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Isotropic, rotating, and stratified turbulent flows are analyzed using a scale- and direction-dependent flatness.
The anisotropy of the spatial fluctuations of the energy distribution can hereby be quantified for different length
scales. This measure allows one to distinguish between longitudinal and transversal intermittency as well as
between horizontal and vertical intermittency. The difference between longitudinal and transversal intermit-
tency is argued to be related to the incompressiblity constraint. A large difference between horizontal and
vertical intermittency for stratified turbulence can be explained by an energy depletion of the horizontal plane
in Fourier space.
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I. INTRODUCTION

Turbulence in geophysical flows—e.g., in the atmosphere
or in the ocean—is generally anisotropic due to the presence
of shear, rotation, and stratification. In these flows the mod-
eling and understanding of anomalous transport of pollutants
needs knowledge of small-scale intermittency. In the present
work, by intermittency we mean small-scale activity, local-
ized in space. Intermittency has been studied since its intro-
duction by Taylor �1�. Townsend �2� was the first to intro-
duce a measure for small-scale intermittency, the flatness.
Subsequently, to study the variation of intermittency with
scale, Sandborn introduced a quantitative measure, the scale-
dependent flatness �3�, and showed that for intermittent flows
the flatness strongly increases with wave number.

Batchelor and Townsend �4� explained intermittency by
the presence of coherent structures. As in turbulence the co-
herent structures reflect the anisotropy �e.g., vortex tubes
aligned with the rotation axis in rotating turbulence and hori-
zontal vortex sheets in stably stratified turbulence as shown
in Fig. 1�, the intermittency can be expected to be aniso-
tropic. This issue, the anisotropy of small-scale intermit-
tency, will be addressed in the present work.

To study anisotropic turbulence specific tools are needed.
Progress has been made, notably by using directional energy
spectra ��5–7� and references therein�. Directional spectra,
while capturing the multiscale character, cannot quantify the
spatially intermittent nature of the flows. Indeed, the inter-
mittency related to spatially localized events is hidden in the
phase of the Fourier modes. It was argued by Brun and
Pumir �8� that when the largest turbulent scales are well
resolved—i.e., when the domain-size is much larger than the
correlation length—intermittency is only observable in the
dissipation range. This dissipation range intermittency was
predicted by Kraichnan �9�: in the highest wave number
range, where viscous dissipation smoothens the fluctuations,
the distribution of energy shows a very fast falloff. In this
range, small variations of the cutoff scale, corresponding to
the different flow structures or regions, lead to tremendous
relative fluctuations of the turbulent intensity.

If in addition to dissipation range intermittency inertial
range intermittency is of interest, Fourier modes are not the
adequate basis functions. Wavelet coefficients are then more

appropriate, because they conserve information on the local-
ization in physical space. Another method is the use of struc-
ture functions, in particular within the context of the SO�3�
decomposition �10�. However, structure functions can yield
erroneous scalings if the considered velocity field is too
smooth or too irregular �11,12�. Indeed, structure functions
are closely related to wavelets �12�, which do not have this
disadvantage, but conserve the other advantages of structure
functions: they can simultaneously address the multiscale
distribution of a quantity, its anisotropy, and yield informa-
tion on its spatial distribution. In the present work we there-
fore use wavelets and in particular a statistical tool is intro-
duced, the scale-dependent directional flatness, inspired by
the work of Meneveau �13� and Farge et al. �14�, who used

FIG. 1. �Color online� Isoenstrophy surfaces from direct numeri-
cal simulation for rotating �top� and stratified �bottom� turbulence
with an isovalue equal to the mean enstrophy. In the rotating case
we observe elongated vertical structures, in the stratified case flat-
tened horizontal structures. The vertical velocity is shown in the
visualization by a color scale �online only� ranging from blue �nega-
tive velocity� to red �positive velocity�.

PHYSICAL REVIEW E 76, 046310 �2007�

1539-3755/2007/76�4�/046310�6� ©2007 The American Physical Society046310-1

http://dx.doi.org/10.1103/PhysRevE.76.046310


three-dimensional orthogonal wavelets and two-dimensional
angle-dependent continuous wavelets, respectively. The
scale-dependent directional flatness can be seen as an aniso-
tropic extension of the spectral flatness �8,15,16�, applied to
scale space rather than to Fourier space.

In the next section we will describe the direct numerical
simulations that yield the velocity fields analyzed in this
work. Subsequently, in Sec. III we will discuss the link be-
tween wavelet space and Fourier space. In Sec. IV we ana-
lyze the velocity fields using two measures: the directional
energy and the scale-dependent directional flatness. It is
shown that a large part of the observed anisotropy of the
energy distribution is due to the incompressibility constraint.
Finally, it is argued that the anisotropic small-scale intermit-
tency can be explained by the competition of various mecha-
nisms: dissipation range fluctuations, incompressibility, and
body forces.

II. DIRECT NUMERICAL SIMULATIONS

We consider velocity fields obtained by direct numerical
simulation �DNS� of Navier-Stokes turbulence, using a clas-
sical pseudospectral method. Anisotropy is created by rota-
tion and stratification, both oriented along the vertical axis.
The velocity fields considered here correspond to decaying
isotropic, rotating, and stably stratified incompressible turbu-
lence within the Boussinesq approximation using 5123 grid
points. No external forcing is applied to the velocity fields,
so that the Reynolds number is moderate and the inertial
range is not well pronounced. However, forcing is known to
affect the anisotropy induced by the body forces. To avoid
artifacts caused by the forcing, the freely decaying case is
considered. The parameters are summarized in Table I. Spe-
cific attention has been paid to the large scale anisotropy of
the flow: the Froude and Rossby numbers are comparable.
These quantities are defined as Fr=U /LN and Ro=U /Lf ,
with N and f being the Brunt-Väisälä frequency and rotation
number, respectively. Here the integral turbulent velocity U
and the integral length scale L are defined as

U = �2e/3, L =
�

2U2�� E�k�
k

dk , �1�

with e=�E�k�dk and E�k� the spherically averaged energy
spectrum. The Reynolds numbers, based on the Taylor-
microscale �R�=�20e2 / �3���, with � the kinematic viscosity
and � the dissipation of kinetic energy�, are of the same order
of magnitude. For details about the method and the setup of
the simulations, we refer to �17�. In addition to these three

cases a vector-valued test field was generated consisting of
divergence-free Gaussian white noise, with E�k��k2.

III. WAVELET SPACE AND ITS RELATION TO FOURIER
SPACE

The velocity field at a given time instant is projected onto
an orthogonal wavelet basis �see, e.g., �18� for details�. We
use Coiflet-12 wavelets, which have four vanishing moments
and a filter length of 12. The projection of one component
u�x� of a vector field u= �u ,v ,w� onto orthogonal wavelets
��x� can be represented by

u�x� = 	
�

ũ����x� , �2�

with the subscript �= �j , i ,d�, where j represents the scale, i
the position, and d the direction. The coefficients are stocked
in a 5123 wavelet space. The orthonormal character of the
wavelets implies that for a data field of N3=23J values, j
takes the values j= 
0,1 , . . . ,J−1�. In the wavelet represen-
tation seven spatial directions can be defined in three space
dimensions �in D dimensions, 2D−1 directions exist�. For
every particular combination of scale j and direction d, i can
take 23j different values, which give an information on the
localization in physical space. The parameters �j , i ,d� are
then equivalent to coordinates in wavelet space. This wavelet
space, in the Mallat representation �19�, is shown in Fig. 2 as
compared to Fourier space for both two and three dimen-
sions. Hereby a direct link is shown between the two ap-
proaches. The dashed part of wavelet space, corresponding to
one of the seven spatial directions �in three dimensions�, is
associated with the dashed part of Fourier space in the fig-
ures: it constitutes an orthogonal partition of Fourier space.
Each individual box in wavelet space corresponds to a direc-
tion d and a scale j. Each scale can be linked to a wave
number kj by

kj = k02 j , �3�

with

k0 =

�
0

�

k��̂�k��dk

�
0

�

��̂�k��dk

,

where k0 is the centroid wave number, a constant for each
type of wavelet �k0
0.77 for Coiflet-12�. It is hereby pos-
sible to reconstruct an energy spectrum by calculating the
spectral energy density corresponding to a mean wave num-
ber kj. The relation is

Ẽ�kj� = � j�e���j�, �4�

with

e� = �ũ�
2 + ṽ�

2 + w̃�
2�/2,

in which the averaging has been performed over the position
i and the direction d and with � j =4�22j / �7k0� a scale-

TABLE I. Sets of parameters of the three DNS runs. T0 indicates
after how many turnover times the data are evaluated.

e L R� Ro or Fr Time �T0�

Isotropic 0.014 0.37 34 6

Rotating 0.034 0.37 60 Ro=0.025 3

Stratified 0.056 0.44 121 Fr=0.028 11.5
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dependent factor relating the discrete wavelet representation
to spherical shells in Fourier space. This approach was ini-
tially proposed by Meneveau �13�, and for further details we
refer to his pioneering work. The disadvantage of these
wavelet based energy spectra is the loss of spectral resolu-
tion: the spectrum contains one point for each scale j—that
is, for each octave. This loss of information is, however,
compensated for by information on the spatial variance of
the energy spectrum, because for every scale j �correspond-
ing to seven boxes�, we have 23j �7 values. The spatial
variation can be expressed as the standard deviation of the
spectral distribution. This standard deviation is defined by

	Ẽ�kj� = � j��e�
2��j� − �e���j�

2 �1/2. �5�

In Fig. 3 both the spherically averaged Fourier energy spec-

trum E�k� and the wavelet spectrum Ẽ�kj� are shown for
isotropic turbulence. The wavelet spectrum agrees well with
the Fourier spectrum. The spatial variation of the spectral
distribution is shown in Fig. 3 by adding the points that
indicate the spectrum plus one standard deviation

�Ẽ�kj�+	Ẽ�kj��. This variation is closely related to the flat-
ness as will be explained in the following.

IV. ANALYSIS OF THE ANISOTROPY OF THE VELOCITY
FIELDS

A. Directional energy

Because of incompressibility, the energy distribution in
Fourier space of an isotropic vector-field can be expressed as


ij�k� = ��ij −
kikj

k2 � E�k�
4�k2 , �6�

which means that for a certain component �for example,

11�k�� one finds


11�k� = �1 −
k1k1

k2 � E�k�
4�k2 = sin2 �

E�k�
4�k2 , �7�

with � the angle between the wave vector and the kx axis.
This results in an 8-shaped distribution in two dimensions,
shown in Fig. 4. In three dimensions this 8-shaped distribu-
tion is rotated around the kx axis for 
11�k�. This leads to an
anisotropy in the directional energy of the vector field com-
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FIG. 2. �Color online� Left: wavelet space in
two and three dimensions. Right: wavelet space
projected onto Fourier space. Each box corre-
sponds to a certain scale j and direction d, and
each box contains 22j values of i in two dimen-
sions and 23j in three dimensions, giving infor-
mation on localization in physical space. Hereby
we can relate a scale j to a wave number
kj: kj =k02 j, where k0 is the centroid wave number
of the wavelet.
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FIG. 3. �Color online� The �Fourier� energy spectrum for isotro-
pic turbulence. Also shown is the dual spectrum constructed from
wavelet coefficients. The stars indicate the standard deviation of the
spatial distribution of the spectral energy density.
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ponents, even for isotropic fields. Rotation or stratification
can amplify or reduce this effect.

The general picture that emerges from studies using direc-
tional spectra �6,20� is that in stratified turbulence the kinetic
energy is concentrated in a cone around the vertical axis of
Fourier space. For rotating turbulence, the inverse tendency,
an accumulation of energy close to the horizontal plane in
Fourier space, is observed. In physical space this energy dis-
tribution corresponds to sheetlike structures in stratified tur-
bulence and vertical vortex tubes in rotating turbulence, as
illustrated in Fig. 1. The distribution of energy in wavelet
space—i.e., the wavelet coefficients in the different boxes—
allows a direct quantification of anisotropy. The directional
energy e�d� is obtained by summing the energy over all boxes
in wavelet space in a particular direction �illustrated in Fig.
2, on the left, for a horizontal direction�. It can be stressed
here that the vertical direction in wavelet space contains a
particular discrete dyadic cone in Fourier space around the kz
axis, similar to the cones in �6,20�. We can therefore antici-
pate that the energy in this direction will be reduced in the
rotating case and enhanced in the stratified case.

In Fig. 5 the directional energy is shown for the three

different velocity components u, v, and w as a percentage
with respect to the total energy of u. In the present work we
focus on the three principal directions x, y, and z. The four
diagonal directions, which contain the remaining part of the
energy, are not shown. For the divergence-free Gaussian
noise, if one considers one velocity component, the direc-
tional distribution is not isotropic. Longitudinal energy �e.g.,
u in the x direction� is smaller than the transversal compo-
nents �e.g., u in the y direction�. The reason for this is the
incompressibility constraint, as illustrated in Fig. 4: the Riesz
projector reduces the energy in the longitudinal direction in
favor of the transversal ones. The directional energy of iso-
tropic turbulence behaves very similar to the Gaussian field:
the longitudinal energy is smaller than the transversal energy.
For rotating turbulence we see a similar picture, even though
the directional energy is reduced in the z direction. Indeed,
the formation of columnar structures reduces the spatial
variation in this direction. The reduction of the energy in the
z direction is, however, moderate and two-
dimensionalization is not achieved. The picture is dramati-
cally different for stratified turbulence in which all compo-
nents are reduced in favor of the u and v energy in the z
direction. This energy distribution clearly corresponds to a
vertically sheared horizontal flow. The flow is close to the
two-component limit.

B. Directional flatness

The standard deviation of the spatial distribution of the
scale-dependent energy involves the square root of fourth-
order moments of the wavelet coefficients. It can be directly
related to the flatness. For a component u of the velocity field
we introduce the directional scale-dependent flatness

F�j,d�
u =

�ũ�
4��j,d�

�ũ�
2��j,d�

2 , �8�

in which averaging is performed only over the position i.
This can be related to the standard deviation of the spectral
distribution of u by

F�j,d�
u = �	Ẽu

�kj,d�

Ẽu�kj,d�
�2

+ 1, �9�

in which the spectrum Ẽu�kj ,d� and its standard deviation
	Ẽu

�kj ,d� are defined as in �4� and �5� by using only one
component of the velocity in one direction d of wavelet
space. The scale-dependent directional flatness is thus a mea-
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FIG. 4. �Color online� The variance of individual components of
a divergence-free isotropic vector field is not isotropically distrib-
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FIG. 5. �Color online� Directional energy of the three velocity components u, v, and w for �from left to right� divergence-free Gaussian
white noise and isotropic, rotating, and stratified turbulence.
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sure for the relative spatial fluctuation of the directional
spectral energy density. It should therefore be an adequate
measure for intermittency in the sense of Kraichnan �9�: ex-
treme relative intensity fluctuations at small scales should
translate into large deviations of F�j,d�

u from its Gaussian
value of 3. Furthermore, the physical space locality of the
wavelets should allow us to investigate inertial range inter-
mittency if the Reynolds number is sufficiently high.

In Fig. 6 the directional flatness is plotted versus wave
number for the different flow fields. For the divergence-free
Gaussian white noise, the flatness is as expected equal to 3.
For all the other flows the intermediate scales are close to
this value. For isotropic turbulence the small-scale flatness
increases. This departure from Gaussianity characterizes an
increased intermittency in the small scales. The longitudinal
flatness is smaller than the transversal flatness.

An explanation for the increase of intermittency as a func-
tion of scale can be given starting with the theory of stochas-
tic distortion of turbulence, proposed by Nazarenko et al.
�15� for the dynamo problem and Dubrulle et al. �16� for
Navier-Stokes turbulence. According to their model, small-
scale wave packets �in our case wavelets�, initially isotropi-
cally distributed, get deformed by small-wave-number-
induced strain. This results in cactus-leaf-shaped
distributions with one small, one large, and one neutral axis.
The energy at the tops of the cactus leaf, near the ends of the
long axis, are more dissipated than the other ones. This pro-
cess repeats itself in randomly oriented directions, so that
after some deformations, a highly irregular, fingered energy
distribution is obtained in Fourier space. The intermittent
distribution of the small scales corresponds to the increased
flatness at high wave numbers. If we consider now one par-
ticular component of the velocity field, which has the shape
of an 8 in two dimensions �Fig. 4�, the transversal direction,
containing the larger part of the two lobes of the 8 shape,

reaches higher wave numbers than the longitudinal direction,
so that this fingering effect due to stochastic straining is
stronger in the transversal direction: the transversal small-
scale flatness is larger than the longitudinal flatness. Using
the direct link between Fourier space and wavelet-space �Fig.
2�, this mechanism could be applied to explain the present
results, shown in Fig. 6.

The rotating turbulence shows a behavior very similar to
the isotropic case: the longitudinal flatness is smaller than the
transversal flatness. For the stratified case, the picture is dif-
ferent: the flatness in the z direction behaves approximately
as for the isotropic case. However, the flatness in the x and y
directions increases dramatically with scale. We need an ad-
ditional mechanism to explain this. In stratified turbulence
the energy tends to concentrate around the vertical wave vec-
tor: the dyadic cones around the horizontal plane kz=0 in
Fourier space are almost completely depleted from energy
�6,20�. The rare fluctuations of energy in these directions
correspond to an extreme intermittency: in stratified turbu-
lence the small-scale intermittency is highly anisotropic. For
the u component, it is also possible to partially explain the
results by the nonlocal strain mechanism, described in the
previous paragraph: the longitudinal directional flatness �in
the x direction� is smaller than the transversal one �in the y
direction�, with x and y both perpendicular to the direction of
stratification.

The observations can thus be explained by two competing
mechanisms. First, the nonlocal strain that induces an aniso-
tropy in the intermittency because the variance of the differ-
ent components of a divergence-free vector field is anisotrop-
ically distributed in Fourier space. Second, the energy
depletion of the horizontal plane in Fourier space due to the
influence of stratification. Rotation is shown not to play a
major role in the amplification or damping of small-scale
intermittency in Fourier space.
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FIG. 6. �Color online� Directional scale-dependent flatness for Gaussian white noise �left top� and isotropic turbulence, u component �left
bottom�; rotating turbulence, u and w components �middle�; and stratified turbulence, u and w components �right�.
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V. CONCLUSION

To summarize, the present results reconfirm the picture
�6,20� that for stratified turbulence, energy accumulates in a
cone around the vertical axis in Fourier space and toward a
horizontal plane for rotating flow. The introduction of a sta-
tistical diagnostic, the directional scale-dependent flatness,
allows us to obtain a more precise picture of the spatial fluc-
tuations of this spectral energy distribution. The simulations
allowed us to focus on small-scale intermittency, which was
shown to be highly anisotropic. The transversal flatness is
larger than the longitudinal flatness, which can be explained
by a nonlocal straining of the small scales by the large scales
combined with the energy distribution in Fourier space re-
sulting from the incompressibility constraint. In stratified tur-
bulence, this effect is overshadowed by an energy depletion
of the horizontal plane in Fourier space.

The present results may have implications for the devel-
opment of models for anisotropic turbulence. A sound physi-
cal model—e.g., an anisotropic extension of the advected
delta-vee system �21� or the models proposed in �22,23�—
should address the anisotropy of the departure from Gaussi-
anity of the small scales. Future studies could address the
influence of Reynolds, Froude, and Rossby numbers on the
anisotropy at small scales as well as in the inertial range.
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