt+ jYWt, WD=XWt and WF=0 where XWt and
YWt are the size of the region along the real and imaginary
axes, respectively. The transformation from the T-plane to
the W-plane is given by

W = D1�T

�T − TF�−1/2�T − TA�−1/2�T − TB�−1/2�T − TD�−1/2dT

+ D2. �31�

It should be noted that compared to Eq. �26�, in this trans-
formation points A and F replace C and E to become two
corners of the rectangle. The integral solution of Eq. �31� is

W = D3F�
t2,kt2� + D2

= D3�
0

�t2 d�t2

�1 − �t2
2 ��1 − kt2

2 �t2
2 �

d�t2 + D2, �32�

with

D3 =
2D1

	�TA − TD��TF − TB�
,


t2 = arcsin
	�TA − TD��T − TF�
�TF − TD��T − TA�

� ,

kt2 =	�TF − TD��TA − TB�
�TA − TD��TF − TB�

, �t2 = sin 
t2.

Equation �32� gives the transformation from the T-plane to
W-plane. The values of the coefficients D2 and D3 can be
obtained by a similar point-point mapping procedure as pre-
sented in Appendix B for the first SCM transformation:

D2 = 0, D3 =
XWt

K�kt2�
=

YWt

K�k�t2�
. �33�

C. Analytical electric field solution

Using the relationship between the gradient of the poten-
tial in the Z- and W-planes �42� and combining Eqs. �26� and
�31�, the real part of the electric field distribution in the
Z-plane, EZRt, for the twDEP array can be derived as

EZRt = − ��ZRt = − ��WRt
dW

dZ
�

= j
V

h

K�kt1�
K�k�t2�

�TA�TF − TB��T − TC��T − TE�
TB�TE − TC��T − TA��T − TF�
1/2

,

�34�

where �ZRt and �WRt are the real part of the potential in the
Z- and W-plane, respectively.

Equation �34� is the analytical solution for the real part of
the electric field distribution in the basic cell for the twDEP

array. The expressions for TA, TE, and TF are given in Ap-
pendix B and TB=1.2, TC=1. Similar features of the field
distribution can be seen as for the DEP array case. The elec-
tric field magnitude goes to zero at points C and E �when
T=TC and T=TE� and infinity at points A and F �when T
=TA and T=TF�, which represent the electrode edges.

Equation �34� is then used to calculate the electric field
terms in the expressions for the dielectrophoretic force, the
traveling wave dielectrophoretic force and electrorotational
torque. The calculations were performed in MATLAB™. For
the twDEP array case, we only consider a design of array
which includes the lid of the channel. A simpler solution with
the channel height going to infinity can be derived, as in the
DEP array case, but will not be presented here. The width of
the electrode and the gap separation was set to 20 �m and
the height of the channel to 60 �m. The voltage applied to
the electrode is 1 volt.

D. Electric field distribution

Figure 10�a� shows the direction and the magnitude of the
real part of the electric field, EZRt, for the basic cell. Figure
10�b� is a 3D surface plot of the magnitude of the real part of
the electric field, which goes to a maximum at the edge of

FIG. 10. Solutions of the real part of the electric field in the
basic cell of the twDEP array. The positions of the electrodes are
drawn on the figures. �a� Electric field vectors and magnitude �V/m,
log10�. �c� 3D surface plot of electric field magnitude �V/m, log10�.
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the electrodes �points A and F� and decreases away from the
electrodes. The zero field points �point C and E� can clearly
be seen in the figure. The solution of EZIt, required to cor-
rectly determine the forces and torques in the array, is ob-
tained by mirroring the solution for EZRt about the vertical
line through the horizontal position 20 �m.

E. DEP and twDEP force

Figure 11�a� shows the direction and the magnitude of
��EZt�2 in the basic cell. The behavior is similar to the solu-
tion presented for the DEP case. Above a certain height, the
directions of the DEP force at every position points straight
toward the electrode plane, with an exponentially decreasing
magnitude. However, as in the DEP array with complete
boundary conditions, the channel lid disturbs this behavior
and the DEP force is horizontal at the lid. Figure 11�b� shows
the 3D surface plot of the magnitude of ��EZt�2, clearly
showing the maxima at the edges of the electrode and the
exponential decreases away from the electrodes. The minima
in the center of the electrodes and the gap can also be seen,
as well as corresponding minima at the insulating lid.

Figure 11�c� shows the direction and the magnitude of the
twDEP force component ��� �EZRt�EZIt��. Far from the
electrodes �above 10 �m�, the vectors point in the negative
x-direction �left�. Approaching the bottom, the vectors point

in the opposite direction. In the region directly above the
edges of the electrode, the vectors show a circular pattern, an
observation identical to previous numerical simulations �30�.
From the plot of the magnitude, it is observed that the dis-
tribution of the twDEP force component is more complicated
than the DEP force. There are three twDEP force minima in
the near field region �approximately at a height of 10 �m�.
Along the surface of the electrode, the magnitude of twDEP
force increases towards the edge of the electrode. However,
it does not go to a maximum above the edge of the elec-
trodes. Instead, it rapidly drops to a minimum over the elec-
trode edge because the vectors are recirculating in this re-
gion. This can be observed more clearly in the 3D surface
plot, as shown in Fig. 11�d�.

F. ROT torque

The field term in electrorotation, which we will refer to as
the ROT torque component, is EZRt�EZIt. Figures 12�a� and
12�b� show the magnitude of the ROT torque in 2D and 3D
plots, respectively. The direction of the torque is in the third
dimension �i.e., out of the page�. The magnitude of the
torque goes to a maximum at the edge of the electrode. Be-
yond the near field region, the magnitude of torque decreases
with distance from the electrode.

FIG. 11. Solutions of the DEP force component ���EZt�2� and twDEP force component ��� �EZRt�EZIt�� in the basic cell of the twDEP
array. �a� DEP force component, vectors, and magnitude �log10�. �b� 3D surface plot of the magnitude of the DEP force component �log10�.
�c� twDEP force component, vectors, and magnitude �log10�. �d� 3D surface plot of the magnitude of the twDEP force component.
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G. Comparison with FEM simulations

The analytical solution for the real part of the electric field
was compared with numerical simulations, performed
using the finite element method �FEM� in COMSOL

MULTIPHYSICS™. The comparisons are performed by varying
the ratio of the electrode width and gap, with the channel
height set at 60 �m. The sum of the electrode width and gap
is fixed at 40 �m, with the ratio of electrode width to gap
distance varied from 1:3 �w=10 �m, g=30 �m�, 1:1 �w
=20 �m, g=20 �m�, and 3:1 �w=30 �m, g=10 �m�. Com-
parisons of the electric field magnitude are performed at the
height of 10 �m �near field region�, 30 �m �middle field
region�, and 50 �m �far field region�, respectively. Figures
13�a�–13�c� show excellent agreements between the SCM
solutions and FEM solutions for the three ratios and the three
regions, respectively. This plot validates the analytical solu-

tions for the DEP, twDEP force, and ROT torque in the trav-
eling wave interdigitated electrode arrays.

V. CONCLUSION

In this paper, the analytical solutions for the electric field
distributions above interdigitated electrode arrays used for
dielectrophoresis and traveling wave dielectrophoresis have
been derived using the Schwarz-Christoffel mapping
method. The analytical solutions for electric field for the
DEP and twDEP arrays are related to the geometrical con-
stant of the device: electrode length, gap distance and the
channel height. The field solutions are then used to determine
the DEP force, twDEP force, and ROT torque in the corre-
sponding system. The analytical electric field solutions in
both cases are validated by comparison with the finite ele-

FIG. 12. Solutions of the ROT torque component �EZRt�EZIt�
in the basic cell of the twDEP array. �a� Magnitude of the ROT
torque component magnitude in 2D. �b� 3D surface plot of the
magnitude of the ROT torque.
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FIG. 13. Plot showing excellent agreements between the electric
field distribution calculated with the SCM method and FEM simu-
lations for different geometries. �a� Near field region, �b� midfield
region, and �c� far field region.
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ment method, for different geometries, showing excellent
agreement. This represents the first complete analytical elec-
tric field solutions for these interdigitated electrode arrays
without any approximation to the boundary conditions.
These solutions are straightforward and easy to use and will
provide a significant improvement in field modeling and aid
in modeling for the translational movement of particles in
real systems.
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APPENDIX A: SCHWARZ-CHRISTOFFEL
MAPPING METHOD

In this appendix, we give the general mathematical de-
scription of Schwarz-Christoffel mapping �SCM� method.
Details can be found in �31�.

Let � be an m-sided polygon in the Z-plane with vertices
Z1 ,Z2 . . . ,Zm and interior angles 
1 ,
2 , . . . ,
m, respectively.
Along the real axis of the T-plane, T1 ,T2 , . . . ,Tm are the
corresponding mapping points to Z1 ,Z2 , . . . ,Zm in the
Z-plane. The SCM integral, which maps the upper half of the
T-plane into the interior of � in the Z-plane, is given by

Z = C1�
T0

T

�
r=1

m

�T − Tr��
r/�−1�dT + C2, �A1�

where C1 and C2 are integral coefficients. C1 establishes the
scale and orientation of the polygon in the Z-plane and C2
gives its position. These coefficients can be determined from
the positions of the corresponding points in the Z- and
T-planes. The mapping system has three degrees of freedom
which means up to three points can be chosen arbitrarily
along the real axis of the T-plane. The point T0 is the refer-
ence point, which is usually chosen to be the origin.

APPENDIX B: MAPPING CALCULATIONS IN THE
ANALYSIS OF DEP AND twDEP ARRAYS

In this appendix, the detailed calculations to determine the
coordinates of the mapping points in the DEP and twDEP
arrays are presented.

1. The DEP electrode array

The expressions of the variable C3, 
d1, kd1, and �d1 in
Eq. �5� are

C3 =
2C1

	�TB − TD��TE − TC�
, �B1a�


d1 = arcsin
	�TB − TD��T − TE�
�TE − TD��T − TB�

� , �B1b�

kd1 =	�TE − TD��TB − TC�
�TB − TD��TE − TC�

, �B1c�

�d1 = sin 
d1. �B1d�

The values of the coefficients C2 and C3 in Eq. �5� are solved
by mapping the coordinates of the corresponding points in
the Z- and T-planes.

Taking point E, T=TE, giving �d1=0 and Eq. �5� becomes

ZE = C2 = 0. �B2�

Taking point B, T=TB, giving �d1=� and Eq. �5� becomes

ZB = C3�
0

� d�d1

�1 − �d1
2 ��1 − kd1

2 �d1
2 �

d�d1 = C3jK�kd1� � = j
w + g

2
.

�B3�

Taking point D, T=TD, giving �d1=1 and Eq. �5� becomes

ZD = C3�
0

1 d�d1

�1 − �d1
2 ��1 − kd1

2 �d1
2 �

d�d1 = C3K�kd1� = h .

�B4�

Taking point C, T=TC, giving �d1=1/kd1 and Eq. �5� be-
comes

ZC = C3�
0

1/kd1 d�d1

�1 − �d1
2 ��1 − kd1

2 �d1
2 �

d�d1

= C3�K�kd1� + jK�k�d1�� = h + j
w + g

2
. �B5�

Combining Eqs. �B3�–�B5� gives

C3 =
h

K�kd1�
=

w + g

2K�k�d1�
, �B6�

where K�kd1� is the complete elliptic integral of the first kind
and kd1� =	1−kd1

2 .
Since the value of kd1 can be derived from Eq. �7�, ac-

cording to Eq. �B1� the value of TE is given by

TE =
TC�TB − TD�kd1

2 − TD�TB − TC�
�TB − TD�kd1

2 − �TB − TC�
. �B7�

Then the coordinate of point A in the T-plane can be ob-
tained from Eq. �8�:

TA =

TETBcn2
 j
gK�k�d1�

w + g
,kd1�

TB − TEsn2
 j
gK�k�d1�

w + g
,kd1� . �B8�

The expressions of the variable D3, 
d2, kd2 and �d2 in Eq.
�10� are

D3 =
2D1

	�TA − TD��TE − TB�
, �B9a�
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d2 = arcsin
	�TA − TD��T − TE�
�TE − TD��T − TA�

� , �B9b�

kd2 =	�TE − TD��TA − TB�
�TA − TD��TE − TB�

, �B9c�

�d2 = sin 
d2. �B9d�

The formulas for separating the real and imaginary parts of
the Jacobian elliptic functions are

sn�u + jv,k� =
sn�u,k�dn�v,k��

1 − sn2�v,k��dn2�u,k�

+ j
cn�u,k�dn�u,k�sn�v,k��cn�v,k��

1 − sn2�v,k��dn2�u,k�
,

�B10a�

cn�u + jv,k� =
cn�u,k�cn�v,k��

1 − sn2�v,k��dn2�u,k�

+ j
sn�u,k�dn�u,k�sn�v,k��dn�v,k��

1 − sn2�v,k��dn2�u,k�
,

�B10b�

where sn�…, …�, cn�…, …�, and dn�…, …� are the Jacobian
elliptic functions.

2. twDEP electrode array

The expressions for the variable C3, 
t1, kt1 and �t1 in Eq.
�27� are

C3 =
2C1

	�TB − TD��TE − TC�
, �B11a�


t1 = arcsin
	�TB − TD��T − TE�
�TE − TD��T − TB�

� , �B11b�

kt1 =	�TE − TD��TB − TC�
�TB − TD��TE − TC�

, �B11c�

�t1 = sin 
t1. �B11d�

Similarly to the DEP case, the values of the coefficients C2
and C3 in Eq. �27� are solved by mapping the coordinates of

the corresponding points in the Z- and T-planes for the
twDEP array.

Taking point E, T=TE, giving �t1=0 and Eq. �27� be-
comes

ZE = C2 = 0. �B12�

Taking point B, T=TB, giving �t1=� and Eq. �27� becomes

ZB = C3�
0

� d�t1

�1 − �t1
2 ��1 − kt1

2 �t1
2 �

d�t1 = C3jK�k�t1� = j�w + g� .

�B13�

Taking point D, T=TD, giving �t1=1 and Eq. �27� becomes

ZD = C3�
0

1 d�t1

�1 − �t1
2 ��1 − kt1

2 �t1
2 �

d�t1 = C3K�kt1� = h .

�B14�

Taking point C, T=TC, giving �t1=1/kt1 and Eq. �27� be-
comes

ZC = C3�
0

1/kt1 d�t1

�1 − �t1
2 ��1 − kt1

2 �t1
2 �

d�t1

= C3�K�kt1� + jK�k�t1�� = h + j�w + g� . �B15�

Combining Eqs. �B13�–�B15� gives

C3 =
h

K�kt1�
=

w + g

K�k�t1�
, �B16�

where K�kt1� is the complete elliptic integral of the first kind
and kt1� =	1−kt1

2 .
Also from Eq. �B11c�, the expression for TE is

TE =
TC�TB − TD�kt1

2 − TD�TB − TC�
�TB − TD�kt1

2 − �TB − TC�
. �B17�

The coordinate of point A and F in the T-plane can be ob-
tained from Eq. �30�:

TA =

TETBcn2
 j
�w + 2g�K�kt1�

2h
,kt1�

TB − TEsn2
 j
�w + 2g�K�kt1�

2h
,kt1� , �B18�

TF =

TETBcn2
 j
wK�kt1�

2h
,kt1�

TB − TEsn2
 j
wK�kt1�

2h
,kt1� . �B19�
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