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We use a geometrical method to distinguish between ordered and chaotic motion in three-dimensional
Hamiltonian systems. We show that this method gives results in agreement with the computation of Lyapunov
characteristic exponents. We discuss some examples of unstable Hamiltonian systems in three dimensions,
giving, as a particular illustration, detailed results for a potential obtained from a Hamiltonian obtained from a
Yang-Mills system.
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I. INTRODUCTION

In the last decades much has been written about the cri-
teria for chaotic motion in Hamiltonian systems �1–3�. The
technique of surface of section �Poinacré plots� applied to
detect chaotic behavior numerically has been very useful,
particularly for two-dimensional Hamiltonian systems.

This method is also applicable in three dimensions �4� but
it is difficult to apply as a criterion for unstable dynamics in
this case �5�. For this case one may use the well-known
Lyapunov characteristic exponents �LCEs�. In the case of a
Hamiltonian system with N degrees of freedom, the trajecto-
ries are characterized by N equal and opposite pairs of expo-
nents. The character of the motion is determined by the
maximal LCE �MLCE�. The motion is considered to be cha-
otic if the MLCE is positive �3,6�.

II. THEORY

A new method had recently been developed by Horwitz,
Ben Zion, Lewkowicz, Schiffer, and Levitan �HBLSL� �7�,
based on the idea that the orbits are determined as geodesics
on a dynamically induced surface. This method has some
similarity to the use of the Jacobi metric �for which evolution
is parametrized by the invariant action rather than the actual
time t �7��—e.g, Szydlowski et al. �2�, where the measure of
the ratio of the region of negative curvature to the total vol-
ume of the physical region was also applied. With this com-
parative measure, we see that the HBLSL method provides
not only the same condition on the parameter of nonintegra-
bility as the MLCE, but also displays a very similar func-
tional dependence on the parameter. The HBLSL method
therefore contains information on chaotic behavior of the
same nature as the MLCE.

The HBLSL method shows that the well-known charac-
terization of chaotic Hamiltonian systems in terms of the
curvature associated with a Riemannian metric tensor in the
structure of the Hamiltonian can be extended to a wide class
of potential models of standard form through the definition
of a conformal metric �7�. This method induces a geometry
on motion generated by the Hamilton equations with Hamil-
tonian of the form

H =
p2

2m
+ V . �1�

In particular, one starts with the Riemannian geometry of a
metric space �which we call the Gutzwiller manifold �8�� for
which the connection form follows from the Hamilton equa-
tions for a Hamiltonian of the form

HG =
1

2m
gijp

ipj , �2�

where we have used the summation convention. Taking gij to
be of the �conformal� form

gij =
E

E − V
�ij , �3�

we see that the two Hamiltonian forms �1� and �2� are
equivalent on a given energy surface E. The geodesic equa-
tion obtained from the Hamiltonian �2� does not coincide
with the structure of the Hamilton equations of motion asso-
ciated with �1�, but if the metric tensor �3� is used to raise the
index of ẋi, one obtains

ẍi = − Mjk
i ẋjẋk, �4�

where the new connection form, appropriate for the geode-
sics on an associated manifold �xi�, is given by

Mmn
� �

1

2
g�k�gnm

�xk . �5�

The manifold �xi�, which we call the Hamilton manifold, has
the property that in the special choice of coordinates for
which the Hamiltonian has the form �1�, and the definition
�3� is used for the metric, the equations of motion �4� coin-
cide with the Hamilton equations obtained from �1�. We see
that a geometrical structure has in this way been induced on
the manifold �xi�.

Let us consider the geodesic deviation

�� = x�� − x� �6�

between two nearby orbits �correlated by the time parameter
t�. The second-order geodesic deviation equations, from �4�,
are

PHYSICAL REVIEW E 76, 046220 �2007�

1539-3755/2007/76�4�/046220�4� ©2007 The American Physical Society046220-1

http://dx.doi.org/10.1103/PhysRevE.76.046220


�̈� = − 2Mmn
� ẋm�̇n −

�Mmn
�

�xq ẋmẋn�q. �7�

Along the orbit x��t� �almost common to x��, x��, we define
the covariant derivative

DM��

DMt
= �̇� + Mnm

� �mẋn. �8�

The second covariant derivative, together with Eq. �7�, re-
sults in

DM
2

DMt2�� = RM
�

qmnẋqẋn�m, �9�

where what we shall call the dynamical curvature is given by

RM
�

qmn =
�Mqm

�

�xn −
�Mqn

�

�xm + Mqm
k Mnk

� − Mqn
k Mmk

� . �10�

With the special form of the conformal metric, the dy-
namical curvature �10� can be written in terms of derivatives
of the potential V and the geodesic equation �9� for the com-
ponent of the deviation orthogonal to the velocity vi= ẋi be-
comes �7�

DM
2 P�

DMt2 = − PVP� , �11�

where the matrix V is given by ��, i=1, 2, 3 in three dimen-
sions�

V�i = � 3

M2v2

�V

�x�

�V

�xi +
1

M

�2V

�x��xi	 �12�

and

Pij = �ij −
viv j

v2 , �13�

with vi� ẋi defining a projection into a direction orthogonal
to the velocity vi.

Casetti et al. �9� have discussed cases for which, in their
choice of metric and corresponding connection form, the cur-
vature of the resulting manifold is positive and yet displays
instability. Our choice of metric is somewhat different �10�,
and furthermore, as pointed out in �7�, the stability criterion
we use is based on a special connection form which emerges
as applicable to the geodesic motion �what we have called a
dynamical connection form�, and its sign is not necessarily
determined by the curvature of the full manifold defined by
xi �for which the connection form has torsion� �7�.

The examples treated in �7� were for two-dimensional
systems. It is important to verify that the HBLSL condition is

also effective in three dimensions to establish the generality
of the geometrical construction. To extend our previous
analysis �7� to three dimensions, we express V in terms of its
spectral resolution with eigenvalues �i,

V = 

i=1

3

�iu
�i�u�i�T

, �14�

where the superscript T indicates transpose �adjoint for a real
three-dimensional vector� and the u�i� are the eigenvectors.
The scalar product

fTPVPf = 

i

�i�u�i�f��2 �15�

for any three-dimensional vector f �f� is orthogonal to v� is
a convex linear form in the three eigenvalues, and therefore
PVP has only positive eigenvalues if the �i are positive.

Instability should then occur if at least one of the eigen-
values of V is negative.

III. RESULTS AND DISCUSSION

One may easily verify that the three-dimensional oscilla-
tor potential is predicted to be stable. We now compare our
results with the computation of Lyapunov exponents
�MLCEs� for a family of three-dimensional systems.

We take for illustration here a generalization of the Yang-
Mills potential

V =
1

2
�x2y2 + y2z2 + z2x2� + ��x4 + y4 + z4� �16�

for �=0. This is the Yang-Mills potential �5� which is cha-
otic.

For �= 1
4 ,

V =
1

4
�x2 + y2 + z2�2 =

1

4
r4,

which is integrable.
We detect the behavior of the potential by two methods:

the geometrical method and the MLCE.
Figure 1 shows the appearance of negative eigenvalues

for energy E=1 and for several � indicates that the region of
negative eigenvalues does not penetrate the physically acces-
sible region for ��

1
12

We also calculate by the geometrical method with the
same energy E=1 while � is varied from 0 �chaos� to 1

4
�order� with a step of 10−3. In Fig. 2 the solid blue line shows
� vs �, where

� =
volume of region of negative eigenvalues

volume of physically accessible region
. �17�

Any nonzero � indicates instability.
We also calculate MLCEs. We take the initial values to be

the same for all �: px=1, py =0.71, x=0.1, y=0.1, and
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z=0.1. The value of pz for a energy E=1 and for a given � is
determined from Eq. �16�.

In Fig. 2 the dashed green line shows the MLCE vs � for
the same initial values and with the same step in � for
t=500 time steps.

The criteria for chaos determined by the geometrical
method and by MLCE coincide for ��0.084.

We also examine our criteria for a slight modification of
the fifth-order expansion of a two-body Toda lattice Hamil-
tonian in three dimensions:

V =
1

2
�x2 + y2 + z2� + x2z −

1

3
z3 +

3

2
x4 +

1

2
z4. �18�

Figure 3 shows the appearance of negative eigenvalues for
several energies, indicating that the region of negative eigen-
values does not penetrate the physically accessible region for
E�0.24. In Fig. 4 the solid blue line shows � vs E.

FIG. 1. �Color online� �a� corresponds to �= 1
4 , for which the

potential is spherically symmetric. The symmetry is broken in �b�
with the choice �= 1

11, and negative eigenvalues appear in �c�
����c�. �d�, �e�, �f�, correspond to of �= 1

16 , 1
22 , 1

32 . The dark areas
correspond to the existence of at least one negative eigenvalue. The
figure at the upper left of each case shows a cut at z=0, where the
boundaries are the limits of the physical region and the dark areas
are regions of negative eigenvalues.
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FIG. 2. �Color online� The solid blue line shows � �Eq. �17��
plotted as a function of �. The dashed green line shows MLCEs
plotted as a function of �. The intercept is at �c=0.084.

FIG. 3. �Color online� �a� corresponds to E=0.2, for which the
Hamiltonian is stable. Negative eigenvalues appear in �b� �E�Ec�.
�c�, �d� correspond to E=0.3,0.5. The dark areas correspond to the
existence of at least one negative eigenvalue. The figure at the up-
per left of each case shows a cut at y=0, where the boundaries are
the limits of the physical region and the dark areas are regions of
negative eigenvalues.
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The dashed green line shows MLCE vs E, indicating the
same Ec. We take the initial values to be the same for all
E: px=0.08, py =0.08, x=0.01, y=0.01, and z=0.01. The
value of pz for a given E is determined from Eq. �18�.

IV. CONCLUSION

We see that the HBLSL condition �7� is applicable for
three-dimensional Hamiltonian systems and provides a sen-
sitive test for both local and global �as for the MLCEs� in-
stability. The MLCE computations for the examples we have
treated here are much more laborious than the application of
the HBLSL method, giving results in good agreement with
the MLCEs.

The study of the three-dimensional case is important since
our criteria provide conditions for local instability. The origi-
nal work �7� does not provide a proof that the overall system
will then behave in a chaotic way. That this instability cre-
ates a chaotic result emerges as a result of the computation. It
is, in principle, possible that the effectiveness of the criteria
that was seen in the two-dimensional examples was a result
of the restricted topology of two dimensions; the three-
dimensional computations show that they are effective in the
more general case, which is therefore an important additional
result.
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FIG. 4. �Color online� The solid blue line shows � �Eq. �17��
plotted as a function of E. The dashed green line shows MLCEs
plotted as a function of E. The intercept is at Ec=0.24.
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