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We consider the problem of the soliton dynamics in the presence of an external noisy force for the Bouss-
inesq type equations. A set of ordinary differential equations �ODEs� of the relevant coordinates of the system
is derived. We show that for the improved Boussinesq �IBq� equation the set of ODEs has limiting cases
leading to a set of ODEs which can be directly derived either from the ill-posed Boussinesq equation or from
the Korteweg-de Vries �KdV� equation. The case of a soliton propagating in the presence of damping and
thermal noise is considered for the IBq equation. A good agreement between theory and simulations is ob-
served showing the strong robustness of these excitations. The results obtained here generalize previous results
obtained in the frame of the KdV equation for lattice solitons in the monatomic chain of atoms.
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I. INTRODUCTION

The Boussinesq �Bq� equation is a paradigm in the study
of propagation of nonlinear pulses in a weakly dispersive
medium. There are two basic dimensionless forms of this
equation. Boussinesq �1� derived the first form,

�t
2y�x,t� = �x

2y�x,t� + ��x
4y�x,t� + �x�f„�xy�x,t�…� , �1�

to describe shallow-water waves. In Eq. �1� f(u�x , t�) is a
nonlinear force with u�x , t�=�xy�x , t�, and � is a dispersion
parameter. Equation �1� is called the ill-posed Boussinesq
�IPBq� equation �2,3� because its dispersion relation leads to
a nonphysical instability of linear modes �2–4�. The IPBq
equation arises in a wide variety of physical systems includ-
ing propagation of waves in lattices modeling discrete micro-
scopic structures �5,6�. Only some soliton-type solutions are
known �7�.

The IPBq can be approached by the so-called improved
Bq �IBq� equation,

�t
2y�x,t� = �x

2y�x,t� + ��x
2�t

2y�x,t� + �x�f„�xy�x,t�…� , �2�

which does not show instabilities for the linear modes
�5,6,8�.

Both Bq equations, Eqs. �1� and �2�, admit supersonic
one-soliton solutions which are nontopological �7,9�. We
note that for low velocities, i.e., soliton velocities close to the
sound velocity, the one-soliton solutions of the IBq equation
can be approached by the solution of the IPBq equation.
Besides, if one considers solitons traveling in some preferen-
tial direction the Bq equations can be approached by the
one-soliton solution of the well-known Korteweg-de Vries
�KdV� equation. In the regime of high velocities the one-
soliton solution of the IBq equation is more accurate to de-
scribe discrete lattice solitons �solitons in monatomic chains�
�6,9�. The Bq-type equations have been the subject of exten-
sive investigations and some of the main features are rather

well-established. However, the mathematical theory for such
equations is not as complete as in the case of the KdV-type
equations.

In this context we consider the problem of the soliton
dynamics of forced Bq-type equations. There are a number
of papers where forced Bq-type equations show up, for in-
stance, in the context of the Cauchy problem �10�, in the
study of the effect of nonlocal interactions in anharmonic
lattices �11,12�, or in the study of two-dimensional lattices
�13�. More recently, for instance, the soliton dynamics of the
IBq equation in the presence of Stokes and hydrodynamical
damping was studied numerically and analytically �9� by us-
ing the multiple-scale perturbation technique. In the present
work we consider a simpler analytic technique, namely the
collective coordinate approach �14–17�, in order to study the
soliton dynamics of the IBq equation in the presence of an
external noisy force. We note that the collective coordinate
approach has been very successful in the study of the dynam-
ics of coherent excitations in the presence of external forces,
for instance, stochastic vortex dynamics in the two-
dimensional Heisenberg model �14�, thermal diffusion of
sine-Gordon solitons �15�, soliton diffusion on the classical
Heisenberg chain �16�, or a chain of atoms under thermal
fluctuations �17,18�. This technique takes advantage of the
particle-nature of the coherent excitations, neglecting ex-
tended modes solution of the linearized stability problem.
Here we must remark that to our knowledge the eigenvalue
problem of the linearized stability equation has not been
completely solved for Bq-type equations �19�. However, for
cases where external forces are small enough those extended
modes do not affect significantly the soliton dynamics
�17,18�.

In the present paper we study the forced Bq equation in
the frame of the collective coordinate approach. Here we
obtain ordinary differential equations �ODEs� of the relevant
coordinates of the system. We show that the ODEs following
from the IPBq equation as well as the ODEs following from
the KdV equation are special cases of the IBq equation. We
also discuss the effect of neglecting the extended modes in
the case of the KdV equation. For information we show that
the ODEs obtained from the collective coordinate approach
can also be obtained by more elaborate methods as the adia-
batic perturbation theory. Additionally we study as an ex-
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ample the thermal diffusion of the supersonic one-soliton
solutions of the IBq equation. We show that ODEs in the
frame of the collective coordinate approach can predict the
behavior of the soliton position as well as its variance.

II. FORCED IBQ

The dimensionless forced IBq equation reads

�t
2y�x,t� = �x

2y�x,t� + ��x
2�t

2y�x,t� + �x�f„u�x,t�…� + F , �3�

where F is an external force, y�x , t� is a field which can be
associated, for instance, with the absolute displacement of a
particle with respect to its equilibrium position in the mon-
atomic chain. In the same way u�x , t�=�xy�x , t� can be asso-
ciated with the relative displacement of nearest neighbors. In
Eq. �3�

f�u� =
dV�u�

du
− u �4�

and V�u� is a potential, which in the case of the monatomic
chain, can be associated with the interaction potential of
nearest neighbors. In particular for the case of a harmonic
potential with powerlike anharmonicity,

V�u� =
1

2
u2 +

1

n
un with n � 2, �5�

the one-soliton solution of the homogeneous Eq. �2� has a
kink shape, namely

y�x,t� = �
3��

1 − ��2 tanh��

2
�x − vt�� , n = 3,

2� 2�

1 − ��2 arctan	tanh��

2
�x − vt��
 , n = 4,�

�6�

where v is the soliton velocity and �=��v2−1� / ��v2� is the
inverse of the soliton width.

III. COLLECTIVE COORDINATE APPROACH

In order to achieve the calculations we reduce the second-
order differential equation �3� to a set of two first-order dif-
ferential equations, namely

�tw�x,t� = �x
2y�x,t� + ��x

2�t
2y�x,t� + �x�f„�xy�x,t�…� + F ,

�ty�x,t� = w�x,t� . �7�

Notice that we do not write the dispersion term, �x
2�t

2y�x , t�,
in terms of w. Here we apply a traveling wave ansatz of the
form

y�x,t� = y„x − X�t�,��t�… ,

w�x,t� = w�x − X�t�,��t�� . �8�

where X�t� and ��t� are the collective coordinates, which
depend on time. In order to simplify the notation the explicit

temporal dependence of the collective coordinates will not

be written. Notice that �t= Ẋ�X+ �̇�� and �x=−�X. By insert-
ing Eqs. �8� into Eqs. �7� we get

Ẋ�Xw + �̇��w = �X
2y + ��X

2�Ẋ�X + �̇���2y − �Xf�− �Xy� + F ,

�9�

Ẋ�Xy + �̇��y = w , �10�

where ˙� d
dt . In order to obtain equations of motion for the

coordinates X and � we follow Refs. �21,22�. So, in order to
obtain an equation for Ẋ we multiply Eqs. �9� and �10� by
�Xy and �Xw, respectively, and then we subtract one from
each other and integrate over x. In order to obtain the second
equation of motion for �̇ we proceed in a similar form, we
multiply Eqs. �9� and �10� by ��y and ��w, respectively, and
finally we subtract one from each other and integrate, thus
finding

AiẊ + Bi�̇ = Ti + Ti
Ext, i = 1,2, �11�

where A1=B2=0, and

B1 =
 dx���y�Xw − ��w�Xy� , �12�

T1 =
 dx�− ��Xy�X
4yẊ2 − 2��̇�Xy���X

3yẊ + w�Xw

− �xf�x,t��Xy − �Xy�X
2y − ��̈�Xy���X

2y

− ��̇2�Xy��
2�X

2y − �Ẍ�Xy�X
3y� , �13�

T1
Ext = −
 dx�F�x,t��Xy� , �14�

A2 =
 dx���w�Xy − ��y�Xw� , �15�

T2 =
 dx�− ���y�X
4yẊ2 − 2��̇��y���X

3yẊ + w��w

− ��y�xf�x,t� − ��y�X
2y − ��̈��y���X

2y

− ��̇2��y��
2�X

2y − �Ẍ��y�X
3y� , �16�

T2
Ext = −
 dx�F�x,t���y� . �17�

From Eqs. �6� and its first time derivative we can write the
ansatz for the cubic �n=3� and quartic �n=4� case, namely

y�x − X,��

= �
3��

1 − ��2 tanh��

2
�x − X�� , n = 3,

2� 2�

1 − ��2 arctan	tanh��

2
�x − X��
 , n = 4. �
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w�x − X,�� = �− Ẋ
3��2

2�1 − ��2�
sech2��

2
�x − X�� , n = 3,

− Ẋ� 2��2

1 − ��2 sech���x − X�� , n = 4. �
�18�

For the cubic case �n=3� by inserting the ansatz �18� into
Eqs. �11� we get

�̇ = −
��3�− 1 + ��2�

�− 15 − 10��2 + �2�4�� Ẍ

Ẋ
�

+

5�− 1 + ��2�2

−�

�

sech2�z�Fdz

2���− 15 − 10��2 + �2�4�Ẋ
, �19�

Ẋ2 − 1 =
��2

1 − ��2 −
��30 + �2 + �300 + �2���2 − 5�− 30 + �2��2�4 + 3�2�3�6�

3�− 1 + ��2�2�− 15 − 10��2 + �2�4�
� �̇

�
�2

+
2��30 + �2 − 2�− 15 + �2���2 + �2�2�4�

3�− 1 + ��2��− 15 − 10��2 + �2�4�
� �̈

�
� −

10�− 1 + ��2�
��3�− 15 − 10��2 + �2�4�

�

−�

�

�z sech2�z� + tanh�z� + ��− z sech2�z� + tanh�z���2�Fdz , �20�

with z=��x−X� /2.
Up to now we did not impose any condition on the exter-

nal force F. However, the ODEs �19� and �20� are coupled in
a rather complicated way; notice that Eqs. �19� and �20� have

Ẋ and �̇ on the left-hand side �lhs� while the right-hand side

�rhs� holds terms with Ẍ and �̈. So in order to simplify the
coupled ODEs and also to perform some comparisons with
other approximations, we suppose that the external force has
a perturbational character, so it is sufficiently small. This fact

entails small variations in time of both the velocity, Ẋ, and
the inverse of the width, �, so the approximation

d log�Ẋ�
dt

� 0 and
d log���

dt
� 0 �21�

can be made. Thus as a final result, in the limit of small
external force, Eqs. �19� and �20� can be reduced to

�̇ =

5�− 1 + ��2�2

−�

�

sech2�z�Fdz

2���− 15 − 10��2 + �2�4�Ẋ
, �22�

Ẋ2 − 1 =
��2

1 − ��2 −
10�− 1 + ��2�

��3�− 15 − 10��2 + �2�4�

�

−�

�

�z sech2�z� + tanh�z�

+ ��2�− z sech2�z� + tanh�z���Fdz , �23�

respectively. By carrying out the same procedure and ap-
proximations the corresponding ODEs for the quartic case
�n=4� read

�̇ =

3�1 − ��2�3/2

−�

�

sech�z�Fdz

2�2����2�4 − 6��2 − 3�Ẋ
, �24�

Ẋ2 − 1 =
��2

1 − ��2 +
3�1 − ��2

�2���2��2�4 − 6��2 − 3�



−�

�

„z sech�z�

− ��2�z sech�z� − 2 arctan�tanh�z/2���…Fdz , �25�

with z=��x−X�.
Equations �22�–�25� govern the dynamics of the soliton

position X and the inverse soliton width � when a soliton
moves in the presence of a small external force F. We note
the important fact that these equations can also be obtained
by using a more systematic method, namely adiabatic pertur-
bation theory. In Appendix A we present, as an example, the
adiabatic perturbation theory for the cubic case. As final re-
sult of this appendix we get Eqs. �22� and �23�. A similar
procedure can be followed for the quartic case to obtain the
ODEs �24� and �25�.

Notice that the external force F in Eqs. �22�–�25� can
depend on time not only implicitly, via z, but also explicitly;
e.g., in the case of thermal noise �Sec. V�. Equations
�22�–�25� are specialized for the particlelike properties of the
soliton, so they cannot describe the trailing tail accompany-
ing the soliton, which is generated when the soliton velocity
is perturbed. In that case one must go to second-order per-
turbation theory �9,23�.

Expressions similar to Eqs. �22�–�25� have been derived
for the perturbed KdV equation �23–25�. However, due to the
limitations of the KdV equation, those ODEs are only valid
in the limit of soliton velocities very close to the sound ve-
locity. Our equations are valid for a broader range of veloci-
ties since our theory has been developed in the framework of
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the IBq �6�. Notice that we have not taken into account the
contribution of the force-induced phonons because the eigen-
value problem of the linearized stability equation of Bq type
equations has not yet been completely solved �19�. However,
in the case of high-energy solitons, whose velocity is high,
the force-induced phonons may be negligible because those
solitons are rather robust against perturbations �17,18�. On
the other hand, in the case of low-energy solitons, whose
velocity is very close to the sound velocity, the theory devel-
oped for the forced KdV equation, in which phonon contri-
butions have been taken into account �24,25�, can be used to
study the soliton dynamics. So, in fact, those equations
above, �22�–�25�, are complementary to the equations al-
ready existent for the forced KdV equation. We show below
that after some approximations our equations coincide with
the equations developed for the forced KdV equation without
the phonon contribution.

IV. LIMITING CASES: IPBQ EQUATION
AND KDV EQUATION

In this section we investigate some limiting cases, namely
the limit of small � together with the limit of soliton veloci-
ties very close to the sound velocity. Since the IPBq equa-
tion, �1�, is a limiting case of the IBq equation, �2�, we can
expect that the corresponding ODEs for the collective coor-
dinates for the forced IPBq,

�t
2y�x,t� − �x

2y�x,t� − ��x
4y�x,t� − �x�f„�xy�x,t�…� = F ,

�26�

may also be an approximation of the ODEs �22�–�25�. In
fact, IPBq solitons and IBq solitons agree with each other
when both are broad. In the case of narrower solitons the IBq
equation is more accurate than the IPBq equation �6�. In
other words, IBq solitons tend to be identical to IPBq soli-
tons when � tends to be small. So in the approximation of
small �, i.e., approximation to the second order Taylor ex-
pansion about �=0, Eqs. �22� and �23�, the cubic case, be-
come

�̇ = −
1

6�Ẋ�



−�

�

sech2�z�Fdz , �27�

Ẋ2 − 1 = ��2 −
2

3��3

−�

�

�z sech2�z� + tanh�z��Fdz ,

�28�

and Eqs. �24� and �25�, the quartic case, become

�̇ = −
1

2�2��Ẋ



−�

�

sech�z�Fdz , �29�

Ẋ2 − 1 = ��2 −
1

�2���2

−�

�

�z sech�z��Fdz . �30�

These equations, �27�–�30�, can be recovered directly from
Eq. �26� by using either the collective coordinate approach,

similar to that developed in Sec. II, or adiabatic perturbation
theory, similar to that developed in Appendix A.

If we go one step further and consider soliton velocities

very close to the sound velocity �Ẋ	1�, one can show easily
that in the cubic case Eqs. �27� and �28� become

�̇ = −
1

6��



−�

�

sech2�z�Fdz , �31�

ṡ =
�

2
�2 −

1

3��3

−�

�

�z sech2�z� + tanh�z��Fdz , �32�

where ṡ= Ẋ−1 is the soliton velocity in the sound-velocity
moving frame. Equations �31� and �32� are very similar to
equations developed for the perturbed KdV equation
�23–25�. Notice that the KdV equation is a completely inte-
grable system whose eigenvalue problem is already solved
�6,24,25�. Therefore in this framework the force-induced
phonons can be taken into account. In fact, those force-
induced phonons contribute with an extra term, namely
tanh2�z� �23–25�, in the integrand of Eq. �32�, so Eqs. �31�
and �32� read

�̇ = −
1

6��



−�

�

sech2�z�Fdz ,

ṡ =
�

2
�2 −

1

3��3

−�

�

�z sech2�z� + tanh�z� + tanh2�z��Fdz .

�33�

Equations �33� can be derived by using either IST �25� or
perturbation theory �24�.

V. NOISY AND DAMPED IBQ EQUATION

As an example we consider the case of an IBq soliton in
the presence of hydrodynamical damping and thermal noise,
namely

F = 
�x
2y�x,t� + D�x��x,t� , �34�

where the noise term ��x , t� is delta-correlated, i.e.,

���x,t���x�,t��� = ��x − x����t − t�� , �35�

and

���x,t�� = 0. �36�

In Eqs. �35� and �36� �·� means average. In order to satisfy
the fluctuation-dissipation theorem the diffusion constant is
defined as �17�

D = 2
T , �37�

where T is the temperature.
Though here we are dealing with a continuum problem,

namely a noisy IBq equation, it is worth mentioning that the
discrete problem of diffusion of lattice solitons in monatomic
chains can be approached by Eqs. �3� and �34�. To the best of
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our knowledge this discrete diffusion problem has been ana-
lytically addressed only in the framework of the noisy KdV
equation �17,18�.

By substituting Eq. �34� in Eqs. �19� and �20� we get

�̇ = −

�3���2 − 1�

�2�4 − 10��2 − 15

+

5�D�− 1 + ��2�2

−�

�

sech2�z��x��x,t�dz

2���− 15 − 10��2 + �2�4�Ẋ
, �38�

Ẋ2 − 1 =
��2

1 − ��2 − 2
2�2 �30�2 − 2��2 − 15���2 + �2�2�4�
3�15 + 10��2 − �2�4�2

−
10�D�− 1 + ��2�

��3�− 15 − 10��2 + �2�4�
−�

�

�z sech2�z�

+ tanh�z� + ��2�− z sech2�z� + tanh�z����x��x,t�dz .

�39�

From Eqs. �38� and �39� it is straightforward to obtain

��̇� = −

���3�����2 − 1�

�2���4 − 10����2 − 15
, �40�

Var	
 dt�Ẋ2 − 1�
 = D
 dt�10�����2 − 1��30 + �2 + ����2�30 − 2�2 + �2����2��
9�2���3�15 + 10���2 − ���4�2 � , �41�

where Var�x�= ��x− �x��2� is the variance function. If we de-

fine the relative velocity ṡ= Ẋ−1 we can use the approach

Ẋ2−1�2ṡ if ṡ
0.2, i.e., an error of about 10%. In that case

Var�s� �
1

4
Var	
 dt�Ẋ2 − 1�
 , �42�

where s is the position of the soliton in a frame moving with
the sound velocity.

A. Simulations

In order to compare with our analytical results we have
performed numerical simulations of the IBq equation in the
presence of noise and damping. We note that Eq. �3� is writ-
ten in terms of the field y�x , t� which has the shape of a kink
for the one-soliton solutions �6�. Notice that the one-soliton
solutions here move with supersonic velocities. So, for long
time scales it would be necessary to use large numerical
systems, which is too time-consuming. Moreover, round-off
errors can be a serious drawback for the simulation of large
systems, since in our algorithm a matrix inversion is needed
�see Appendix B for details�. In order to avoid these prob-
lems mentioned above the use of periodic boundary condi-
tions is desirable, so a small numerical system can be
achieved. On the other hand, a pulse-shape form of the soli-
ton is suitable for simulating the system, since this shape
vanishes at infinity. The pulse shape can be obtained by de-
rivating the kink form with respect to x, i.e., u�x , t�
=�xy�x , t�. So, in this case the equation of motion for the
function u�x , t� takes the form

�t
2u�x,t� − �x

2u�x,t� − ��x
2�t

2u�x,t� − �x
2�f„u�x,t�…� = �xF ,

�43�

where f�u� is given in Eq. �4�, and the external force F given
in Eq. �34�. Notice that the field u�x , t� can be associated, for

instance, with the relative displacement between adjacent
particles in a classical chain of atoms. In order to discretize
Eq. �43� we have followed the procedure proposed in Ref.
�9� with periodic boundary conditions. See Appendix B for
details.

We remark that the length L of the numerical system has
been chosen to be L��−1, where �−1 is the width of the
soliton. Typical values are L=500 and �−1�1. Other param-
eters are the dispersion parameter �=1, the spatial mesh size
�x=0.0625, the time step of the integrator �t=10−2, and the
number of realizations is 100.

B. Soliton position

In order to study our noisy system numerically we per-
form statistics over an ensemble of a finite number of real-
izations. The numerical detection of the position of a soliton
in the presence of noise in each realization is an extremely
difficult task because the IBq soliton is a nontopological ex-
citation, whose position is very robust against perturbations.
Since the soliton is nontopological its amplitude reduces
with time when a damping term is present. So for larger
scales of time the soliton profile is strongly masked by the
thermal noise. On the other hand the soliton position is not
so much affected by the noise term, which results in small
values of the variance of the soliton position. So, the stan-
dard deviation of the soliton position is usually much smaller
than the soliton width, making very difficult its numerical
estimate. Notice that since the pulse shape is strongly
masked by the noise, important features like the soliton am-
plitude or the width cannot be directly determined in each
realization. We note, however, that the ensemble average
yields a well-defined soliton shape, where the averaged am-
plitude, averaged soliton position, x̄S, or averaged soliton
width, w̄S, can be estimated without difficulty.

In order to estimate numerically the soliton position in
each realization we have used a filtering process as follows.
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For a given time t we have multiplied the noisy soliton shape
u�x , t� by a Gaussian window function,

G�x − xG,t� = exp	−
1

2
� x − xG

wG
�2
 . �44�

In order to reduce the undesirable effect of the noisy wings
of the soliton we have set wG= w̄S /4. So in order to deter-
mine the position of the soliton we are concerned only with
the noisy central part of the soliton shape, i.e., x̄S− w̄S /2

x
 x̄S+ w̄S /2. Afterwards, we calculate the center of mass
x̄G of the function uG�x−xG , t�=u�x , t�G�x−xG , t�, i.e.,

x̄G = 

−�

�

uG�x − xG,t�xdx . �45�

Notice that in Eq. �45� it would be desirable that the center
xG of the Gaussian window agrees with the center of the
soliton; but, since we do not know exactly the soliton posi-
tion we adopt an averaging procedure to calculate it. That is,
we calculate the center-of-mass position x̄G for different po-
sitions xG of the Gaussian window function in a region close
to the average soliton position, i.e., x̄S− w̄S /2
xG
 x̄S
+ w̄S /2. Afterwards we average these values, so

x̄ =
1

w̄S



x̄s−w̄S/2

x̄s+w̄S/2

x̄GdxG, �46�

where x̄ is defined as the soliton position.

VI. RESULTS

In Figs. 1 and 2 we present a comparison between theory
and simulations for the soliton position and its variance, re-
spectively. In particular in Fig. 1 we observe a very good
agreement of the soliton positions for different soliton ve-
locities. Small discrepancies between simulations and theory

are observed for high velocities, namely Ẋ�0�=1.1 and 1.2.

We note that some of the relative soliton velocities Ẋ−1 here
are about ten times larger that those considered in Ref. �18�
in the frame of the KdV equation.

In Fig. 2 we show the variance of the soliton position for
different values of the temperature and the initial soliton ve-
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FIG. 1. Soliton position in a frame moving with the sound ve-
locity �c=1� vs time for three different initial velocities, namely
v�0�=1.05, 1.1, and 1.2. Solid lines: simulations and dashed lines:
theory.
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FIG. 2. Variance of the posi-
tion vs time for two different tem-
peratures, namely T=10−5 �panels
�a�, �c�, and �e�� and 10−4 �panels
�b�, �d�, and �f��, and three differ-
ent initial velocities, namely v�0�
=1.05 �panels �a� and �b��, 1.1
�panels �c� and �d��, and 1.2 �pan-
els �e� and �f��. Solid lines: simu-
lations and dashed lines: theory.

EDWARD ARÉVALO AND FRANZ G. MERTENS PHYSICAL REVIEW E 76, 046607 �2007�

046607-6



locity. Our analytical prediction, namely the solution of Eqs.
�40�–�42�, is also plotted for comparison. We observe a su-
perdiffusive behavior �nonlinear growth in time� of the vari-
ance which scales with the temperature. We also observe that
our theory predicts the qualitative behavior of the variance
better for low initial soliton velocities �Ẋ
1.05� than for the

higher ones �Ẋ�1.05�. In fact, the approximation performed
in Eq. �41� is met better in the low-velocity regime.

It is known from theory of monatomic chains that thermal
noise affects the dynamics of solitons in two different forms.
In the first form the soliton is “kicked” by the stochastic
fluctuations randomly changing its position but not its veloc-
ity. In this case the diffusion is normal, i.e., the variance
grows linearly in time. This dynamics has been observed for
very low-velocity solitons �Ẋ�0��1.005� �17�, which have a
broad width. In the second form not only the position of the
soliton is affected but also its velocity, which in turn affects
the soliton position, too. The stochastic changes in the veloc-
ity are mostly due to the stochastic distortions of the soliton
width. This dynamics is observed for high-velocity solitons

�Ẋ�0��1.005� �17,18,20� whose width is narrow. Notice that

the soliton velocity Ẋ and the soliton width �−1 are coupled
in a nontrivial form as we show, for instance, in Eq. �39�.
The stochastic changes of the velocity contributes to the vari-
ance of the position, making it grow nonlinearly, i.e., super-
diffusion is observed �17,18,20�.

The dynamics described above can be interpreted as fol-

lows. The velocity of very broad solitons �Ẋ�0��1.005�
tends to “experience” the stochastic fluctuations in average,
which is zero �only normal diffusion is observed� �17�. On

the other hand, the velocity of narrow solitons �Ẋ�0�
�1.005� tends to directly “experience” the stochastic fluc-
tuations, even if the fluctuations are very small with respect
to the amplitude of the soliton �superdiffusion is observed�.
Notice that since the theory developed here is more appro-
priate for high-velocity solitons, we are concerned mostly
with the superdiffusive behavior of the solitons.

If we compare in Fig. 2 the left-hand-side panels with the
right-hand-side panels, we observe that for the same velocity
the values of the variance scale with the temperature, as
mentioned above. On the other hand, if we compare the be-
havior of the variance for the same temperature but different
velocities �see Figs. 2�a�, 2�c�, and 2�e� or Figs. 2�b�, 2�d�,
and 2�f��, the superdiffusive behavior is more pronounced,
i.e., the rise of the variance in time is faster for high veloci-
ties �Figs. 2�e� and 2�f�� than for low velocities �Figs. 2�a�
and 2�b��. Notice, however, that the overall values of the
variance are smaller for high velocities �Figs. 2�e� and 2�f��
than for the lower ones �Figs. 2�a� and 2�b��. This is because
high-velocity solitons are more energetic and robust against
perturbations than the low-velocity ones.

The overall behavior of the soliton diffusion shown above
can be summarized by saying that the absolute values of the
variance depend on the temperature, while the superdiffusive
behavior, i.e., the rapidity how the variance rises, depends
mostly on the soliton velocity.

Since the scale of the variance is small and also depends
strongly on the soliton velocity, small discrepancies of the

velocity between theory and simulations do not affect so
much the prediction of the soliton position �see Fig. 1�, but
can lead to considerable discrepancies in the variance for
high soliton velocities �see Figs. 2�e� and 2�f��. On the other
hand, the detection of the soliton position �see Eqs. �45� and
�46�� depends on the soliton shape which in turn is masked
by the thermal noise. So, even for robust solitons �solitons
with high initial soliton velocity, i.e., high amplitude� small
errors in the detection of the soliton position can induce ob-
servable errors of the variance due to the small scales we are
dealing with.

VII. SUMMARY

We studied analytically the case of Boussinesq solitons in
the presence of an external force. In order to do so we con-
sidered both the forced improved Boussinesq equation
�forced IBq� and the forced ill-posed Boussinesq equation
�forced IPBq�. We used a collective coordinate approach to
get equations of motion for the relevant variables of the soli-
ton, namely position, X, and inverse width, �. We showed
the explicit calculations for the forced IBq with cubic anhar-
monicity. We got coupled ODEs for the collective variables,
Eqs. �19� and �20�. Using physical considerations we re-
duced those ODEs to Eqs. �22�–�25� when the external force
was considered as a perturbation. Moreover, we showed that
those equations, �22�–�25�, can also be derived by using a
systematic method, namely adiabatic perturbation theory
�Appendix A�.

In the limit of small � those equations lead to similar
ODEs, �27�–�30�, which are associated with the forced IPBq
equation. They can be derived directly from the forced IPBq
by using either a collective variable approach or perturbation
theory.

In the limit of soliton velocities very close to the sound
velocity, Eqs. �27�–�30� lead to Eqs. �31� and �32� which are
expressions already known in the context of the perturbed
KdV equation. Those equations, �31� and �32�, do not take
into account the phonon contributions which for the KdV
equation can be calculated. An extra term must be added in
order to take into account the force-induced phonons; com-
pare Eqs. �31� and �32� with Eqs. �33�. Notice that the high-
velocity solitons are rather robust against perturbations,
therefore for them the effect of the force-induced phonons
may be negligible. In that case Eqs. �22�–�25� govern the
soliton dynamics in the presence of a perturbational external
force. In the case of low-velocity solitons, where force-
induced phonons cannot be negligible, Eqs. �33� describe the
soliton dynamics better than Eqs. �31� and �32�. Under those
considerations one may consider Eqs. �22�–�25� as comple-
mentary to Eqs. �33�.

Moreover, we consider an external force which consists of
noise and damping. Similar problems have been considered
for discrete systems, namely chains of atoms �17,18,20�. In-
deed, the case of soliton diffusion in monatomic chains was
addressed analytically in the frame of the KdV equation �18�
with the help of Eqs. �33�.

Here, we considered initial soliton velocities larger than
those the KdV theory can correctly deal with. We showed
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that the numerical simulations can be described by the theory
developed here. We also mentioned that the variance of the
soliton position is superdiffusive and scales with the tem-
perature. A similar behavior has been observed for lattice
solitons in chains of atoms.

Finally, we note that the behavior of solitons of the IBq
equation, which is a continuous system, and the behavior of
lattice solitons in chains of atoms is rather similar and can be
described by the same set of equations, derived here in the
frame of the collective coordinate approach.

APPENDIX A: ADIABATIC PERTURBATION EXPANSION

In this appendix we apply an adiabatic perturbation theory
to the perturbed IBq,

�t
2y − �x

2y − ��t
2�x

2y − �x
2
„f��xy�… = �F . �A1�

Here, f�u�=
dV�u�

du −u is a nonlinear force where u=�xy. The
rhs of Eq. �A1� represents the action of the external force.
The parameter � is introduced to keep track of the different
orders of the perturbation theory. Notice that in the case �
=1 we get our original forced IBq, Eq. �3�. In our derivation
we will follow partially the procedure which was proposed in
Ref. �24� for the perturbed Korteweg-de-Vries equation. The
calculations that we present here are only for the case of a
cubic anharmonicity, however, the same procedure can be
performed easily for the quartic anharmonicity.

We define the center of mass position of the soliton as

X = x1�t̄� + x0�T� , �A2�

where

t̄ = t, T = �t , �A3�

x1�t̄� = 

0

t̄

c��t̄��dt̄� and c�T� =
1

�1 − ��2�T�
. �A4�

Here, x0 and �, which is the inverse of the width soliton,
depend on the “slow” time variable T, and x1 depends on the
“fast” time variable t̄. Notice the fact that

�t = �t̄ + ��T. �A5�

We seek an asymptotic solution in the form

y = y0 + �y1 + ¯ . �A6�

So inserting Eqs. �A5� and �A6� into Eq. �A1� and collecting
powers of � we get

�0:

�t̄
2y0 − �x

2y0 − ��x
2�t̄

2y0 − �x„f��xy0�… = 0, �A7�

�1:

�t̄
2y1 − �x

2y1 − ��x
2�t̄

2y1 − �x„f���xy0��xy1… = G , �A8�

where

G = F − 2�t̄�Ty0 + 2��x
2�t̄�Ty0. �A9�

The one-soliton solution of Eq. �A7�, in the case of n=3,
takes the form

y0 =
3��

1 − ��2 tanh��

2
�x − X�� , �A10�

where X is defined by Eq. �A3�.
Here, we use Green’s theorem �26�,

vLy1 − y1L̃v = divergence, �A11�

where v is any function and the linear operator

L = �t̄
2 − �x

2 − ��x
2�t̄

2 − �x„f���xy0��x… , �A12�

and L̃=L is its adjoint.
If we demand that

L̃v = 0 �A13�

and we integrate Eq. �A11� over space, we can derive a com-
patibility condition of the form



−�

�

dxvLy1 = 

−�

�

dxvG = 0. �A14�

Equation �A13� has two linear independent solutions, namely

v1 = �xy0, �A15�

v2 = ��y0. �A16�

Inserting the solutions �A15� and �A16� into Eq. �A14� we
get

dx1�t̄�

dt̄

d��T�
dT

=

5�− 1 + ��2�T��2

−�

�

sech2�z�Fdz

2���T��− 15 − 10��2�T� + �2�4�T��

�A17�

and

dx1�t̄�

dt̄

dx0�T�
dT

= −
5�− 1 + ��2�T��

��3�T��− 15 − 10��2�T� + �2�4�T��

�

−�

�

�z sech2�z� + tanh�z�

+ ��2�T��− z sech2�z� + tanh�z���Fdz ,

�A18�

respectively. Here, z=
��T�

2 �x−x1�t̄�−x0�T��. If we recover our
original time variable t, from Eqs. �A3� and �A5� one can
show that

Ẋ =
dx1�t̄�

dt̄
+ �

dx0�T�
dT

. �A19�

Therefore up to first order we get

Ẋ�̇ = �
dx1�t̄�

dt̄

d��T�
dT

, �A20�

where ˙� d
dt . Inserting Eq. �A17� into Eq. �A20� we get
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�̇ = �

5�− 1 + ��2�T��2

−�

�

sech2�z�Fdz

2���T��− 15 − 10��2�T� + �2�4�T��Ẋ
. �A21�

On the other hand, we see that

Ẋ2 = �dx1�t̄�

dt̄
�2

+ 2�
dx1�t̄�

dt̄

dx0�T�
dT

. �A22�

So by inserting Eq. �A18� into Eq. �A22� and taking into
account the definition �A4� it is straightforward to get

Ẋ2 − 1 =
��2�T�

1 − ��2�T�
− �

10�− 1 + ��2�T��
��3�T��− 15 − 10��2�T� + �2�4�T��

�

−�

�

�z sech2�z� + tanh�z�

+ ��2�T��− z sech2�z� + tanh�z���Fdz . �A23�

In order to interpret our results physically we must set � to
unity ��=1� and assume that the external force, F, is suffi-
ciently small. In that case Eqs. �A21� and �A23� are equal to
Eqs. �22� and �23�, respectively.

APPENDIX B: DISCRETIZATION
OF THE IBQ EQUATION

The IBq equations reads

�t
2u�x,t� − �x

2u�x,t� − �t
2�x

2u�x,t� − �x
2�f„u�x,t�…� = K�x,t� ,

�B1�

where K�x , t� are external forces and/or dissipation. By de-
fining the variable v�x , t�=�tu�x , t� Eq. �B1� can be reduced
to two partial differential equations of first order in time,
namely

�tv�x,t� = �x
2u�x,t� + �x

2�tv�x,t� + �x
2�f„u�x,t�…� + K�x,t� ,

�tu�x,t� = v�x,t� . �B2�

By using finite-difference discretization in the space-domain
Eqs. �B2� take the form

v̇i�t� =
ui+1�t� − 2ui�t� + ui−1�t�

�x2 +
v̇i+1�t� − 2v̇i�t� + v̇i−1�t�

�x2

+
f„ui+1�t�… − 2f„ui�t�… + f„ui−1�t�…

�x2 + Ki�t� ,

u̇i�t� = vi�t� , �B3�

where ˙� d
dt , ui�t�=u�xi , t�, vi�t�=v�xi , t�, f(ui�t��=un�xi , t),

and Ki�t�=K�xi , t� with n=2,3. xi= i�x where �x is the mesh
size of the space variable and i=1,2 , . . . ,N. The length of
the system L=N�x. In the numerical integration process we
use periodic boundary conditions, namely u0�t�=uN�t� and
uN+1�t�=u1�t�. The same boundaries are used for the vari-
ables vi�t� and Fi�t� including the noise term. If we rewrite
Eqs. �B3� so

− v̇i+1�t� + ��x2 + 2�v̇i�t� − v̇i−1�t�

= ui+1�t� − 2ui�t� + ui−1�t� + f„ui+1�t�…

− 2f„ui�t�… + f„ui−1�t�… + �x2Ki�t� , �B4�

u̇i�t� = vi�t� , �B5�

they can be regarded as a vectorial equations, so

Âv̇ = G , u̇ = v , �B6�

where u̇i and v̇i are elements of the vectors u̇ and v̇, respec-
tively. The elements Gi of the vector G are the rhs of Eq.
�B4� and the square matrix

Â =�
� − 1 0 0 ¯ ¯ 0 0 − 1

− 1 � − 1 0 ¯ ¯ 0 0 0

¯ ¯ ¯ ¯ ¯ ¯ ¯

0 ¯ 0 − 1 � − 1 0 ¯ 0

¯ ¯ ¯ ¯ ¯ ¯ ¯

0 0 ¯ ¯ 0 0 − 1 � − 1

− 1 0 0 0 ¯ ¯ 0 − 1 �

�
N�N

with �=�x2+2. Notice that this tridiagonal matrix is cyclic
because we use periodic boundary conditions �28�. From Eq.
�B6� we can derive

v̇ = Â−1G , u̇ = v , �B7�

therefore at this stage we can use a classical integrator as, for
example, the Heun algorithm �27� in order to perform the
numerical integration in time.

We note also that for the discretization of the noise term
we use the definition �18�

�x
2��x,t� →

�i+1�t� − 2�i�t� + �i−1�t�
�x5/2 , �B8�

where �i�t� is the Gaussian white noise term at the i mesh
point, which is generated by a random number generator
with normal distribution.
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