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We investigate the decoherence properties of a central system composed of two spins 1/2 in contact with a
spin bath. The dynamical regime of the bath ranges from a fully integrable limit to complete chaoticity. We
show that the dynamical regime of the bath determines the efficiency of the decoherence process. For pertur-
bative regimes, the integrable limit provides stronger decoherence, while in the strong coupling regime the
chaotic limit becomes more efficient. We also show that the decoherence time behaves in a similar way. On the
contrary, the rate of decay of magnitudes like linear entropy or fidelity does not depend on the dynamical
regime of the bath. We interpret the latter results as due to a comparable complexity of the Hamiltonian for
both the integrable and the fully chaotic limits.
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I. INTRODUCTION

Real quantum systems always interact with their environ-
ment. This interaction entails that the system, initially in a
pure state, becomes entangled with the environment, and de-
cays into an incoherent mixture of several states. This phe-
nomenon, called decoherence, is an essential feature of quan-
tum mechanical systems.

From a fundamental point of view, decoherence provides
a theoretical basis for the quantum-classical transition �1�,
emerging as a possible explanation of the quantum origin of
the classical world. From a practical point of view, it is a
major obstacle for building a quantum computer �2� since it
can produce the loss of the quantum character of the com-
puter. Therefore, a complete characterization of the decoher-
ence process and its relation with the physical properties of
the system and the environment, such as the strength of the
system-bath interaction, characteristic times of the bath, or
the presence of quantum phase transitions or quantum chaos,
is needed for both fundamental and practical purposes.

Connections between decoherence and quantum chaos
have been previously studied. However, a universal theory
has not yet been found. One line of argument establishes a
link between the decoherence process and the Loschmidt
echo �3�, claiming that for a quantum system with a classi-
cally chaotic Hamiltonian the rate at which the environment
degrades information on the initial state becomes indepen-
dent of the system-environment coupling strength �4�. An-
other point of view, in some way contrary to the former, but
generally accepted, states that a chaotic bath leads to faster
and stronger decoherence than an integrable one �5–7�. One
significative manifestation of this phenomenon is the depen-
dence of the decoherence time, i.e., the time for which the
initial correlations in the central system are lost due to deco-
herence, with the system-bath coupling strength �. Some au-
thors have found that for regular baths decoherence rate is

proportional to �2, while chaotic or unstable ones display a
considerable weaker dependence on � �6,7�. A numerical
study over a quantum walker with a complex coin has shown
that, though a chaotic and a regular environments may not be
distinguishable in the short-time evolution, the chaotic one
continues to be effective over exponentially longer time
scales, whereas the regular bath saturates much sooner �8�. A
similar study on the Dicke model at weak coupling shows
that the entanglement is smaller if the system is initially in a
regular orbit than if it is in an irregular one �9�. However,
exceptions for this general behavior are well known �10�. It
is also argued that, when the system-bath interaction be-
comes extremely small, so that the perturbation theory is
applicable, the regular bath leads to a faster decoherence than
the chaotic one �11�. Numerical studies of many-spin sys-
tems show that a chaotic bath generates stronger and faster
decoherence than an integrable one for strong enough cou-
pling. However, the result is opposite in the perturbative re-
gime �12�.

In this paper, we study the connection between decoher-
ence and quantum chaos in a many-body spin system. We
follow the methodology proposed in �12� in order to test if
the conclusions obtained there are applicable to a broader
class of spin systems and, thus, can be postulated as generic.
We use a Hamiltonian for the bath that depends on many
arbitrary, real, and independent parameters, and whose dy-
namical regime is independent of the specific values of these
parameters. The integrable limit is defined as a random real-
ization of the XYZ Gaudin magnet �13�, characterized by the
existence of as many integrals of motion as quantum degrees
of freedom. The transition to a chaotic regime is modeled by
a single control parameter interpolating between the inte-
grable Hamiltonian and a fully chaotic one. In both limits,
and along the whole transition, the complexity of the Hamil-
tonian, understood as the number of different relevant terms,
remains comparable, contrary to most of the previously stud-
ied systems, for which the regular limit is represented by a
simplified Hamiltonian. For example, in �8� the integrable
limit is characterized by an independent evolution of each
spin of the bath, and in �12� it is reached when the Hamil-
tonian of the bath reduces to a site-dependent magnetic field,
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with a negligible interaction between different spins.
In this work, we show that, for a wide class of spin

Hamiltonians, the integrable limit generates decoherence
more efficiently if the system-bath coupling strength is small,
while the chaotic limit becomes more efficient when the cou-
pling is larger. We also show that this conclusion can be
extended to the decoherence time. Nevertheless, the transi-
tion from integrability to chaos in terms of magnitudes re-
lated to decoherence is not so smooth as it is on spectral
statistics. Moreover, the rate of decay of the fidelity and the
linear entropy does not depend on the dynamical regime of
the bath, contrary to what it is usually claimed.

The paper is organized as follows. In Sec. II, we describe
the model and analyze its dynamical regime by means of
spectral statistics. In Sec. III, we study the efficiency of the
decoherence process, illustrating the connection between the
dynamical regime of the bath and some characteristic mea-
sures of decoherence, like the nondiagonal elements of the
system reduced density matrix and the linear entropy. In Sec.
IV, we study a quantitative characterization of the chaoticity
of the bath in a perturbative regime using the linear entropy
and the Loschmidt echo. We also study the relation between
the onset of chaos and the decoherence time. Finally, in Sec.
V, we summarize our results.

II. MODEL

We will consider a central system composed by two inter-
acting spins 1/2, S1 and S2, and a bath composed of a large
number of 1 /2 spins Ik �14�. The central system and the bath
evolve with the following Hamiltonian:

H = HS + HSB + HB, �1�

where HS is the self-Hamiltonian of the system, HSB the in-
teraction between the system and the bath, and HB the
Hamiltonian of the bath. For HS and HSB we use the Hamil-
tonians

HS = JS1 · S2 �2�

and

HSB = S1 · �
k

akIk. �3�

The interaction between the central system and the bath is
carried out by a single spin of the system S1; the other spin,
S2, is affected by the bath indirectly, through its interaction
with S1, governed by HS. These kind of models are useful to
describe, for example, the destruction of Kondo effect by
decoherence �15�.

For the bath Hamiltonian HB we use an XYZ model with
long range interactions

HB = �
j

� jHj , �4�

where

Hj = �
k=1�j

N

AjkIj
xIk

x + BjkIj
yIk

y + CjkIj
zIj

z, �5�

and �� j� are free parameters.

With this generic Hamiltonian we will describe a com-
plete transition from integrability to chaos, depending on the
properties of matrices A, B, and C. The integrable limit is
obtained when the Hamiltonians �5� fulfilled the conditions
of the XYZ Gaudin integrable model. In this limit the N
�N matrices A, B, and C are defined in terms of a set of N
arbitrary parameters �zj�, according to the following identi-
ties:

Ajk =
1 + � sn2�zj − zk�

sn�zj − zk�
,

Bjk =
1 − � sn2�zj − zk�

sn�zj − zk�
,

Cjk =
cn�zj − zk�dn�zj − zk�

sn�zj − zk�
, �6�

where sn�u��sn�u ,�� is the Jacobi elliptic function of
modulus �, 0���1, and cn�u� and dn�u� are related to
sn�u� by d sn�u� /du=cn�u� dn�u�. The XYZ Gaudin model
can be solved exactly by Bethe ansatz �13�. There as many
independent Hamiltonians �5� as quantum degrees of free-
dom and, with the definition �6�, they commute among them-
selves, �Hi ,Hj�∀ i , j=1, . . . ,N for arbitrary values of the pa-
rameters �zj�. Therefore, they constitute a complete set of
integrals of motion �16,17�.

The transition from integrability to the fully chaotic limit
is performed by a single-parametric perturbation of the ma-
trices defined above. If the amplitude of the perturbation is
small, the resulting Hamiltonian is close to integrability; for
increasing values of the parameter, the Hamiltonian ap-
proaches the fully chaotic limit. Such a perturbation can be
achieved with the following identities

Ajk� = �cos ��Ajk + �sin ��Rjk
1 ,

Bjk� = �cos ��Bjk + �sin ��Rjk
2 ,

Cjk� = �cos ��Cjk + �sin ��Rjk
3 , �7�

where Rjk
1 , Rjk

2 , and Rjk
3 are random antisymmetric matrices

and 0���� /2. Therefore, for ��0 the algebraic structure
of the integrable system is lost, in a similar way as the geo-
metric structure of a classical integrable system is broken
when it is perturbed �see �18� for a complete discussion
about this definition of quantum integrability and its connec-
tion with spectral statistics�. Note, however, that HB con-
serves its complexity, remaining a truly XYZ model along the
whole transition; none of the X, Y, and Z terms becomes
negligible in the integrable limit. In consequence, this model
allows to study the influence of the dynamical regime of the
bath in decoherence process independently of its complexity.

A. Spectral statistics of the bath

The concept of quantum chaos still lacks a clear defini-
tion. Usually, a quantum system is said to be regular or cha-
otic depending on the statistical properties of its spectrum.
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Using a semiclassical approximation, Berry and Tabor
showed than the statistical properties of the spectrum of a
generic quantum integrable system are well described by an
uncorrelated Poisson distribution �19�. On the other hand,
Bohigas et al. conjectured that the statistical properties of the
spectrum of a generic quantum chaotic system coincide with
those of random matrix theory �20�. Therefore, the statistical
properties of the spectrum of a quantum system are consid-
ered as a main signature of chaos in quantum mechanics �for
a recent review, see �21��.

For a general quantum system, the level density 	�E� can
be separated into a smooth part 	�E� and a fluctuating part

	�E�˜ . The former depends on the specific properties of the
Hamiltonian, while the latter is universal depending only on
the dynamical regime of the system �21�. Therefore, in order
to determine whether a quantum system is regular or chaotic
from the statistical properties of its spectrum, it is necessary
to extract the fluctuating part of the density. This is due by
means of a procedure called unfolding, which maps every
energy level Ei to a dimensionless magnitude 
i,


i = N�Ei� , �8�

where N�E� is the accumulated level density

N�E� = 	
−�

E

dx 	�x� . �9�

This map can be done analytically in a few simple systems,
like quantum billiards or random matrix ensembles, but in
general it is a difficult task. In this paper, we have performed
the unfolding by approximating N�E� with a set of Cheby-
shev polynomials by means of a least-squares fit.

The most simple and widely used spectral statistic
is the nearest-neighbor spacing distribution P�s�, i.e., the
probability distribution of the nearest-neighbor spacing se-
quence si=
i+1−
i. For a regular quantum system the distri-
bution follows a Poisson P�s�=exp�−s�, while for a quantum
chaotic system it follows a Wigner distribution P�s�
= �� /2�s exp�−�s2 /4�. Note that in both cases 
s�=1.

In Fig. 1 we show the P�s� distribution for a set of 50
different realizations of the regular ��=0� and fully chaotic
��=� /2� limits of bath Hamiltonian HB with N=13 spins.
The random matrices R1, R2, and R3 are defined in terms of
Gaussian random variables with zero mean, and variance
equal to

��R1� = ��R2� = ��R3� =
��A� + ��B� + ��C�

3
. �10�

Each realization is obtained by choosing an independent set
of �� j� parameters, by means of Gaussian random variables
with zero mean and �=1. For all realizations the set of �zj�
parameters is fixed to zj =3.71�j /N, in order to cover the
whole period of the Jacobi elliptic functions, and the modu-
lus of the Jacobi elliptic functions is fixed to �=0.5. As can
be seen in Fig. 1 the regular limit clearly follows the Poisson
distribution, while the chaotic limit is perfectly described by
the Wigner distribution.

In order to quantify the degree of chaoticity of the bath as
function of the parameter � it is useful to calculate the fol-
lowing quantity


 =

	
0

s0

ds�P�s� − PWigner�s��

	
0

s0

ds�PPoisson�s� − PWigner�s��
, �11�

where s0=0.472913 determines the first intersection of Pois-
son and Wigner distributions. This parameter transits from

=1 to 
=0 when the system moves from integrability to
chaos. Therefore, the curve 
��� shows how fast or slow is
this transition. In Fig. 2 we show the value of 
 as a function
of � for three different sizes of the bath: N=9, N=11, and
N=13. For the three cases the system very fast approaches to
chaos for small values of �. The transition is increasingly
faster for the larger bath sizes.

The P�s� distribution describes short-range correlations,
since it measures the fluctuations in distances between con-
secutive levels. To properly determine the chaoticity of a
quantum system, it is also necessary to study the long-range
spectral correlations. There are several statistics to measure
this long-range correlations. The most commonly used are
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FIG. 1. P�s� distributions for regular �=0 �upper panel� and
chaotic �=� /2 �lower panel� limits of HB. In both cases there are
N=13 spins and the histogram is built by collecting 50 different
cases, characterized by different sets of parameters �� j�. The dashed
line corresponds to the Poisson distribution, while the dotted line
represents the Wigner distribution.
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�2�L� and �3�L� statistics �21�. In this paper, we will use
instead the �n statistic, defined from the unfolded energies as
�22�

�n = 
n+1 − 
1 − n . �12�

This statistic measures the fluctuations of the unfolded en-
ergy levels �
i� from their average value. In particular, we are
interested in its power spectrum

Pk
� =

1

N

�

n=1

N

�n exp�− 2�ink/N�
2

, �13�

which is proportional to 1/k2 for regular systems, and 1/k
for chaotic systems �22�. This statistic is simple to compute,

and it is more sensitive to the dynamical regime of the sys-
tem than the P�s� statistic �see �23� for a detailed discussion
of this point�.

We show in Fig. 3 the power spectrum of �n statistic for
�=0, �=� /10, �=� /5, and �=� /2 in a double logarithmic
scale. The x axis is plotted in function of �k=2�k /N, which
ranges from �=0 to �=� independently of the size of the
spectrum, and therefore allows to look for finite size effects
quite easily. Both the regular and the chaotic limit closely
follow the theoretical lines, except in the low frequency re-
gion. This region is spoiled by the unfolding procedure �see,
for example �24�, for a complete discussion about the mis-
leading effects due to the unfolding�. Note also than the
smallest frequency available is �1=2� /N, and thus larger
systems cover a wider range of frequencies. For intermediate
values of �, the result is similar to the obtained with the 

parameter, i.e., the transition to chaos is fast, and for a fixed
value of � larger sizes are more chaotic. However, it is also
seen that the transition for the power spectrum of �n statistic
appears to be slower than the description given in terms of
the parameter 
. In Fig. 2, the parameter 
 identifies the
system as almost chaotic for �=� /10 and N=13, whereas in
Fig. 3 lower left panel� it is clearly seen that the Pk

� statistic
is still far from the chaotic limit �lower right panel�. These
differences can also be seen for �=� /5, but they might be
due to the spurious effects of the unfolding procedure.

In conclusion, the bath Hamiltonian as defined in the pre-
vious subsection develops a complete transition from inte-
grability to chaos, manifested in both short-range and long-
range spectral statistics. Moreover, this transition is smooth
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FIG. 2. Parameter 
 in function of � for N=9 �squares�, N
=11 �circles�, and N=13 �triangles�.
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FIG. 3. Power spectrum of �n statistic for �=0 �upper left panel�, �=� /10 �lower left panel�, �=� /5 �upper right panel�, and �
=� /2 �lower right panel�. Squares correspond to N=9, circles correspond to N=11, and triangles correspond to N=13. The theoretical value
for the integrable system is plotted with a dashed line and the theoretical value for chaotic systems with a solid line.
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and monotonous with the parameter �. The transition is
faster for larger systems sizes and therefore a normalization
��N� is required for the results to be independent of the size
of the bath. Hence HB is a good candidate to study the con-
nection between decoherence and quantum chaos in finite
size spin baths. In the thermodynamic limit, the transition
from integrability to chaos may be sharp for ��0.

B. Density of states of the bath

Prior to the analysis of the connection between chaos and
decoherence using the bath Hamiltonian defined above, it is
important to check that the parameter � modifies the chaotic
properties of the system without altering in a significant way
the density of states of the bath. Changes in the density of
states may have an important influence on decoherence pro-
cesses �25�. In Fig. 4 we show the density of states of HB for
three different values of �, corresponding to the regular
limit, the fully chaotic limit and an intermediate case. For
these calculations, the set of parameters �� j� has not been
chosen randomly, but according to � j =cos��2j�. It can be
seen that there are no important differences between the
three cases under study. Similar results are obtained for other
values of � �not shown�. Therefore, we can conclude that �
determines the degree of chaoticity of the spin bath, without
altering significantly the density of states of the spin bath.
However, it is important to note that the density of states of
the bath is quite sensitive to the parameters of the model
Hamiltonian HB, specially to the set �zj�. The use of these
kind of Hamiltonians to study the transition from integrabil-
ity to chaos requires a careful definition of the parameters.

III. DECOHERENCE AND CHAOS: LONG TIME
EVOLUTION AND DECOHERENCE EFFICIENCY

A. General description of time evolution

We will study the time evolution of the system from an
initial product state:

��0� = ��0� � ��0� . �14�

��0� is the initial state of the central system, for which we
chose the singlet state

��0� =
��↑↓� − �↓↑��

�2
. �15�

��0� is the initial state of the bath, for which we chose a
statistical superposition of all basis states with random coef-
ficients.

Depending on the size of the bath we can compute the
time evolution either by means of a numerical diagonaliza-
tion of the whole Hamiltonian H, or by a Chebyshev’s poly-
nomial expansion of the time evolution operator �6�. In the
former case we can treat up to N=11 spins in the bath find-
ing the exact evolution of the system. For larger systems we
will resort to the approximation of the time evolution opera-
tor in a controlled way. In this section we will treat up to
N=11 spins, which is large enough for our purposes. In the
next section we will enlarge the bath up to N=15 spins using
the Chebyshev expansion method.

To obtain a quantitative measure of decoherence, we cal-
culate the reduced density matrix of the system

	�t� = TrB���t��
��t�� , �16�

where the subindex B indicates a trace over all degrees of
freedom of the bath. In particular, we will analyze the
diagonal elements of the density matrix and the nondiagonal
term 
↑↓ �	�t��↓ ↑ �. At t=0, 
↑↓ �	�t��↑ ↓ �= 
↓↑ �	�t��↑ ↓ �
=1/2, 
↑↑ �	�t��↑ ↑ �= 
↓↓ �	�t��↓ ↓ �=0, and 
↑↓ �	�t��↓ ↑ �
= 
↓↑ �	�t��↑ ↓ �=−1/2. The time evolution shows how the
entanglement between the system and the bath destroys the
initial correlations of the system.

Another useful quantity to measure the decoherence is the
lineal entropy �=Tr	2. The initial state of the system is a
pure state and the density matrix is idempotent �	2=	�, thus
�=1. The decoherence induced by the bath transforms state
of system into mixed state with ��t��1. Lower values of �
imply greater efficiency of the decoherence process.

B. Long time evolution of system density matrix

In Fig. 5 we show the time evolution for 	12
�
↑↓ �	�↓ ↑ �, 
↑↓ �	�↑ ↓ � and 
↓↓ �	�↓ ↓ �, as a function of the
parameter � and the system-bath coupling strength a, for
very long times �note that the time axis is displayed in loga-
rithmic scale�. In all the cases we have chosen ak=a∀k, and
N=11 spins for the bath. We can see three main interesting
features. First of all, for very long times the elements of the
density matrix of the system relax to equilibrium states,
called pointer states, which are relatively unaffected by the
interaction with the environment and thus survive to the de-
coherence process. Second, as expected, the larger the value
of the coupling strength constant the greater the efficiency of
the decoherence process. And third, for small values of a, the
regular system seems to give rise to a more efficient deco-
herence than the chaotic one, whereas for a�1, this behavior
is reversed.

In order to better understand how chaoticity determines
the efficiency of the bath we calculate the pointer states ele-
ments of the system density matrix of the previous calcula-
tion. The results are shown in Fig. 6. The elements of the
system density matrix in the pointer states, were obtained by
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FIG. 4. Density of states of HB with �=0 �squares�, �=� /10
�circles�, and �=� /2 �triangles�.
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averaging the results for t�106, i.e., 	point= 
	�t��t�106. We
can see that in the three cases the regular limit gives rise to a
more efficient decoherence for shorter values of the system-
bath coupling strength, whereas this behavior is reversed for
greater values of a. In the case of the nondiagonal 	12 ele-
ments, a�1 is enough to totally destroy the initial correla-
tions between �↑↓� and �↓↑�, characteristics of the initial state
�0. For the diagonal elements, however, a�1 seems to pro-
duce the most efficient decoherence, since for a�1 the val-
ues of the system density matrix in the pointer state come
back to the initial value. In this last two cases, the change in
the relation between decoherence and chaos is clearly seen:
For a�1, the regular limit gives rise to stronger decoher-
ence, while for a�1, the chaotic limit becomes more
efficient.

Similar results are obtained for the linear entropy �. Fig-
ure 7 shows the pointer state values of � for �=0, �
=� /10, and �=� /2. It is clearly seen that, for a�1, the
regular bath produces a stronger decoherence, whereas for
a�1 this behavior is reversed. We can conclude that the
dynamical regime of the bath determines the efficiency of the
decoherence process. Moreover, the system-bath coupling
strength determines whether integrability or chaos give rise
to more efficient decoherence.

IV. DECOHERENCE TIME AND SHORT TIME
EVOLUTION OF SYSTEM DENSITY MATRIX

IN PERTURBATIVE REGIME

Having established the relation between the efficiency of
decoherence and the dynamical regime of the bath for differ-
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FIG. 6. Matrix elements of pointer states of the system density
matrix: 
↑↓ �	�↓ ↑ � �upper panel�, 
↑↓ �	�↑ ↓ � �middle panel�, and

↓↓ �	�↓ ↓ � �lower panel�, for regular �=0 �squares� and chaotic �
=� /2 �triangles� limits, and for an intermediate value �=� /10
�circles�, as a function of the system-bath coupling strength a.
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ent values of the system-bath coupling strength, we now fo-
cus on the quantitative analysis of how quantum chaos af-
fects the decoherence process. Our aim is to determine
whether a smooth transition from integrability to chaos in the
bath can be detected from quantities directly related to deco-
herence. For this purpose, we select a small value for the
system-bath coupling strength, for which the integrable limit
produces a stronger decoherence than the chaotic one. This
choice allows us to follow the central system decoherence by
its fidelity F�t�, analogous to the Loschmidt echo, which
measures the sensitivity of the system to external perturba-
tions. The fidelity is defined as

F�t� = TrS�	��t�	�t�� , �17�

where 	��t� is the system density matrix for an ideal evolu-
tion in which the system and the bath do not interact, i.e.,
HSB=0. The subindex S denotes a trace over the states of the
central system. This quantity behaves in a similar way as the
linear entropy �.

In what follows, we will consider a bath composed of N
=15 spins. The evolution is approximated by means a
Chebyshev expansion of the evolution operator. We have
checked that the size of the bath does not change qualita-
tively the decoherence process, but the fluctuations around
the pointer states �see Fig. 5� are decreased. The system-bath
coupling strength is set to ak=� 15

1110−2∀k. This particular
value was chosen because the coupling behaves as b
=��k=1

N ak
2 �12�, therefore the set of �ak� has to be scaled with

the bath size.
In Fig. 8 we show the fidelity F�t� for different values of

parameter �. Several interesting facts emerge from the fig-
ure. First of all, the shape of all the curves is very similar.
The main differences between them are related to the pointer
states, i.e., the values reached after a long time evolution. We
can also see that these pointer values of the fidelity do not
increase monotonically with parameter �, as it is expected
since the integrable limit gives rise to a stronger decoherence
than the chaotic one for this value of the system-bath cou-
pling strength. The numerical results show that when � is
close to zero and thus the bath is close to integrability, the

decoherence is more efficient than when � is close to � /2,
that is, when the bath is close to the fully chaotic limit.
However, this efficiency does not decrease monotonically for
increasing �. In fact, the curves in the figure show that for
�=� /20, the fidelity is smaller than for �=0, and for �
=3� /10, it is larger than for �=� /2. Secondly, the transition
from the values characterizing integrability to those corre-
sponding to chaos is slower than the transition from integra-
bility to chaos determined by the spectral statistics. For ex-
ample, for �=� /10, the fidelity is close to the integrable
limit �=0, whereas the spectral statistics are closer to the
chaotic limit. In particular, the parameter 
 indicates an al-
most chaotic behavior for �=� /10 �note that from the re-
sults shown in Fig. 2 we can conclude that an increase of the
size of the bath accelerates this transition, and therefore we
may expect that for N=15 and ��� /20 the bath is almost
chaotic�. The power spectrum of �n statistic is also close to
the theoretical value for the fully chaotic limit, but it reveals
that such limit is not yet reached.

Another important quantity related to the decoherence
process is the decoherence time, that is, the characteristic
time for the loss of coherence of the central system due to the
coupling with the bath. One way to estimate this time is by
means of the decay that the bath induces in F�t�. We can fit
the shape of F�t� to the following expression

F�t� = p + �1 − p�exp�− t�/Td
�� , �18�

where p is the pointer value for F�t�, and � and Td are free
parameters, the last one corresponding to the decay time of
the system. The results for this fit are shown in Table I. We
can see that the decoherence time is slightly larger for a
chaotic bath, and that there is a clear correlation between the
pointer value p and the decay time Td. Moreover, Table I also
displays a surprising result: contrary to what is expected,
F�t� decays roughly in an exponential way for all the values
of �. Therefore, it seems that the dynamical regime of the
bath does not affect the decay ratio of the fidelity.
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FIG. 7. Pointer states values of the system linear entropy, for
regular �=0 �squares� and chaotic �=� /2 �triangles� limits, and for
an intermediate value �=� /10 �squares�, as a function of the
system-bath coupling strength a.
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FIG. 8. �Color online� Fidelity F�t� for the central system per-
turbed by a bath composed by N=15 spins with ak=� 15

1110−2∀k, for
different values of parameter �: Solid black �blue online� corre-
sponds to �=0; dashed black �green online� corresponds to �
=� /20; dotted gray �cyan online� corresponds to �=� /10; dotted
black �black online� corresponds to �=� /5; dashed gray �magenta
online� corresponds to �=3� /10; solid gray �orange online� corre-
sponds to �=� /2.
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The close connection between the fidelity F�t� and the
linear entropy ��t� can be seen in Fig. 9. The shape of the
curves for linear entropy and fidelity are almost identical.
The only appreciable difference between these two quantities
is their pointer value. Moreover, the transition from integra-
bility to chaos follows the same trend: It is nonmonotonic
with �, and slower than the corresponding transition in the
spectral statistics.

A characteristic time of decoherence can be also defined
from ��t� fitting the numerical results to an expression simi-
lar to Eq. �18�. We show the results in Table II. They are very
similar to those obtained with the fidelity: For values of �
closer to the integrable limit, decoherence takes place faster
than for values closer to the fully chaotic regime. There is
also a strong correlation between the pointer value and the
decoherence time. We also remark that the transition is not
monotonous with �.

From all these results we can conclude that the dynamical
regime of the bath influences the pointers states of the central
system in a nonstrictly monotonic way. The modifications of
the pointer states are not smooth nor monotonic when the
bath change from integrability to chaos. We have also shown
that the decoherence time is influenced by the dynamical
regime of the bath in a very similar way: From the decay of
both Loschmidt echo and linear entropy, a trend from inte-

grability to chaos can be identified in the decoherence time.
However, it is also important to note that the rate of this
decay is not affected by the dynamical regime of the bath,
since it is roughly exponential along the whole transition. A
possible explanation of this surprising feature is that the
complexity of the Hamiltonian remains more or less the
same along the whole transition from integrability to chaos,
because it always consists on a XYZ model in which none of
the terms is negligible.

V. CONCLUSIONS

We have studied the decoherence of a two-spin central
system interacting with a bath whose dynamical regime can
transit from integrability to chaos. Unlike previous studies
the integrable regime is described by an XYZ Gaudin magnet
with random parameters, with a complexity similar as the
corresponding to the fully chaotic regime. We have calcu-
lated time evolution by numerical technics, and we have ana-
lyzed several quantities related to the reduced density matrix
of the central system 	�t�.

From our results, we conclude that at t→� the reduced
density matrix of the system 	 has an observable dependence
on the dynamical regime of the bath. For small values of the
system-bath coupling strength, the asymptotic value of

↑↓ �	�↓ ↑ � is larger in the regular limit than in the chaotic
limit. However, this difference tends to decrease as the
system-bath coupling strength is increased. For the diagonal
elements 
↑↓ �	�↑ ↓ � and 
↓↓ �	�↓ ↓ �, the relation between the
dynamical regime of the bath and the pointer states changes
at a�1. Below this value, the regular limit gives rise to a
stronger decoherence; above it, the efficiency of the decoher-
ence process is larger when the bath is chaotic. For both
diagonal elements a�1 gives rise to the larger decoherence.
These results show that the onset of chaos affects the deco-
herence process of the central system in a non simple way,
since its influence depends on how strong is the coupling
with the bath. These conclusions are consistent with those
obtained in �12�.

The connection between the properties of the reduced
density matrix of the system and the dynamical regime of the
bath allows to analyze the transition form integrability to
chaos in terms of decoherence. We have done so with a small
value of the system-bath coupling strength, that is, in the
perturbative regime. Our results show that this transition is
not so smooth and monotonous as described by the spectral

TABLE I. Parameters of Eq. �18� for different values of �.

� p � Ts

0 0.6200 0.8781 127.1

� /20 0.6118 0.9146 121.0

� /10 0.6306 0.9036 121.0

� /5 0.6817 0.8691 134.9

3� /10 0.7088 0.8402 1.48.2

� /2 0.6797 0.8589 135.0
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FIG. 9. �Color online� Linear entropy ��t� for the central sys-
tem perturbed by a bath composed by N=15 spins with ak

=� 15
1110−2∀k, for different values of parameter �: Solid black �blue

online� corresponds to �=0; dashed black �green online� corre-
sponds to �=� /20; dotted gray �cyan online� corresponds to �
=� /10; dotted black �black online� corresponds to �=� /5; dashed
gray �magenta online� corresponds to �=3� /10; solid gray �orange
online� corresponds to �=� /2.

TABLE II. Parameters of Eq. �18� applied to lineal entropy ��t�
for different values of �.

� p � Ts

0 0.4522 0.8801 112.5

� /20 0.4459 0.9078 106.5

� /10 0.4655 0.8994 107.7

� /5 0.5228 0.8796 125.0

3� /10 0.5515 0.8599 140.6

� /2 0.5138 0.8700 130.2
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statistics analysis, in spite of the fact that the regular and
chaotic limits are clearly distinguished. Beyond this non-
monotonic behavior, we have also shown that the transition
from integrability to chaos in the central system reduced den-
sity matrix is slower that than the transition in the nearest
neighbor spacing distribution by means of 
 parameter, and
it is a bit closer to the behavior of the power spectrum of �n
statistic. Therefore, long-range correlations in spectral fluc-
tuations seem to be involved in the bath efficiency to pro-
duce decoherence.

We have also performed a similar analysis with the deco-
herence time, that is, the time at which the central system
losses its original correlations. For a perturbative regime, the
integrable limit produces stronger decoherence in shorter
times as compared with the fully chaotic regime. Neverthe-
less, in contradiction with the results of Ref. �12�, the decay
rate of the fidelity and the linear entropy does not depend on

the dynamical regime of the bath. The main difference be-
tween both treatments is the modeling of the integrable re-
gime; while our integrable limit contains all the complexity
of the chaotic regime, Ref. �12� uses a simple integrable limit
with large degeneracies. Therefore, we conclude that the de-
cay of the fidelity and the linear entropy is related to the
complexity of the bath and not to its dynamical regime. Fur-
ther work is needed to clarify this result.
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