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Multiple zonal jets and drifting: Thermal convection in a rapidly rotating spherical shell
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We demonstrate that thermal convection in a rapidly rotating spherical shell may produce zonal flows
outside the tangent cylinder that consist of multiple alternating jets drifting towards the interior. A quasigeo-
strophic model that in model space is located between the classical annulus and the spherical shell, has been
constructed. In this generalized annulus model we allow for terms in the Ekman correction to the flow that are
usually neglected. It is shown that these terms may create observable effects at low Ekman numbers. Some of
the remaining differences between the two-dimensional (2D) and 3D model may be explained by the missing
heat transport along the rotation axis of the 2D model. The 2D model makes it possible to show that the
occurrence of jet drift requires a significant radial dependence of the B parameter. In addition, the relatively
low numerical costs of the 2D model allow extensive parameter studies. For an increasing rotation rate and
fixed moderate thermal driving, the 2D model predicts (i) an increased zonal flow strength, (ii) an increased
number of jets related to Rhines length scale, and (iii) an inward drift of the center jets. For an increasing
thermal driving and fixed rotation rate, the solutions of the 2D model develop stronger zonal flows with a
reduced number of still faster drifting jets. The jet drift is ultimately converted into fluctuations of a couple of
steady jets as the center region outside the tangent cylinder is being cleared of jets. These solutions, that

display reduced Ekman layer effects, resemble solutions obtained with stress-free boundary conditions.
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I. INTRODUCTION

Models of alternating zonal jets driven by rotating thermal
convection has been a longstanding problem [1]. This prob-
lem is astrophysically motivated by the fact that cooling
planets in their interior often possess rapidly rotating liquid
shells consisting of iron or hydrogen and helium. On planets
with an exposed liquid shell, differential rotation may be
observed directly as banded structures, e.g., on the surface of
Jupiter and Saturn. Recent progress on this problem have
been reported in Refs. [2,3]. As long as the thermal driving is
not too strong the tangent cylinder (TC) separates the fluid
dynamics. The TC is defined as the imaginary cylinder along
the rotation axis that touches the inner boundary of the shell.
In the models of Refs. [2,3] it was necessary to impose
stress-free boundary conditions at both surfaces in order to
obtain an overall strong zonal flow. In the case where the
inner boundary of the liquid shell is nonslip only weak zonal
flows form inside the TC [4]. These findings illustrate the
fact that the mechanical boundary conditions is one of the
key model parameters of the problem.

For a stress-free outer boundary, the number of jets out-
side the TC is mostly 2, but sometimes only 1. Considering
the surfaces of enclosed liquid planetary cores the appropri-
ate boundary conditions are nonslip. This also applies to
laboratory experiments on thermal convection in rotating
spherical shells [5-7]. The Ekman layer drag at these rigid
boundaries slows down the zonal flow in the entire shell.
However, the qualitative properties of the zonal flow may
change significantly: outside the TC, due to the rigid outer
boundary, multijets, i.e., more than 2, may develop [7-9]. In
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the present paper we demonstrate that yet another model pa-
rameter determines the qualitative properties of the zonal
flow: when the radial dependence of the geostrophic height
of the container outside the TC is sufficiently strong the mul-
tijet solutions become unstable and the jets begin to drift
towards the interior. The radial dependence of the 8 param-
eter that applies to the spherical shell is sufficient to desta-
bilize the multijet zonal flows.

In dynamo simulations where the magnetic field is being
induced by thermal convection in enclosed rotating liquid
shells, stress-free boundary conditions have been employed
in an attempt to reduce the damping of torsional oscillations
and to strengthen the toroidal component of the magnetic
field as this is the expected case at high rotation rates, see
Ref. [10], and references therein. The argument that the vis-
cous boundary layers may be dispensed with in simulations
at low to moderate rotation rates has some relevance. How-
ever, as shown in the present paper, nonslip boundary condi-
tions significantly affect the low Ekman number regime. A
new type of flow with different dynamo properties develops.
It therefore seems important to keep the mechanical bound-
ary conditions in mind when still stronger computers and the
development of simplified numerical dynamo models allow
dynamo investigations at yet higher rotation rates.

In this paper we present aspects of multiple zonal jets in
three-dimensional (3D) models and develop closely related
2D models that allow us to anticipate the fluid dynamics at
higher rotation rate and thermal driving. In 3D we consider
the kinematic dynamo properties of this type of flow.

II. MODELS

In the Boussinesq approximation, the problem of thermal
convection in a rotating spherical shell is given by
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FIG. 1. Geometry of the 2D model. The top and bottom bound-
ary of the duct are sections of cylindrical surfaces with radius rz. In
this plot ry=ry/0.6.
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where the flow u is incompressible, V-u=0. The nondimen-
sionalization is taken as in the spherical dynamo benchmark
[11]. The Rayleigh, Ekman, and Prandtl numbers are Ra
=ag,ATd/ v, E=v/Qd? and Pr=v/k, where (v,«) is the
kinematic viscosity and thermal diffusivity. The thermal ex-
pansion coefficient is denoted by «. The shell thickness is d
and the ratio between the inner and outer radius is é=r;/rg
=().35, which has been set to the present value of the aspect
ratio of the Earth fluid core. Thus the nondimensional
(ri,ro)=(&,1)/(1=&). The container is rotating about the z
axis with angular velocity (). We impose nonslip boundaries.
The direction of gravity e,=—e,. The gravity profile g=r/ry
has been normalized to one at the outer boundary. The sys-
tem is heated at r=r; and AT denotes the temperature differ-
ence between the inner and outer boundary.The temperature

T=T+T is decomposed into a thermally conductive basic

state T=r,(ry/r—1) and a perturbation 7, which is zero at the
boundaries.

The 3D convection problem has been solved using a clas-
sical timestepping quasispectral code. This code is based on
expansions in spherical harmonics and radial Chebyshev
polynomials and has been developed from the Cartesian code
used in Ref. [12]. The onset of convection problem was
solved as a generalized eigenvalue problem [9].

In this paper we compare the spherical shell outside the
TC to a quasigeostrophic model. The geometry of the 2D
model may be described as follows. Two coaxial cylinders
have their common axis parallel to the x axis, see Fig. 1. The
distance between the cylinders is d and the ratio between
their radii é=r;/ry=0.35. A periodic duct of length L, par-
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allel to the x axis touches these cylinders at the equatorial
plane. Thus we may expand the solution in the form A
=3,A,e™C™L) A third cylinder with axis a parallel to the x
axis defines the top boundary of the duct. It is tangential to
the outer cylinder at the inner sidewall and has radius ry
>ry. The top and bottom boundary are symmetric in the
equatorial plane. Curvature about the rotation axis has been
neglected allowing us to obtain the classical annulus in the
limit where r7/ry>>1 and §< 1. The value of Ra at onset of
convection Ra, is affected by the omission of azimuthal cur-
vature. However, by taking L,=2mr;, we obtain [ wave num-
bers close to the azimuthal wave numbers in the 3D model at
Ra=Ra.. We may introduce a cylindrical coordinate system
Cy in which the top boundary is a coordinate surface. The
azimuthal axis of C; is a and the polar axis is along the z
axis. A point in this coordinate system is given by (r, 6,x).
Note that the above r; may refer to the system Cy, whereas r;
and ry do not. The height of the top boundary above the
equatorial plane is H and its angle of inclination is 6. These
quantities satisfy H=r(cos —1-&)+ \/ (1+&)/(1-¢) and
sin @=&+(1-y)/ry, hence dH=tan 6. To complete the ge-
ometry definitions we finally specify, in a way similar to the
above, a cylindrical coordinate system Cp in which the bot-
tom boundary is a coordinate surface.

In quasigeostrophic models the velocity and temperature
are usually approximated by u=-V X V(x,y)e.+u’(r) and
T=T(x,y), where [u’| < |V X Ve_|. Furthermore, we assume

that e,=e,, g=¢g(y), and T=T(y). Let us consider a pair of
points one of which is located at the top boundary while the
second one is the reflection in the equatorial plane. No pen—
etration at the top and bottom boundary implies that u
—+tant9u , respectively, where 6 refers to the top pomt in
system CT By superimposing nonslip boundary conditions at
these surfaces the mainstream u is being adjusted by viscous
Ekman layers [13]. This bulk Ekman correction flow v is of
order O(E"?). The component of v along the rotation axis at
the top and bottom boundary is vZT’B = i(v,T’B /cos@
+tan GvyT ‘). Here U,T’B refer to the radial component of v in Cy
and Cg, respectively. From Egs. (1a), (1b) the z-averaged z
vorticity equation and the heat equation then become

2

v ,
+J(V,V?V) - — tan0uy+v—+tan(9vv
cosf “1r
Ra T
== _+V2V2V 23
280, (2a)
oT . ovaT
-—+Aun=——"—+—v%+—v% (2b)
at dx dy Pr

The Jacobian is defined by J(A,B)=d,Ad,B-d,Ad,B. For the
Coriolis term at the boundaries, i.e., the third term in Eq.
(2a), we used that u,, v, (in Cy and Cg), and v, are symmetric
in the equatorial plane. For the symmetry of v, and v, see
Egs. (2.17.2), (2.6.16) in Ref. [13]. The Coriolis term in Eq.
(2a) is evaluated at the top boundary.
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To evaluate v, at the top boundary we need u,y
=—(cosfu,+sinfu,). Here the last term may become impor-
tant for 6~ 1. Neglecting or keeping this term, we find

C

=- -+
cos 0 2 | cos?0\ ox ay 0?20\ ox
u tan 0 u
+ coszﬁ—x) + —1,2<—x + uy> , (3a)
ay 2rpcos’<6\ cos 0

12
v, __E" 1 ( ! a_m_>
cos 6 2 | cos?0\cos?0 ax  dy
tan 6 ( u, 3u, )]
. (3b)

+ —
2rpcos'?0\ cos @  cos?0

respectively, see Eq. (2.17.2) in Ref. [13].

The third Coriolis subterm in Eq. (2a) may become com-
parable to minus the second subterm for #~ 1. We derive an
equation for v, as follows. The first and third Coriolis sub-
term have the same form. Since the toroidal part of u is large
we assume that the toroidal part of v may be neglected. This
turns out to be a good approximation. From Eq. (2.6.16) in
Ref. [13] we write 9,v=V XV X A(x,y)e,. The poloidal po-
tential of v=V XV X We_, then satisfies V2W=—1/2{z(vz
—vf)/H+v?+vf}. Hence

d | tan Gv 1% v,
R e R e )
dy H |r dy| Hcos 0]r

This equation is second order in y. We impose no-penetration
boundary conditions at the sidewalls, v,=0 at y=0 and y
=1.

Two sets of gravity and thermal basic state profiles have
been investigated, profile A: [g,7]=[1,y] and profile B:

[g.T]=[1-(1-&)y,&/{1-(1-&)y}]. Profile A corresponds
to the classical annulus [8,9], and profile B to the spherical
shell. The latter has been obtained from the spherical shell
profiles by substituting r=ry[ 1 —(1—£&)y]. This, however, in-
troduces a basic state diffusion term in Eq. (2b) which is not
present in the 3D model. We cancel this term by a heat
source.

The sidewalls, y=0 and y=1, are either both (i) stress-free
walls or (i) nonslip walls. In case (i) we impose V=4,V
=0. This implies that the y-averaged zonal flow is zero
<ux>xy:_[<v>x(y:1)_<V>x(y:0)]209 where <A>h is defined
as the b-average of the A quantity. We impose this additional
condition in the stress-free case in order to obtain a model
setup close to the annulus in Refs. [8,9]. This latter condition
is relaxed in the case of nonslip sidewalls. In fact the
y-averaged zonal flow may become large [14]. In case (ii) we
impose V=4,V=0 for the nonzero azimuthal wave numbers.
The boundary conditions for /=0 are found from the zonal
flow equation

Hug)  Kugny), E\2 ),
+ == 12 () + 2
at dy Hcos' 76 dy

)

which is obtained by xz averaging the x component of the
momentum equation (la) and then expanding the Coriolis
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term in contributions from the duct endwalls x=0 and x
=L,, the sidewall y=0, and the top and bottom boundary.
The latter contributions involve the Ekman suction at these
boundaries. Note that the term [f%<”x>x]v—o which also
enters the right-hand side of Eq. (5) vanishes due to the
nonslip sidewall. By y averaging Eq. (5) we find with V(y

=0)=0 that

av
ot

PV
r?yz

g2 av PV
y:l_ H cos'?0 gy y ay*

y=1 y=0

(6)

for [=0. This condition together with V(y=0)=0 and 4,V
=0 apply for /=0. In the annulus model with nonslip side-
walls and free-slip, nearly plane-parallel top and bottom
boundaries, a large (u,),, may develop [14]. We have suc-
cessfully tested our model using some of their cases. How-
ever, in the 2D models below, (u,),, is negligible, as the
kinetic energy ratio (Ey((uy) )/ Ex((u),)), <1.2%.

The 2D models have been implemented by azimuthal
plane wave expansions and radial second-order finite differ-
ences. Radial Chebyshev expansions were used to solve the
problem at onset of convection, which, as in the 3D model
above, constitutes a generalized eigenvalue problem [9].

III. RESULTS
A. Nonmagnetic convection

Unless noted otherwise, we put R=Ra/Ra.=20 and Pr
=1. The number of possible 2D model combinations is large.
We may set the velocity boundary conditions at the sidewalls
to be either stress-free or nonslip, the radius of curvature of
the top and bottom boundary to be either « or r;/0.9 (this
radius may be varied continuously), the gravity and thermal
basic state profiles to be either A or B, the form of v, to be
given either by Eq. (3a) or by Eq. (3b), and finally to include
v, or not. Already at this point we have 2°=32 possible mod-
els. In Fig. 2 we have chosen an economic path through
model space that in our opinion well illustrates intermediate
models between the classical annulus and the spherical shell.

The model settings in Fig. 2(a), see figure text, are com-
parable to those of the annulus model [8,9], and the results
are similar. The (N,), lines are closely spaced, i.e., the jets
have about the same amplitude. In addition, (N,), display a
number of plateaux where each step is correlated with a de-
pression of the zonal flow. However, compared to the 3D
model in Fig. 2(f), both (E;), and E, are being highly over-
estimated at low E. These quantities are better modeled with
nonslip sidewalls, Fig. 2(b). The plateaux remain while the
variation in jet amplitude increases. Introducing curvature of
the top and bottom boundary has marked effects, Fig. 2(c).
At low E, (N,), increases, whereas (Ey), is being further re-
duced. At high E, the zonal flow strength E, increases. By
changing the profiles of gravity and thermal basic state from
A to B, we finally reduce (E}), and E, to 3D levels at low E,
Fig. 2(d). In terms of (E,),, Ez, and (N,),, the effects of an
improved v, and the inclusion of v, are small at low E, Fig.
2(e), see also below. However, these model refinements re-

046306-3



JON ROTVIG

PHYSICAL REVIEW E 76, 046306 (2007)

14 T T T T 14 T T T T ]
upper — - - log,<E.>, ] upper — - - log,,<E.>, ]
12 loljferff— 10E, 1 12F 1:3;”7 10E, 7
<N,>, ] <N,>, ]
10| 1 10f 7
8_ “7"747 -
6 F /‘//,/—///‘ //,-< A
4b -7 S 50% A
2 - .
ot . . (2]
4 o) 6 7 4 5 6 7
—log, E —log, E
14 T T T T 14 [ T T T T
upper — - — log<E>, 1 [ upper — — - log,,<E.>, 10%
12 F  lower —— - 10E, Lox ] 12:- lower — — — 10E, 7]
<N,>, ] r <N,>, 20%
10p 207 1 10 207
of ! - ]
/[ 40% r 50%
6 ‘7////,,///" — 50% ] 6F L - p
s = I B
2 - = ) T —— e
0 . . . .(C): oE , o .(d)
4 5 6 7 4 5 6 7
flogw ) 710@10 E
14: T T T T 14 T T T T ]
upper — - - log,,<E.>. i upper — — — 10<E:/E.>, — <Np>, ]
12 tower — - 10E, 10% ] 12 F  middle - - - logw<E\>, 7
L <N,>. ] lower — — - 10F,
L 20%
10| a0n 10 [P
8:' 40% ] gl ]
L / B0% 10% ]
6r G 7] 6 __ < b
LT eeemmTTTT 20% ]
4r P ] 4+ = 30% 3]
2| 8 ]
- ___ - 2 — ]
ob T ‘(e) b = . . . () ]
4 5} 6 7 4 5 6 7
710g10 E *1Og10 )

FIG. 2. Flow characteristics. Panels (a)—(e) display results of the 2D model. The upper dashed line is the kinetic energy log;((Ey),. The
zonal flow is defined as uz=(u,),. The lower dashed line depicts the strength of this flow component 10E, EZ=(Ef/Ek),. From the radial
zonal profile (uy), we determine the number of jets as follows: A jet is defined as a region whose endpoints are either at a profile endpoint
or where (uy), is zero. The peak jet of (uz), is then found and the number of jets N,, whose amplitude is more than p per cent of the peak
jet, is determined. The result (Np),, where p=10,20,...,50, is shown by solid lines. The horizontal through line depicts the classical two-jet
solution. (a) 2D model, stress-free sidewalls, ro/r;=0, gravity and thermal basic state by profile A, v, by Eq. (3a), and v, neglected in Eq.
(2a). (b) As in panel (a), but with nonslip sidewalls. (c) As in panel (b), but with ry/r7=0.9. (d) As in panel (c), but with gravity and thermal
basic state by profile B. (e) As in panel (d), but with v, by Eq. (3b), and v, retained in Eq. (2a). (f) Results of the 3D model. In this model
the zonal flow is defined as u,= (u¢)¢ and the radial zonal profile as (uz),. The two lowermost dashed lines and the five solid lines are
calculated outside the TC as in the 2D model. The upper dashed line is the energy outside the TC compared to the total energy, IO(Eg 1Ep,.

The upper through line depicts the 100% level of this quantity.

duce E, further towards 3D levels at high E. The general
agreement of the latter 2D model with the 3D model is good.
The number of jets (N,), is closest to the 3D result when p is
small. However, the slope of E,(E) at E=1X107% is being
overestimated. We attribute this to the missing heat transport
along the rotation axis of the 2D model, suggesting that R,
should be smaller than R5p, see below. For all 2D models the
multijet solutions emerge roughly at the same E=5 X 107 as

in the 3D model. In the following, the 2D model of Fig. 2(e)
is referred to as model I and the 3D model of Fig. 2(f) is
denoted model II.

At E=1X1077, model I produces a multijet azimuthal
flow with moderate strength, Fig. 3(a). The jets are strongest
close to the TC. In addition, the prograde jets tend to be
wider than the retrograde jets. A remarkable phenomenon is
displayed in Fig. 3(b) where three regions with different jet
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FIG. 3. (Color online) Zonal flow and its extrema. (a) — (c) show the solutions of model 1. (a) Snapshot of u, displaying ~10 jets,
E=1X1077, and two-fold x symmetry (2-FXS). E;=41%. (b) Time-dependent extrema of the radial zonal profile stronger than 10% of the
peak jet. Same parameters as in panel (a). (c) As in panel (b), but for E=1X 107 and 1-FXS. E;=19%. Panel (d) displays the solution of
model IT at E=1 X 1076 and eightfold azimuthal symmetry (8-FAS). E,=18%. In panel (e) is shown zonal flow extrema produced by the 2D
model in Fig. 2(b) at E=1X107% and 1-FXS. E;=30%. (f) As in panel (e), except that the model is that of Fig. 2(c). E;=27%.

dynamics may be observed. The center region II, y
€[0.3,0.7], contains ~5 jets that are drifting towards the TC
at a rate ~10 at mid-depth. Note that the drifting motion
applies to the extrema of the radial zonal profile which may
be approximately described by the form (uy).
=f(s)cos[k(s)s+wt]. Here f is a decreasing function of the
distance s to the z axis. The drift speed w/k is higher closer
to the TC where the jets are wider. In the outer region III,

v <<0.3, the azimuthal flow is weak and has no clear jet struc-
ture. In the inner region I, y >0.7, the jets are changing their
width, being created or destroyed, and sometimes change
their drift rate abruptly. From time to time the jet next to the
TC may become prograde for a short while instead of the
normal retrograde motion. In order to verify this new phe-
nomenon by the numerically more expensive model II we
have carried out a comparison at E=1X 107, see Figs. 3(c),
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3(d). Even at this relatively high Ekman number where the
number of jets is small the three-region structure is evident
in both models, see also below for further 3D confirmations.
In Fig. 3(c) we note that the zonal flow suppression in region
III, especially of the prograde jet close to y=0, is less pro-
nounced than in model II. The same applies to the model of
Fig. 2(d). However, the use of Eq. (3b) and the inclusion of
v, in the Coriolis term result in efficient suppression of the
zonal flow in region III provided that the Ekman number is
sufficiently small, E<2 X 1077, see Fig. 3(b). This is reason-
able since 6~ 1 in this region. In general, the third Coriolis
subterm is neglected in quasigeostrophic models. The jet
drift phenomenon is not observed in the classical annulus
irrespective of the velocity boundary conditions at the top
and bottom boundary [8,9]. In these models localized fluc-
tuations of the azimuthal flow may appear in terms of ther-
mal Rossby waves excited by convective bursts. In the
model of Fig. 2(a), which is close to the annulus model of
Refs. [8,9], the jet drift is also absent. However, by imposing
nonslip sidewalls which results in the model of Fig. 2(b), we
introduce marked fluctuations of the zonal flow extrema, see
Fig. 3(e). In this model, which has the same weakly varying
H(y), but a weaker zonal flow than in the model of Fig. 2(a),
one of the five calculated solutions for Ee[1X1077,1
X 107] has drifting jets. A strongly varying H(y), however,
results consistently in jet drift, see Fig. 3(f). This model
property, in addition to nonslip top and bottom boundaries
that enable multijet solutions, seems to be crucial to the oc-
currence of jet drift. In the 2D model the radius of curvature
of the top and bottom boundary may be varied continuously.
This free parameter may in principle be used to determined
the critical radius of curvature for onset of jet drift. By com-
paring the drift speeds in Figs. 3(c), 3(d) we notice that the
drift rate in model II is approximately twice that of model 1.
The importance of a strongly varying H(y) to the jet drift
suggests that this difference in drift speed is to due to the
missing azimuthal curvature of model I.

As function of driving strength R the zonal flow dynamics
in model T may be seen in Figs. 4(a)-4(g). At (R,E)
=(2.5,1X1077) the width of region III is 0.7, and only ~4
jets are observed. By increasing R=5, 10, region III narrows
and the number of jets increases. The zonal flow remains
weak, E;=6%. The case R=20 is shown in Figs. 3(a), 3(b).
By R=40, region III has vanished, but the width of region I
is as for R=20. The number of jets has begun to decrease,
see also Fig. 5(c), whereas the drift rate in region II has
increased. At R=80, the width of region I has grown to 0.8,
and faster jet drift in the bulk of this region is observed. At
R=160, region II has vanished. Only a few jets are left, but
they are drifting faster in the bulk of Region I. The center
jets have begun to weaken. This tendency has become more
pronounced at R=320. Eventually, at still higher R, the cen-
ter jets will vanish leaving only two strong steady jets with
fluctuating extrema. At E=3.16X 1077 and 1X107°, this
happens at a lower R, Figs. 4(h),4(i). As expected, this solu-
tion, which has reduced Ekman layer effects, resembles the
two-jet solutions obtained with stress-free boundaries in
models of e.g., Jupiter’s atmosphere [2,3]. An example of the
R dependence of the solutions in model II is given by Figs.
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3(d) and 4(j),4(k). We note that the above scenario for model
I at E=1X 107 is confirmed although it happens faster in R
due to the lower number of jets. As for model I, the jet
depletion in the center region at high R may be counteracted
by decreasing the Ekman number, Fig. 4(1).

For Ec[1X1077,1X107°%], we find E,<6% when R
=10, see Fig. 5. At R=10, the zonal flow strength E,(R)
displays a kink and begins to grow steeply, its slope increas-
ing with decreasing Ekman number. Eventually, E,(R) satu-
rates at high R where also zonal relaxation oscillations may
appear [9]. Thus Fig. 5 suggests that the slope of E,(E) at
E=1X 1070 is smaller for R <20 than at R=20. As proposed
above, this provides an explanation of the relatively large
slope of E,(E) at E=1X107° in model I as compared to
model II.

As suggested by Fig. 2(e), the jet number scales excel-
lently with the Ekman number when E<5X 107, Setting
(NP),OCEAP, we find (N9, N0, N30, Nag,N50)=—(0.27,0.25,
0.25,0.25,0.26). These scalings may be related to Rhines
length scale Lgoc(U/B)"?«(EU)"? of a flow component
having velocity U [15]. In our model I, 8 (>0) is minus the
coefficient in front of the first Coriolis subterm of Eq. (2a).
For E<5X 107 the kinetic energy (E,), > E~%%. The corre-
sponding Lz E%34, which is close to the length scale on
which convection operates [9]. This result is consistent with
the fact that the zonal flow is relatively weak for E>1
X 1077, For E<5X 107% the zonal energy (Ef)tOCE‘LOZ, and
the related L% E*?°. This Rhines length scale, which deter-
mines the endpoint of an inverse energy cascade maintained
by azimuthal mean Reynolds stresses, fits the scaling of
(N,). At E=1X 107, the zonal flow length scale at the TC is
3.8 times larger than the convective length scale, as /,.=64 at
onset of convection. Interestingly, an Lso E'* scaling may
also be obtained in a weakly nonlinear 1.5D model, and ex-
plained by a balance between Reynolds stress, Ekman and
bulk dissipation in the zonal flow equation [16]. From the
Rhines length scale argument we expect that (i) due to an
increased B parameter and a reduced zonal flow strength, the
(many) jets will narrow as function of distance from the TC,
see Fig. 3(a), and (ii) caused by an increased zonal flow
strength, the number of jets as function of R will eventually
begin to decrease and reach a low number, see Fig. 5.

B. Convective kinematic dynamos

We conclude this paper by making some important appli-
cations of the above results to planetary dynamos. The first
systematic study of convection-driven geodynamo models
displaying a reversing dipole at the core-mantle boundary
appeared in Ref. [17]. They show that a necessary condition
for reversals is that the magnetic energy is smaller than the
kinetic energy. In addition, a further increase of the driving
strength may be necessary. In nonreversing dipolar dynamos
driven by the thermal modus of the present paper, the Lor-
entz force F,,=(1/Pm)(V XB) X B tends to damp (enhance)
the relative strength of the zonal flow outside (inside) the TC
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FIG. 4. (Color online) Zonal flow extrema as function of the forcing level R and Ekman number E. Panels (a)-(g) show solutions of
model I at E=1X 1077 and 2-FXS. The driving is R=2.5, 5, 10, 40, 80, 160, and 320; and the zonal flow strength E,=6, 4, 5, 57, 61, 65,
and 68 %, respectively. Note that the case R=20 is shown in Fig. 3(b). As in panel (g), the solutions in panels (h), (i) are from model I at
R=320, but with E=3.16X 1077, 2-FXS, E;=58%; and E=1X 107°, 1-FXS, E;=53%, respectively. Finally, in the last row, solutions of
model II are depicted. The three solutions have (R,E,E, FS)=(40,1X1076,29% 3-FAS), (80,1X107°,41%,
3-FAS), and (80,5.62X 1077,45% ,4-FAS), respectively.

[18]. Here B is the magnetic field and Pm=wv/ % is the mag- [18]. Due to computational costs we focus below on kine-
netic Prandtl number, 7 being the magnetic diffusivity. How- matic dynamos, hence neglecting F,,.
ever, for reversing dynamos at moderate E, the flow chang- We impose electrical insulators outside the spherical shell

ing effects of F,, is reduced both inside and outside the TC and solve the magnetic induction equation
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FIG. 5. Flow characteristics of model I as function of forcing
level R and Ekman number E. The line definitions are identical to
those of Figs. 2(a)-2(e) except for a linestyle swap in order to
highlight the kinetic energies. The three panels have E=1X107°,
3.16X 1077, and 1X 1077, respectively. The vertical auxiliary line
indicates R=20.

B 1
— =V X (uxXB)+—V?B. (7)
ot Pm

The velocity u is taken as the above 3D time-dependent con-
vective flows and we search for quasiexponentially growing
solutions with Pm close to Pm, for onset of dynamo action.
We have solved at (E,Pm)=(1X107*,0.8), (1 X 107°,0.45),

PHYSICAL REVIEW E 76, 046306 (2007)

(x10°)

FIG. 6. (Color online) Solutions of model II. (a) Snapshot of the
zonal flow having ~6 jets outside the TC. (E,FS)=(1.78
% 107%,8-FAS). (b) Kinematic dynamo. The radial component of
the magnetic field B, at r=r is seen from the northern hemisphere.
The colatitude @ is a linear function of radius, which makes the TC
(black line; brown line online) appear relatively smaller than in
panel (a). (E,Pm,FS)=(3.16X107%,0.3,1-FAS).

and (3.16 X 107°,0.3), where the zonal flow strength outside
the TC is EZ=<Ef’0/ E2>z= 17, 15, and 15 %, respectively, see
Fig. 2(f). The relatively large-scale convection at high E im-
plies good mixing and absence of persistent large-scale co-
herent structures in B, at r=r,. However, at the lowermost E,
two interleaved magnetic spirals have emerged, Fig. 6(b).
This solution is antisymmetric in the equatorial plane and has
a slow prograde drift. The sign of the spiral is due to the
advection of magnetic field lines by the strong retrograde jet
at the TC; see Fig. 6(a), but more pronounced at the higher
E=3.16X107°. The toroidal magnetic field of the kinematic
dynamos becomes increasingly dominant at lower E, its en-
ergy being (E\"'/E,),=61, 67, and 74 % in the three cases.
The constant E,~ 15% suggests that the enhanced toroidal
field is due to the increased shear caused by the multijets
emerging at E~5X 107,

The possibility of signatures in the magnetic field created
by the drifting jets is currently being investigated. Using the
filtering method in Ref. [18], it may be shown that the main
dynamo region of the kinematic dynamo at (R,E,Pm,FS)
=(40,1X%107°,0.064,9-FAS), is located in the cylindrical
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shell ser;+[0.2,0.3], see also Fig. 4(j). The magnetic
Prandt]l number is slightly above critical. The a-effect in the
dynamo region is created by the Busse columns. The drifting
jets imply a time-dependent w effect in the dynamo region
when the jets are moving through it. This is likely to result in
a time-dependent efficiency of the dynamo hence creating
variations in the field intensity and making it possible to
detect the jet drift outside the shell. For the above kinematic
dynamo this effect is observed as kinks of the otherwise
quasiexponentially growing magnetic energy.

In summary, we have in this paper investigated the zonal
flow in a rotating convecting spherical shell with nonslip
boundaries by means of a 3D model and a 2D generalized
annulus model for the region outside the TC. The latter
model has been evaluated in configurations spanning from a
setup approximating the classical annulus to a close approxi-
mation of the 3D shell. This allows a separation of effects in

PHYSICAL REVIEW E 76, 046306 (2007)

terms of individual model features. A type of zonal flow with
multiple inwardly drifting jets has been found and confirmed
using fully independent models. This type of flow will affect
geodynamo models at high rotation rate and thermal driving.
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