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The peculiarities of external synchronization of a resonant limit cycle on a torus are studied in an autono-
mous oscillator of quasiperiodic oscillations with two basic frequencies. We show numerically and experimen-
tally that in the resonance conditions the synchronization effect takes place only at one of the two basic
frequencies of the system, while the oscillations at the second basic frequency remain unsynchronized. Our
results convincingly indicate a principal difference between synchronization of the resonant limit cycle on the
torus and of a typical limit cycle. This is in contrast to the well-established theory of synchronization of a limit
cycle. This finding opens new strategies for controlling systems with multiple time scales.
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Quasiperiodic oscillations with two and more basic fre-
quencies are widely encountered in the contemporary natural
sciences. They appear when electromagnetic oscillations are
modulated by information signals in radio engineering, ac-
company the transition to turbulence in fluid flows �hydro-
dynamics�, describe the motion of planets �celestial mechan-
ics�, etc. Quasiperiodic oscillations describe biophysical,
ecological, and even social evolutionary processes such as
the cardiorespiratory system, photosynthesis: day-night
cycle, Calvin cycle, and others. In phase space they are as-
sociated with limit sets or attractors in the form of
n-dimensional tori. The analysis of stability, bifurcations, and
synchronization of quasiperiodic oscillations are determined
by resonances and bifurcations of n-dimensional tori. This is
a rather complex and in many ways unsolved problem. In our
research we deal with the case of quasiperiodic oscillations
whose image in the phase space represents an attracting limit
set in the form of a two-dimensional �2D� torus.

In our case we study quasiperiodic oscillations in an au-
tonomous dissipative dynamical system that realizes the re-
gime of stable self-sustained oscillations with two basic fre-
quencies. It is important to note that nonautonomous two-
frequency oscillations that are observed when a limit cycle
system is periodically driven cannot be used here because in
such systems only one of two frequencies �the oscillation
frequency on a limit cycle� depends on parameters of a sys-
tem. The external forcing frequency is not defined by the
system properties.

An autonomous dissipative dynamical system in R4 that
can demonstrate stable two-frequency oscillations can be de-
scribed by the following system of equations �1,2�:

ẋ = mx + y − x� − dx3,

ẏ = − x ,

ż = � ,

�̇ = − �� + ���x� − gz , �1�

where m, d, �, and g are system parameters, and ��x� is a
nonlinear function that is defined as follows:

��x� = H�x�x2, �2�

where H�x� is the Heaviside function. The oscillator of two-
frequency oscillations �1� is a suitable model to study the
regularities of external and mutual synchronization of quasi-
periodic oscillations and to establish the winding number
locking on a 2D torus �2�. The results presented in Ref. �2�
were obtained for regimes of nonresonant two-frequency os-
cillations satisfying the inequality

f1

f2
�

p

q
, �3�

where p ,q=1,2 , . . . ,k, f1 and f2 are the basic oscillation
frequencies of the oscillator. The resonant case on a 2D torus
when f1 / f2= p /q was excluded in Ref. �2�, because we ex-
pected that the resonance on a 2D torus corresponds to a
stable limit cycle and its synchronization conditions are well
studied and described in detail in books �see, for example,
Refs. �3–5��. However, as we show in this paper, this is not
true. We especially demonstrate that a limit cycle not lying
on a torus and a resonant limit cycle on the 2D torus respond
to an external periodic force in a completely different way.
We present numerical and experimental results that describe
these peculiarities of the resonant limit cycle synchronization
on a 2D torus.

Turn to the system �1�. We set the system parameters m
=0.096, g=0.257, �=0.2, and d=0.001 and choose initial
conditions in the vicinity of the coordinate origin. In this
case the system �1� has a stable quasiperiodic solution with
two irrationally related frequencies f1 and f0. A projection of
the corresponding ergodic 2D torus is presented in Fig. 1�a�
and the power spectrum of x�t� in Fig. 1�b�. If we change the
parameter g that controls the winding number, then for g
=0.263 a resonant mode is observed on the torus resulting in
f1 : f0=1:4 �Figs. 1�c� and 1�d��. In this regime we have a*wadim@chaos.ssu.runnet.ru
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stable limit cycle on the torus �Fig. 1�c�� and its power spec-
trum �Fig. 1�d�� contains only one basic frequency f1 and its
harmonics 2f1, 3f1, 4f1= f0, etc. If the way of limit cycle
emerge is unclear it is impossible to claim that the limit cycle
realized by any dynamical system lies on the 2D torus sur-
face. We deal with a typical stable periodic oscillatory re-
gime with period T0=1/ f1 and its power spectrum contains
frequency f1 and its harmonics nf1. Let us attempt to syn-
chronize this cycle by an external harmonic signal with fre-
quency fex= f1+�, where � is a small frequency mismatch.

Now we study the influence of the additive external force
k sin�2�fex� on system �1�:

ẋ = mx + y − x� − dx3 + k sin�2�fex� ,

ẏ = − x ,

ż = � ,

�̇ = − �� + ���x� − gz . �4�

Which is for k=0 in the resonant regime. We analyze a weak
external forcing �k=0.01�. We calculate the power spectrum
of x�t� from Eq. �4� as the external signal frequency fex is
varied. The numerical results are pictured in Fig. 2. We find
that fex locks the internal frequency f1 in the region fex
�0.0381–0.0385. In the synchronization region �Fig. 2�a��
the modulation frequency f1 is locked by the external force
and the condition f1 / fex=1 is fulfilled. It is important to em-
phasize that at the same time the frequency f0 is not synchro-
nized by the external force Fig. 2�b�; f0 does not essentially
change both outside the synchronization region of the fre-
quency f1 and inside it at all. In other words, the frequency
f0 does not respond to the change of the external force fre-
quency fex. If we would deal with a typical limit cycle, then
the spectral line at the frequency f0=4f1, as well as at any
harmonic nf1, would demonstrate the synchronization effect.

However, such a situation is not realized in system �1�. In the
autonomous quasiperiodic self-sustained oscillator the two
frequencies f1 and f0 correspond to the different oscillatory
modes, even being rationally related �1:4�. They remain in-
dependent in a sense that an external force effects them in a
different way. Next this fact will be also shown for second
harmonic. Let fex=2f1+�. Our findings practically repeat
the results presented in Fig. 2. The frequency f1 is locked by
the double frequency signal within a finite region �0.0763–
0.0766�. With this, the frequency f0 remains unsynchronized
as in case of Fig. 2.

Next, we confirm this phenomenon experimentally. We
use an electronic generator of quasiperiodic motions �2�. It
can be modeled by Eq. �1�. We have chosen the regime of
oscillations which corresponds to the resonance 1:3. We syn-
chronize a resonant 1:3 limit cycle �Fig. 3�a�� in order to
demonstrate that the results shown in Fig. 2 does not depend
on the winding number. If we apply the periodic force to the
electronic oscillator in the regime of periodic motions (in our
case it is resonant limit cycle �Fig. 3�a��) then outside the
synchronization region �fex=2.9 kHz� a 2D torus is ob-
served. The projection of it is shown in Fig. 3�b�. Figure 3�c�
illustrates a projection of the torus existing inside the syn-
chronization region of frequency f1 �fex=3.4 kHz�. The mea-
surement results being similar to the numerical findings
shown in Fig. 2 are presented in Figs. 3�d� and 3�e�. The
effect of external synchronization of frequency f1 is illus-
trated by Figs. 3�d� and 3�e� confirms that the oscillator fre-
quency f0 does not depend on the external signal frequency
fex.

The physical and numerical experiments in current paper
consider the case of external force frequency fex close to
modulation frequency f1. Generally the same results can be
obtained for the basic frequency f0 if the external frequency
fex is close to it.
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FIG. 1. Nonresonant �a�, �b� and resonant �c�, �d� quasiperiodic
oscillations with two frequencies f1 �modulation frequency� and f0

�basic frequency�. �a� Projection of a nonresonant torus on the plane
�x ,y�; �b� power spectrum of x�t� oscillations for the nonresonant
case �a�; �c� limit cycle on a torus in the resonant case f1 : f0=1:4;
and �d� power spectrum of the resonant cycle
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FIG. 2. Calculation results of the frequency relation f1 / fex �a�
and of the frequency f0 �b� as a function of the external signal
frequency in system �4� for m=0.096, g=0.263, �=0.2, d=0.001,
and k=0.01
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Now, we study the mechanism behind the phenomena
shown in Figs. 2 and 3. We analyze how the limit sets of
system �4� evolve as the external frequency fex changes by
considering their Poincaré sections, for which secant surface
satisfies the condition x�t�=0. In the unforced system the
initial torus �Fig. 4�a�� looks similar to a closed invariant
curve l1 �Fig. 4�a�� in the Poincaré section and the resonant
case 1:4 �“�,” Figs. 4�a� and 4�b�� is identified by the ap-
pearance of four stable fixed points that correspond to the
Poincaré section of the resonant cycle �Fig. 1�c��. When the

external force starts acting with frequency fex� f1, a new 2D
torus is born in the vicinity of the resonant cycle �Fig. 3�b��.
In the Poincaré section this torus is represented by four in-
variant curves l2 in the vicinity of the corresponding fixed
points �Fig. 4�b��. All these transformations occur in com-
plete agreement with the classical mechanism taking place
for the limit cycle in the Van der Pol oscillator when ap-
proaching the synchronization region �6�. However, the clas-
sical scenario is further violated. According to the classical
theory, when entering the region of frequency f1 locking
�Fig. 2� the resonance on the torus must correspond to the
emergence of a fixed point on the invariant curves l2. How-
ever, this is not observed in our case. Moreover, the invariant
curves l2 undergo some complex rebuildings that result in the
appearance of an invariant curve l3 in the synchronization
region of frequency f1 in the Poincaré section �Fig. 4�c��.
This curve corresponds to the torus resembling the initial one
�Fig. 4�a��. We can at least infer that the invariant curve l3 is
not topologically related with the curves l2. We have also
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FIG. 3. Experimental results. �a� Phase portrait projection of an
autonomous limit cycle on a torus in the resonant case 1:3, �b� 2D
torus resulted from the periodically driven limit cycle �outside the
synchronization region, fex=2.9 kHz�, �c� 2D torus projection in-
side the synchronization region of frequency f1 �fex=3.4 kHz�. Fre-
quency relation f1 / fex �d� and f0 �e� as a function of the external
force frequency fex �lines with black points were determined
experimentally�.

FIG. 4. Projections of the Poincaré sections. �a� Limit cycle on
a torus generated by the system without external driving in the
resonant case 1:4 �“�,” g=0.261� and torus generated in the regime
of quasiperiodic oscillations �l1, g=0.262�; �b� torus being subject
to the external force at the frequency outside the synchronization
region �l2, g=0.262, fex=0.03758� and resonant torus generated by
system without external force �“�,” g=0.263�; �c� torus in the syn-
chronization regime �l3, g=0.263, fex=0.0383�.
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calculated the full spectrum of Lyapunov exponents for all
the cases presented in Fig. 4 �naturally excluding the reso-
nant cycle�. Our calculations have shown that the Lyapunov
spectrum contains two zero maximum exponents.

From a physical viewpoint, the obtained results can be
explained as follows. The quasiperiodic oscillator �1� in fact
represents an autonomous system of two interacting nonlin-
ear oscillators, as was shown in Ref. �2�. The internal cou-
pling of oscillators ensures the generation of two-frequency
oscillations. Their properties depend on the controlling pa-
rameters. For certain parameter values, the frequencies of
oscillators can be mutually synchronized, i.e., the resonance
f1 : f0= p :q takes place. Physically, the basic frequencies f1
and f0, even being rationally connected, correspond to a dif-
ferent oscillatory modes. In the presence of external periodic
force each of the oscillators can be synchronized indepen-
dently. Our experiments have shown that the resonant limit
cycle can be synchronized on the torus when the system is
driven by an external two-frequency signal including f1�= f1
+� and f2�= f0+�. In this case both oscillators will be syn-
chronized in the resonant mode p :q and the winding number
will be locked. The latter phenomenon was established and
described in Ref. �2�.

The bifurcational mechanism of resonant cycle synchro-

nization on a 2D torus described in this paper is a rather
complicated problem of the qualitative theory. However, we
hope to study it in future.

A phenomenon of synchronization of quasiperiodic dy-
namics can be used to diagnose the presence of a resonant
torus in a system. If the torus exists, then its basic frequen-
cies will demonstrate the effect of synchronization indepen-
dently �Figs. 2 and 3�. In the case when a system demon-
strates a complex multifold �loop� limit cycle not lying on a
torus, the synchronization at frequency f1 and at any of its
harmonics nf1 can lead to the effect when all harmonics in
the spectrum are locked. We have observed this effect experi-
mentally. The obtained result can be applied to the dynamics
of multiscale systems control.
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