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Suppression of cavitation inception by gas bubble injection: A numerical study focusing

on bubble-bubble interaction
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The dynamic behavior of cavitation and gas bubbles under negative pressure has been studied numerically
to evaluate the effect of gas bubble injection into a liquid on the suppression of cavitation inception. In our
previous studies, it was demonstrated by direct observation that cavitation occurs in liquid mercury when
mechanical impacts are imposed, and this will cause cavitation damage in spallation neutron sources, in which
liquid mercury is bombarded by a high-power proton beam. In the present paper, we describe numerical
investigations of the dynamics of cavitation bubbles in liquid mercury using a multibubble model that takes
into account the interaction of a cavitation bubble with preexisting gas bubbles through bubble-radiated pres-
sure waves. The numerical results suggest that, if the mercury includes gas bubbles whose equilibrium radius
is much larger than that of the cavitation bubble, the explosive expansion of the cavitation bubble (i.e.,
cavitation inception) is suppressed by the positive-pressure wave radiated by the injected bubbles, which

decreases the magnitude of the negative pressure in the mercury.
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I. INTRODUCTION

Cavitation in liquid mercury is now a significant issue in
the development of pulsed high-power spallation neutron
sources, in which liquid mercury is bombarded by a high-
intensity proton beam to produce high neutron fluxes. In off-
beam experiments [1,2], it was suggested that high-intensity
pressure waves originating from the energy release due to
spallation reactions would cause cavitation in liquid mercury,
and the associated erosion (i.e., cavitation erosion) would
significantly reduce the lifetime of the target vessel in which
liquid mercury flows. After this crucial suggestion, research
groups in Japan and the United States performed various
investigations aimed at overcoming this issue, which con-
cerns the realizability of liquid-mercury spallation targets
[3-10].

One of the potential approaches to mitigating the cavita-
tion erosion or preventing the cavitation itself is to inject gas
bubbles into liquid mercury. As has been demonstrated in
previous studies [11,12], gas bubbles in a liquid change the
dynamic and acoustic properties of the liquid and can, in
some situations, act as an absorber of sound through their
volume change or volume oscillation in response to pressure
change. In a recent study, Okita ef al. showed numerically
that the injection of microbubbles into liquid mercury dras-
tically reduces the amplitude of pressure waves if the size
and volume fraction of bubbles are suitably controlled, and it
would thus effectively suppress cavitation inception [5,6]. In
that study, two mechanisms for the reduction of sound am-
plitude were suggested. One is the absorption of the thermal
expansion of liquid mercury caused by the energy release.
When spallation reactions occur in liquid mercury, a large
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amount of thermal energy is released, and then a rapid ther-
mal expansion of liquid mercury and associated increase of
pressure take place, which will cause the radiation of high-
intensity pressure waves. The injected gas bubbles act as an
absorber of the thermal expansion by shrinking themselves.
The other suggested mechanism is the attenuation of propa-
gating pressure waves due to bubble oscillation. As has been
demonstrated by many authors, the acoustic properties of
bubbly liquids depend on the size and volume fraction of the
injected bubbles. The numerical results given in Refs. [5,6]
showed that gas microbubbles with an appropriate number
density can significantly attenuate the pressure wave travel-
ing through the gas-liquid mixture, because of the dispersion
effect of the bubbles and the thermal damping of the
bubbles’ oscillation.

In the present paper, based on some basic experimental
data, we have examined numerically the effect of gas bubble
injection on the mechanically induced cavitation in liquid
mercury and have found one more mechanism responsible
for cavitation suppression. In the numerical study, we focus
our attention on the acoustic interaction between cavitation
bubbles and injected gas bubbles and discuss how the pres-
sure waves radiated by the injected gas bubbles affect the
dynamics of cavitation bubbles. The theoretical model used
is a Rayleigh-Plesset-type system of equations that takes into
account bubble-bubble interactions through the bubble-
radiated pressure waves. From the numerical study, we found
that the radial motion of the injected bubbles in response to
the pressure change decreases the magnitude of the negative
pressure in liquid mercury and, consequently, the explosive
expansion of small cavitation bubbles is effectively sup-
pressed, because the change in negative pressure enlarges the
critical initial radius, which is defined to be the threshold for
cavitation inception: for a given negative pressure, bubbles
having an initial radius larger than the critical value will
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FIG. 1. (Color online) Experimental setup for pressure measure-
ment. The shallow cylinder of 100 mm in diameter and 15 mm in
height filled with liquid mercury of about 120 ml is the main body
of this experimental system. Mechanical impacts are imposed on
the cylinder from the bottom by electromagnetic force. The pressure
transducer is replaced with a glass window when the image of
bubbles is recorded by high-speed cameras. When examining the
effect of gas bubble injection, helium gas is injected into the mer-
cury through a porous sintered metal tube. Pure liquid mercury or a
helium-mercury mixture flows into and out from the cylinder
through a rectangular channel.

expand explosively, but the others will not. A simple theoret-
ical investigation has also been made of the amplitude of the
bubble-radiated pressure waves and their effect on cavitation
inception. Our recent experiments have confirmed that gas
bubble injection indeed reduces cavitation erosion substan-
tially [13].

The rest of this paper is organized as follows. In Sec. II,
the experiment that we performed recently and some basic
findings, on which the present numerical study is based, are
briefly introduced. The magnitude of the negative pressure
appearing in liquid mercury under mechanical impact is the
main concern in the experiment. In Sec. III, model equations
are presented that describe the radial motion of cavitation
and injected gas bubbles interacting with each other through
pressure waves. Section IV presents numerical results and
discussions of bubble dynamics in experimentally relevant
situations and the pressure waves radiated by the injected
bubbles, and finally Sec. V summarizes this paper.

II. EXPERIMENT AND BASIC RESULTS

This section introduces our recent experiments, which
triggered the present numerical study. Figure 1 illustrates the
experimental setup used for measuring pressure in liquid
mercury under mechanical impact. This is an off-beam ex-
perimental system for impact tests to simulate the cavitation
event in real mercury spallation targets, and can well repro-
duce the morphology of spallation-induced erosion damage
[2]. A shallow cylinder of 100 mm diameter and 15 mm
height, made of stainless steel, is filled with about 120 ml of
liquid mercury (not degassed), on which mechanical impacts
are imposed from the bottom using an electromagnetic coil.
The characteristics of the output of the electromagnetic coil
(pressure amplitude, wave form, etc.) are controlled by the
input electric current. The pressure change in the mercury is
measured by a pressure transducer (Entran, EPXH) placed on
the lower surface of the upper flange of the cylinder. The
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FIG. 2. Helium bubbles in liquid mercury observed through a
glass window placed on the surface of the mercury. The height of
this image corresponds to 1.62 mm.

images of the bubbles are monitored by high-speed cameras
[a high-speed shutter camera (NAC, DiCAM PRO) and a
high-speed video camera (NAC, Memrecam fx RX6)] by
replacing the upper flange with a clear glass window which
enables us to observe the bubbles in liquid mercury (being an
opaque liquid), in contact with the window; see Refs.
[2,9,10] for greater details of the experimental setup for pres-
sure measurement and image capturing.

Helium gas is injected using a porous sintered metal tube
(tungsten), through which gas microbubbles are produced.
The flow rate of the injected gas is 6.8 ml/min, which is
0.1% that of the mercury. The helium-mercury mixture flows
into and out from the shallow cylinder through a rectangular
channel whose cross-sectional area is 33X 12 mm?. Since
liquid mercury is an opaque liquid, we do not know the exact
condition of the gas bubbles produced in the bulk of the
mercury. In the present experimental setup, only the bubbles
touching the glass window are observable; the average radius
of the observed gas bubbles and the average distance be-
tween neighboring bubbles deduced from images taken
through the glass window are about 100 and 500 wm, re-
spectively; see Fig. 2.

Typical pressure changes generated by a single mechani-
cal impact with (the solid line) and without (the dashed line)
using the bubble injection are shown in Fig. 3. In the present
study, compressive impacts of an input power of 560 W were
imposed on the mercury, producing a positive-pressure pulse
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FIG. 3. (Color online) Typical pressure changes (low-pass fil-
tered) in the mercury generated by a single mechanical impact. The
solid red and the dashed blue lines, respectively, denote the pressure
changes with and without bubble injection. It is seen that the mag-
nitude of the negative pressure was decreased by the bubble injec-
tion, implying that the tensile stress in the mercury was reduced by
the injected bubbles.

046309-2



SUPPRESSION OF CAVITATION INCEPTION BY GAS...

followed by a negative-pressure region. As shown in our
previous papers, which reported the direct observation of
cavitation bubbles in liquid mercury [9,10], the negative
pressure in the case of no bubble injection triggers cavita-
tion, which will cause serious erosion damage when a large
number of mechanical impacts are applied [2].

The pressure-time curves in the two cases are qualita-
tively the same as each other, but their maximum magnitudes
in the negative-pressure phase are slightly, but clearly, differ-
ent; the magnitude was decreased by the gas bubble injec-
tion. As another interesting observation, in the case with
bubble injection, cavitation bubbles were never found and
only injected bubbles undergoing volume change were re-
corded by the high-speed cameras. These experimental find-
ings suggest that the injected bubbles suppressed cavitation
inception, and the difference found between the two mea-
sured pressures has a significant influence on the dynamics
of cavitation bubbles. In Sec. IV, by computing the dynamic
behavior of bubbles under negative pressure, we discuss how
the injected gas bubbles alter the negative-pressure value and
cavitation bubble dynamics. The theoretical model used in
the numerical study is introduced in the next section.

III. MODEL EQUATIONS

The dynamics of bubbles is studied using a nonlinear
model based on the Keller-Miksis equation, a variant of the
Rayleigh-Plesset equation, which describes the radial motion
of a spherical bubble in a compressible liquid:

R 3 R).,, I[ R R d
l— RR + R*=-— l+— Ds+ — Dy,
2 2¢ p pc dt

(1)

20 4uR

Ps=Pb_F_%_pdr(t)_Po, 2)
where R=R(z) is the time-dependent radius of the bubble,
c=1450 m/s is the sound speed of liquid mercury, p
=13 528 kg/m? is its density, p, is the pressure inside the
bubble, 0=0.47 N/m 1is the surface tension, u=1.52
X107 Pas is the viscosity of liquid mercury, p,,(t) is the
driving pressure acting on the bubble, Py=0.1013 MPa is
the atmospheric pressure, and the overdots denote the time
derivative d/dt. Equation (1) governs the temporal evolution
of the bubble radius and Eq. (2) represents the difference
between the pressure in the liquid at the bubble surface and
that far away from the bubble.

In multibubble cases, if the center-to-center distances be-
tween bubbles are small enough, the pressures acting on the
bubbles are not equal to the external driving pressure be-
cause the amplitude of the pressure waves radiated by the
neighboring bubbles is no longer negligible. Thus, one must
take bubble-bubble interaction into consideration, which is
known to change the dynamic properties of bubbles in a
variety of ways (see Refs. [14-20] for recent studies on
bubble-bubble interaction through bubble-radiated pressure
waves). The multibubble model used in the present study is
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derived as follows. The amplitude of the pressure wave ra-
diated by a spherical bubble undergoing volume change can
be obtained from the Euler and continuity equations of fluid
flow,

o Lip

+u , 3
ot ar p Jor ®)
ortu
—=0, 4
ar “

where u(r,t) and p(r,t) are the velocity and the pressure,
respectively, in the liquid phase and r is the radial axis cor-
responding to the distance from the center of the bubble.
Integrating Eq. (4) along the radial axis yields

= —R, 5
u="3 (5)

where we used u(R,7)=R(7) and assumed u(r—o,r)=0.
Substituting Eq. (5) into Eq. (3) and integrating it, one ob-
tains

(6)

.
) gd(R R)+0(1)’

dt r
where we assumed p(r— ,1)=0. Hereafter, the bubbles and
their physical parameters are identified by numerical sub-
scripts 1,2, ...,N, where N is the total number of bubbles,
and the ith bubble is called bubble i. Replacing p,,(7) in Eq.
(2) with

N
pex(t)"' 2 Pj, (7)

Jj=1j#i

where p,,(7) is the external driving pressure originating from
the mechanical impact, and neglecting high-order terms as
suggested in Ref. [14] (see Appendix A of the present paper
for details), a modified equation for bubble i is given as
follows:

R . (3 R\, 1 R; R; d
1-— RiRi+ ~ A Ri=_ 1+— ps,i __pu

c 2 2c p c pc dt
EN‘, 1 d(RR) .

Jj=Lj#i Dlj dt '

20 4,LLR

=p, . - t)— Py, 9
pb,l pb,t R R. pex() 0 ( )

l l

where D;; is the distance between the centers of bubbles i
and j. The last term of Eq. (8) describes the acoustic inter-
action between the bubbles and couples the equations of
bubbles 1—-N. The time-delay effect due to the finite sound
speed of the surrounding liquid (see, e.g., Ref. [19]) is not
considered here because ¢ times a typical duration time of
the negative pressure (~0.5 ms), being about 1 m, is much
larger than D;; considered below, which is a few millimeters.
The pressure inside the bubbles, p,, ;, is assumed to obey a
van der Waals type of equation (see, e.g., Refs. [21,22]),
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20\ Ry —I; \"i
Ppi= P0+R—'0 m > (10)

where R;, is the equilibrium radius of bubble i at atmo-
spheric pressure, for which the bubble’s internal pressure
balances the liquid pressure through the pressure jump due to
the surface tension, and h; is the hard-core radius
(=R;y/11.26 for mercury and R;;/9.81 for helium) of bubble
i, which represents the volume excluded by the total volume
of gas molecules as hard spheres, and is considerable when
the gas is strongly compressed. The vapor pressure of mer-
cury, 0.28 Pa, is neglected because it is much smaller than Py,
and the absolute value of the negative pressure considered
below. The polytropic exponent «; of the gas inside bubble i,
which reflects the effect of thermal conduction, is roughly
determined as ;=1 for R;(t)> BR,, with B~0.2 and «;=7y
otherwise, where 7 is the specific heat ratio of the gas (5/3
for mercury and helium). As is known, violently collapsing
bubbles behave adiabatically during a very short time when

they become very small and their surface velocity |R| is very
high (see, e.g., Refs. [21-23]). The present setting of «; is a
rough approximation of this known behavior. This determi-
nation of «; is rather crude but is sufficient for the present
study, because the expansion phase of bubbles in negative
pressure is our main concern. More detailed and accurate
modeling of bubble dynamics in liquid mercury will be pre-
sented in the future.

Despite their simple form, the model equations used in the
present study, Egs. (8) and (9), can be considered to exhibit a
high accuracy in a wide range of parameters. Using a sim-
pler, but essentially similar, model, Bremond er al. [20] have
demonstrated recently that, even when the maximum radii of
expanding bubbles reach nearly 75% of half of the inter-
bubble distance and the bubbles are slightly deformed due to
the nonuniformity of the pressure around the bubbles’ sur-
faces, this kind of model can provide an accurate result dur-
ing the first expansion and subsequent collapse.

IV. NUMERICAL INVESTIGATIONS

Let us study bubble dynamics in experimentally relevant
situations by numerically solving the multibubble model. We
mainly focus our attention on how the pressure waves radi-
ated by injected bubbles affect the dynamics of cavitation
bubbles. In this investigation we reduce the problem to a
few-bubble problem, and attempt to clarify the basic mecha-
nism of cavitation suppression by bubble injection. Also, the
external driving pressure p,, is idealized as

- 1.25P, for 0 s<r=1,,
Pex=9—1.25(2 —t/t,))P, for t,<t=2t, (11)
0P, otherwise,

where —1.25P is a typical experimental value of negative
pressure and 7;~0.5 ms is its duration time; see Fig. 4(b).
We should note here that the positive wave front found in
Fig. 3 is neglected in this setting since it does not alter
bubble dynamics in the negative-pressure period. In Fig. 5,
we show numerical results for the dynamics of single
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FIG. 4. (Color online) (a) Radius-time curves for single bubbles
of Rp=5, 8,9, 10, and 20 wm (from bottom to top), and (b) pres-
sure in the mercury assumed in the numerical study, normalized by
Py. The numbers shown in (a) denote the initial radii (xm) of the
bubbles.

bubbles (a small mercury bubble of R;;=10 pm and a large
helium bubble of R;;=100 wm) given using Egs. (1) and (2).
In this computation, we used two kinds of driving pressure:
one was the pressure change obtained experimentally with-
out the bubble injection (the dashed blue line in Fig. 3) and
the other was its clipped version derived by setting the pres-
sure change to zero when it is positive; see Fig. 5(c). As
depicted by the thin red curves in Figs. 5(a) and 5(b), when
the nonclipped pressure change was used as the driving pres-
sure, both bubbles shrunk mildly in the first positive-pressure
period and then expanded explosively in the subsequent
negative-pressure period. The behavior of the bubbles in the
negative-pressure period was not notably changed by using
the clipped pressure change, as depicted by the thick blue
curves in the same figures. This numerical result confirms
that the positive wave front has, at least in the pressure
change observed in our off-beam experiment, no significant
influence on bubble dynamics in the negative-pressure period
and hence is negligible in our study. (In a recent study,
Bremond et al. reached a similar conclusion through experi-
mental and numerical investigations of cavitation in water
[20])

First we consider a single-bubble problem (D;;— ) to
determine the dynamic critical initial radius R for the nega-
tive pressure defined above. Figure 4(a) shows the dynamics
of single cavitation bubbles for different equilibrium radii
with #;,=0.5 ms. This result means that R, is in the range of
8—9 um, because the bubbles of R;;=9 um expanded ex-
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FIG. 5. (Color online) Computed dynamics of (a) a single small
mercury bubble of R;y=10 wm and (b) a single large helium bubble
of R;p=100 um driven by the pressure change given experimen-
tally without bubble injection [the thin red curve in (c)] and its
clipped version [the thick blue curve in (c)]. In the negative-
pressure period, no notable difference can be found between the
results for the original and the clipped pressure changes [the thin
red curves and the thick blue curves, respectively, in (a) and (b)].

plosively (implying the occurrence of cavitation inception)
but the others exhibited a small-amplitude oscillation. Since
we are interested in explosively expanding bubbles, in the
following we consider only bubbles larger than the critical
size.

Next we consider a two-body problem (N=2), that is, the
interaction of a cavitation bubble (bubble 1) and an injected
gas bubble (bubble 2). Examples of the dynamics of two
coupled bubbles for Rj;=10 um and R,;=100 um with dif-
ferent D, are shown in Fig. 6. Here, we assumed that the
injected gas bubble has an initial radius much larger than that
of the cavitation bubble, as in the experiment, and z,
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FIG. 6. (Color online) Radius-time curves of a double-bubble
system for R;p=10 wm and R,y=100 wm with four different D,
as indicated in the panels. The thick blue curves and the thin red
curves are for the cavitation and the gas bubble, respectively. It
should be noted that the computation was stopped when the cavita-
tion bubble violently collapsed. The explosive expansion of the
cavitation bubble observed for D, =3000 um is suppressed by the
neighboring large gas bubble when D, =2000 um.

=0.5 ms, as in the single-bubble study. Interestingly, when
D,=2000 wm, the explosive expansion of bubble 1 ob-
served for D,=3000 um is completely suppressed by the
neighboring gas bubble. Results for different pairs of bubbles
with D1,=2000 um are shown in Fig. 7. The gas bubble of
R,y=100 pm, which could suppress cavitation inception
when R,,=10 um [Figs. 6(c) and 6(d)], cannot suppress it
when R;;=15 um. However, if the gas bubble has a larger
radius (R,,=300 wm; see the right column of Fig. 7) it can
achieve cavitation suppression even for Rjp=15 wm. These
numerical results indicate that, if the physical parameters are
appropriately set, a single gas bubble can have a significant
impact on the dynamics of nearby cavitation bubbles and can
thus suppress cavitation inception.

We have performed a parametric study to provide greater
details of the dependence of the cavitation suppression on the
bubble radii and interbubble distance. Figures 8 and 9 show
the expansion ratios of the bubbles, max(R;)/R;, for differ-
ent Ry and D, as functions of R,,. From them, we know
that a sufficiently large gas bubble with a sufficiently small
D, can completely suppress the explosive expansion of the
cavitation bubble and a larger gas bubble or smaller D, is
needed for a larger cavitation bubble to suppress its expan-
sion. In the following we discuss the physical mechanism
underlying these observations.

It is evident that, in the above numerical examples, the
bubble-bubble interaction through the bubble-radiated pres-
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FIG. 7. (Color online) Radius-time curves of six different
couples of bubbles for D{,=2000 um. The thick blue curves and
the thin red curves are for the cavitation and the gas bubble, respec-
tively. The left and right columns are for Ry;=100 and 300 wm,
respectively. This result suggests that a larger gas bubble is needed
to suppress the expansion of a larger cavitation bubble.

sure waves is the only factor that caused the cavitation sup-
pression. We thus examine here the pressure wave radiated
by the injected bubble, bubble 2. When the explosive expan-
sion of bubble 1 is suppressed, bubble 2 can act as a single
bubble because the amplitude of the pressure wave from
bubble 1 is very small. As is known, the expansion velocity
of a single bubble expanding explosively under a constant
negative pressure (p,,) can be estimated by a simple theoret-
ical formula [24],

. -2
R= | —Pne (12)
3p
where, in our case,
Png=Py—125P;=~-0.25P,

and the vapor pressure was neglected as before. Equation
(12) is derived from the Rayleigh-Plesset or the Keller-
Miksis equation by assuming that the terms proportional to

1/R" (n=1) are negligible and R=0 (see Appendix B for
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FIG. 8. (Color online) Expansion ratios of bubbles for Ry,
=10 um and different Dy, as functions of Ry,. It should be noted
that the results in cases where R;+R,>D;, was observed during
the computation are not shown in this figure.

details). This formula says that the expansion velocity in
steady growth does not depend on the equilibrium radius R
and hence, in general, R,(t)> R(t) if R;y>R;), meaning that
a bubble of a larger R, is always larger than a bubble of a
smaller R,. Using Egs. (6) and (12) and assuming R, =0, we
obtain the amplitude of the pressure wave radiated by bubble
2, p,, measured at the position of bubble 1,

max(R,) /R,

—Djy=e

—e— D, =5000 pm
—=— D, = 3000 pm
—— D, =2000 pm

max(R,) /R,

10 30 100 300 1000
Ry, [um]

FIG. 9. (Color online) Same as Fig. 8, but for R;p=20 um.
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4 Ry(1)

1) =-=
pa(t) 3Dy,

Png- (13)

The total pressure acting on bubble 1, p, ;, for p,,.=—1.25P,
is thus
1 R,
P11 =Png+P2=—025Py+ 7 —=P,. (14)
3Dy,

Equation (13) says that p, is proportional to R, but in-
versely proportional to D,,, which confirms the previous nu-
merical result suggesting that a large injected bubble with a
small D, can have a strong impact on cavitation bubble
dynamics. More importantly, Eq. (13) proves that p, is posi-
tive and hence decreases the magnitude of the negative pres-
sure acting on bubble 1. Figure 10(b) shows the total pres-
sure acting on bubble 1 in the case of R;p;=10 wum and R,
=100 wm with D;,=2000 um (the solid curve) and « (the
dash-dotted curve) [the former corresponding to the case in
Fig. 7(a)], determined numerically using Py+p,,

+(p/Dy,)d(R3R,)/dt [i.e., using Eq. (6)]. This clearly shows
that the pressure wave radiated by bubble 2 increases the
pressure and thus reduces the tensile stress acting on bubble
1. The same figure also shows p,; for D|,=2000 um given
by Eq. (14) with R, determined numerically. It is in good
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agreement with the full numerical simulation, confirming the
validity of Eq. (13). From this discussion, we can conclude
that the cavitation suppression observed in the numerical
simulation was induced by the positive pressure radiated by
the injected bubble, which decreases the magnitude of the
negative pressure acting on the cavitation bubble and hence
enlarges the corresponding critical radius. This is consistent
with the experimental result shown in Fig. 3.

Lastly, we briefly consider a five-body problem to confirm
that a larger number of injected gas bubbles have a stronger
impact on cavitation bubble dynamics. In the experiment, a
large number of gas bubbles exist in liquid mercury and they
interact not only with cavitation bubbles but also with each
other, likely resulting in different dynamics from that in
double-bubble cases. Hence, it is meaningful to consider a
case of more than one gas bubble and compare the results
with those in the case of only one gas bubble. Here, we
examine the interaction of a cavitation bubble (bubble 1)
with four identical gas bubbles (bubbles 2-5) arranged sym-
metrically around the cavitation bubble; see Fig. 11. Due to
the symmetry, the dynamics of bubbles 2-5 will be com-
pletely the same (i.e., R,=R3;=R,=Rj5), and hence this prob-
lem can be reduced to a two-body problem of bubbles 1 and
2 as follows:

R . (3 R\, 1 R R, d 4 d(R3R
(1—_1>R1R1+(_—_1>R%=_(1+_l)psl+_l_psl—_(#2), (15)
c 2 2c p c Y opedt T Dy, dt
R 3 R\, 1 R R, d 1 d(RiR 1 2\ 1 dRR
(]——2>R2R2 (_—J)R%=_<l+_2)pgz J_pS’Z__M_<_+_/_>_M' (16)
2 2C P Cdt D12 dt 2 \12 D12 dt

The max(R;)/R;, versus Ry, curves for R (=20 wm with dif-
ferent D, are shown in Fig. 12. This result clearly shows
that, in this situation, compared to the double-bubble case
(Fig. 9), cavitation suppression occurs over a wider range
(about three times) of parameter space. The large expansion
of bubble 1 in the case of R,;=100 wm and D,
=2000 wm observed when N=2, for example, is now com-
pletely suppressed by the four surrounding bubbles.

An exception is found for R,;=500 um with D,
=2000 wm, a delayed expansion of the cavitation bubble in
the period where the four surrounding bubbles are rapidly
shrinking. As indicated in Fig. 13, this is due to the negative-
pressure waves radiated by the injected bubbles when they
have a large negative acceleration. This is an interesting ob-
servation and should be examined in more detail, but the
accuracy of this case is_rather questionable because
2 max(R,)/\2D,=0.996 (\2D,, being the center-to-center
distance between the nearest-neighbor gas bubbles; see Fig.
11) and a more refined model is thus needed to address it;
hence we do not discuss it further here.

V. CONCLUSION

We have studied numerically the effect of gas bubble in-
jection on the mechanically induced cavitation in liquid mer-
cury, and have found a mechanism responsible for cavitation
suppression: the injected gas bubbles decrease the magnitude
of the negative pressure in liquid mercury by radiating a
positive-pressure wave in its early stage of expansion, which
results in the suppression of the explosive expansion of cavi-
tation bubbles near the injected bubbles. A simple theoretical
study has also been performed on the bubble-radiated pres-
sure waves, and confirmed the accuracy and validity of the
numerical result. In the future, we must consider a many-
bubble system to determine a sufficient number density or
volume fraction of injected bubbles, although the present nu-
merical study discussed only few-bubble systems.

A possible concern about the gas bubble injection is
whether the injected bubbles also cause erosion. Now we
anticipate that the erosion intensity of large gas bubbles is
much smaller than that of cavitation bubbles. Figures 8 and 9
show that the expansion ratio of a large bubble is smaller
than that of a smaller bubble. This observation suggests that
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FIG. 10. (Color online) (a) Radius-time curves of bubbles in the
expansion phase and (b) total pressure acting on bubble 1 (i.e., the
cavitation bubble) for Rjp=10 um and R,,=100 pum with D,
=2000 um (solid curve) and o (dash-dotted curve). In (a), the
thick blue curve and the thin red curve are for the cavitation and the
gas bubble, respectively. In (b), the dotted line denotes the total
pressure for D1,=2000 wm obtained theoretically using the simple
formula (14). It is clearly shown that the magnitude of the negative
pressure is decreased by the positive pressure wave radiated by
bubble 2.

FIG. 11. Five-body problem with a cavitation bubble sur-
rounded by four gas bubbles. Four identical gas bubbles, bubbles
2-5, are arranged symmetrically around a small cavitation bubble,
bubble 1, and all the bubbles are located in the same plane. The
center-to-center distance between the nearest-neighbor gas bubbles
is thus \2D,.
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FIG. 12. (Color online) Expansion ratios of bubbles in five-body
cases for Rip=20 um and different D, as functions of Ry.

the collapse velocity of large gas bubbles is smaller than that
of small bubbles (similarly to the fact that a strongly
stretched spring will have a larger contraction velocity than a

(a,b) R,y =500 um

(a)

(c,d) R,;=300um
©
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FIG. 13. (Color online) (a) Delayed expansion of cavitation
bubble observed for R,p=500 wm with D,=2000 wm and (b) to-
tal pressure acting on the cavitation bubble. In (a) [and (c)], the
thick blue curve and the thin red curve are for the cavitation and the
gas bubble, respectively. The negative pressure appearing when the
gas bubbles have a negative acceleration caused the delayed expan-
sion. Such behavior is not found when R, is smaller; see (c) and
(d) for Ryp=300 wum.
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mildly stretched one). We have also observed in our compu-
tation that the maximum collapse velocity of large gas
bubbles is much smaller than that of cavitation bubbles.
These observations imply that the erosion intensity of
bubbles having a large equilibrium radius (i.e., in our case,
injected gas bubbles) is much smaller than that of bubbles
having a quite small equilibrium radius (i.e., cavitation
bubbles). Lastly, we stress again that our recent experiments
have confirmed that the gas bubble injection that we have
attempted can indeed reduce cavitation erosion substantially
even in cases where a large number of mechanical impacts
are imposed on the liquid mercury [13,25]. The details of the
experimental results and also more extensive numerical and
theoretical investigations will be presented elsewhere.
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APPENDIX A: TRUNCATED TERMS IN THE COUPLED
KELLER-MIKSIS EQUATION

Upon substitution of Eq. (7) into Egs. (1) and (2), the
following terms, other than those involved in Eq. (8), are
derived from Eq. (1):

. 5 Y
(ﬁi—LLd(R'R') SR LERER) (R'R')). (A1)
C Dlj dt (& D” dtz

N
- >
j=lj#i

The terms in large parentheses can be rewritten as

PHYSICAL REVIEW E 76, 046309 (2007)

R R . . R R, . . R &R
—L—(2R12- +RR)) + —L—L(2R?+ 6RR)) +R2__l_2(_1)_
Dij ¢ Dlj c / jDijdt

(A2)

From this, one knows that the terms in Eq. (A1) are of order
(Ri/D;j)(R;/c) or (R;/D;)[d*(R;/c)/di*] and thus negligible
in Eq. (8).

APPENDIX B: DERIVATION OF THE EXPANSION
VELOCITY UNDER CONSTANT NEGATIVE PRESSURE

Assuming that |R|<c, dpy/dt=0, and R(t) is large
enough so that the terms in Eq. (2) proportional to 1/R" (n
=1) are negligible compared to p .+ Py, Eq. (1) is reduced
to

. 3. + P
RR+-Rr=_PeT70 (B1)
2 p
Assuming R=~0 and rearranging yields
. [=2(pg+ P
3p

Upon substitution of p,,+Py=p,, into this, one obtains Eq.
(12).

The expansion velocity in our cases is on the order of 1
m/s and is much smaller than ¢ (1450 m/s). The assumption

of |R|< c used in deriving the above formula is thus fully
satisfied.
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