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Steady-state solutions to the advection-diffusion equation and ghost coordinates
for a chaotic flow

S. R. Hudson
Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543, USA
(Received 12 December 2006; published 10 October 2007)

Steady-state solutions to the advection-diffusion equation for a passive scalar, with a chaotic divergence-free
flow, are determined using a discrete-time, finite-difference model. The physical system studied is a density of
particles diffusing across a chaotic layer. The impact of the advective structures on the solutions is illustrated,
with special attention given to the cantori. It is argued that cantori play an important role in restricting transport
and that coordinates adapted to cantori, called ghost coordinates, provide a natural framework about which the
dynamics may be organized; for example, the averaged density profile becomes a smoothed devil’s staircase in

ghost coordinates.
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I. INTRODUCTION

In this article we study advective-diffusive transport in a
chaotic flow, as described by

Jd
a—f;+v-Vp=DV2p, (1)

where p(x,7) is a scalar quantity—for example, a particle
density—that depends on both position x and time ¢, that is
advected by the velocity field v, and that diffuses with dif-
fusion constant D. This equation arises in many areas of
physics, including fluid mechanics, plasma physics, and
chemical kinetics and has a long history [ 1], predating recent
developments in chaos theory such as the Kolmogorov-
Arnold-Moser (KAM) theorem [2-5]. In this article we con-
sider the case where the scalar is passive (the transport of p
does not affect v) and where the flow is divergence free,
constant in time, and possesses a mix of regular and irregular
streamlines. The primary focus of this article is to investigate
which structures of the chaotic flow affect the steady-state
density for small but nonzero D and to what extent coordi-
nates adapted to the invariant structures of the chaotic flow
(namely, the periodic orbits and noble cantori) can be used to
“straighten out” the steady-state density contours.

Divergence-free flows can be written v=V X A, where
A=A, Vx+A,Vy+A Vz, where A,, A,, and A, are functions
of the coordinates (x,y,z). Using the gauge freedom to set
A,=0 and making the canonical choice of (radial) momen-
tum coordinate y=A, so that A=yVx—H(x,y,z) Vz, the tra-
jectory of a streamline is given by x=d,H and y=-d.H,
where the overdot denotes the derivative with respect to z.
These are simply Hamilton’s equations, where x, y, and z are
analogous to the position, canonical momentum, and time
(assumed periodic) and the advective flow is analogous to a
lé-dimensional Hamiltonian system.

If the Hamiltonian flow is integrable, the streamlines lie
on invariant surfaces and the advective dynamics is reduced
to simple linear motion by constructing a coordinate system
with a momentum action coordinate that is adapted to the
invariant surfaces, and thus remains constant, and a position
angle coordinate that increases linearly in time [6]. However,
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Hamiltonian flows are typically chaotic. Regular trajectories
and invariant surfaces are intermixed with irregular trajecto-
ries that fill a volume [4,5,7], and for such systems action-
angle coordinates cannot be everywhere constructed in three-
dimensional phase space; however, they can be locally
constructed.

For slightly chaotic systems, there remain a finite measure
of invariant KAM surfaces. By suitably adapting the coordi-
nates [8], the motion on these surfaces can be reduced to
simple linear motion. Between the KAM surfaces the motion
is complicated and no coordinates can completely straighten
out the chaos, but the motion is not random. Even in strongly
chaotic regions where no KAM surfaces are present, there
remain invariant sets, such as the periodic orbits, on which
the motion is regular. Coordinates may be adapted to these
structures. Perhaps the most important structures in a chaotic
layer are the cantori, as the cantori create partial barriers to
radial transport within the chaotic layer.

In this article we illustrate a coordinate system adapted to
a selection of periodic orbits of a chaotic flow. By choosing
periodic orbits that approximate a preferred set of cantori, the
partial barriers themselves coincide with coordinate curves.
Such coordinates can organize the chaotic advective dynam-
ics by partitioning phase space into regions of rapid mixing
that are separated by the partial barriers.

Regarding the steady-state solutions to the advection-
diffusion equation, some statements can readily be made. For
large D, the diffusion dominates: the solution will be smooth
and is primarily determined by the boundary conditions. In
the opposite limit D=0, the dynamics is determined by the
advection alone and the steady-state density is constant along
a streamline, v-Vp=0. In this case, the density on points
located on different streamlines are independent. For chaotic
flows, where different streamlines in the stochastic sea mix
and tangle together in an exceedingly complicated fashion,
the solution will have structure on all length scales (depend-
ing on the initial conditions).

It is the intermediate case, where D is small but nonzero,
that is of present interest. Any diffusion (including artificial
diffusion due to finite numerical resolution) will smooth out
the intricate structure, but for small D one may expect that
the structures of the advective flow will still dominate the
steady-state solution.
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It is well known in fluid mechanics that the unstable
manifold has an important effect on the solutions. The un-
stable manifold was known to Poincaré [9]. Detailed studies
of transport in Hamiltonian systems are based on the dynam-
ics of the “lobes” of the heteroclinic tangle [10,11]. The un-
stable manifold leads to enhanced mixing near the unstable
periodic orbits in chaotic advection [12-15]. In a different
context, the geometry of the unstable manifold is related to
the heat “footprint” in diverted tokamaks and that enhance-
ment of the stochastic layer of the unstable manifold can lead
to a favorable suppression of edge-localized plasma instabili-
ties [16].

There are other structures which have an important effect
on transport—namely, the KAM surfaces and the islands em-
bedded within the chaotic sea. The advective flux across a
KAM surface is zero, so the only transport across these sur-
faces (or into the islands) is diffusive. The KAM surfaces,
however, are ultimately destroyed as the chaos increases, and
the elliptic invariant surfaces around stable periodic orbits do
not restrict radial transport. The question then arises, what
structures inhibit the advective-diffusive transport where no
KAM surfaces are present?

An obvious candidate for investigation is the cantorus: the
remnant, invariant set with irrational frequency surviving af-
ter destruction of a KAM surface [17-19]. Although the can-
tori are “leaky,” the near-critical cantori in particular create
partial barriers that can severely restrict Hamiltonian trans-
port [20,21]. It is not obvious that cantori will play a signifi-
cant role in diffusive systems: cantori are zero-dimensional
sets (in two-dimensional phase space) [22,23], and the dy-
namics may be overwhelmed by the combined effects of dif-
fusion and the enhanced mixing provided by the unstable
manifolds comprising the surrounding stochastic sea.

This article shall suggest that the cantori do play an im-
portant role and that coordinates adapted to the cantori can
organize the advective-diffusive dynamics. Steady-state so-
lutions to the advection-diffusion equation are determined
using a discrete-time, finite-difference model, described in
Sec. II. The physical system mimicked is that of particles
diffusing across a chaotic layer, bounded by KAM surfaces,
where the standard map [24,25] is used to model the advec-
tive flow. The correlation between the density contours and
the unstable manifolds is illustrated graphically in Sec. III,
along with the presentation that there is a critical island
width above which the advection dominates the diffusion and
the density is flattened across the island.

Also, graphical evidence is given that the steady-state
density contours coincide with noble cantori, which are the
most important barriers to the advective transport. This sug-
gests that a coordinate system where the cantori lie on coor-
dinate curves will organize the dynamics. A coordinate sys-
tem based on ghost circles [26,27], curves that connect the
minimax and minimizing periodic orbits, is constructed in
Sec. IV. By choosing ghost circles that approximate the
noble cantori, ghost coordinates provide a framework about
which the chaotic, fractal structure of the solution may be
perceived and a devil’s staircase [28] property of the solution
is revealed.
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II. DISCRETE-TIME, FINITE-DIFFERENCE MODEL

To explore the steady-state solutions to the advection-
diffusion equation, with chaotic, divergence-free flows, a
discrete-time, curvilinear finite-difference model is adopted.

A common approach in the study of Hamiltonian flows is
to consider the successive intersections of a streamline with a
plane, a Poincaré section, that is transverse to the flow. The
dimensionality of the system is reduced, and the dynamics is
then given by an area-preserving map x;,,=7(x;), where x
=(x,y). In general, given H(x,y,z), the mapping 7 must be
constructed numerically by integrating Hamilton’s equations
over one z period.

It is much simpler if one is given the map directly. In this
article we consider the case where the Hamiltonian “flow” is
given by the standard map [24,25]

T(x) _ (x +y-k sin(27'rx)/277> ’

2
y y —k sin(2mx)/2 7 @

where k is a perturbation parameter.

The mapping has a variational formulation. For an arbi-
trary “trial” trajectory, represented as a sequence of position
coordinates {x;}, the action is given by

W= 2 h(x;,Xi11), (3)

where 7i(x;, x;,1) = 3 (Xipy —X;)>+k cos(2mx;) /472, Trajectories
are stationary points of the action, where the action gradient

aw

P =(x;—x;_1) + (x; = x;41) = k sin(Qax;) /27 (4)

is zero. By identifying y;,; =x;,;—x;, the mapping, Eq. (2), is
recovered. Action-extremizing techniques provide an effi-
cient means for locating periodic orbits for both the discrete-
time [29] and continuous-time [30] cases, even for the high-
order periodic orbits that approximate the cantori. The action
restricted to (p,q) periodic orbits is denoted W,,,,. Periodic
orbits will be written as {x;, i=0, g-1}, with x;,,=x;+p,
when the action formalism is used, and {(x;,y;), i=0, ¢
-1}, with x;,,=x;+p and y;,,=y; otherwise. The action for-
malism is also used to define the ghost circles [26,27], as will
be described in Sec. IV.

For k=0, the coordinates (x,y) are essentially action-
angle coordinates: phase space is foliated by invariant curves
y=const, on which the angle coordinate x increases at a con-
stant “frequency,” w=1im,,_,..(x,—x,)/n, which may be ratio-
nal or irrational. An irrational curve is the closure of a single
trajectory with irrational frequency, whereas a rational curve
is a family of periodic trajectories with frequency w=p/q,
for integers p and g. For k nonzero, the rational curves break
into chains of islands, and typically only the hyperbolic,
action-minimizing periodic orbit and the elliptic, action-
minimax periodic orbit survive [4,5]. Chaotic trajectories
emerge near the hyperbolic orbit, but the elliptic orbits are
shielded, for small %k, from the chaos by the formation of
islands, which form regions of predominantly stable, regular
motion.
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The irrational trajectories are quite robust to perturbation
[18], although their closure is not always a continuous curve.
For small perturbations (how small depends on the “irratio-
nality” of the frequency), the closure remains a smooth
curve, called a KAM curve [2-5], and presents a complete
barrier to radial advective transport. As the perturbation ex-
ceeds a critical value, the smooth curve disintegrates and
develops the structure of a Cantor set, with an infinite se-
quence of “gaps,” and is called a cantorus [17]. Although the
cantori are “leaky,” it can take an extremely long time for
trajectories to pass through near-critical cantori, and these
cantori create very strong barriers to Hamiltonian transport
in regions of chaos.

The standard map is often used to study chaotic systems
with “twist” (monotonic velocity profile) [7]. (For systems
with nonmonotonic profile, the nontwist map may be used
[31,32].) It displays many of the characteristic features of
continuous-time systems, such as the existence and breakup
of KAM curves and the presence of islands and chaotic re-
gions. In particular, it was recently shown [30] that the flux
across near-critical noble cantori of a Hamiltonian flow sat-
isfies the same scaling relation as that for the standard map.

The utility of replacing the continuous flow with a dis-
crete map is that the computational burden is diminished and
greater numerical resolution in the two-dimensional plane is
afforded. As the mapping is periodic in the x coordinate, the
domain may be restricted to xE(—%,%]. The standard map
satisfies the symmetry T(—x)=-T(x). If symmetric boundary
conditions are chosen, the density satisfies p(—x)=-p(x).
This allows the computational domain to be reduced to
xXE [0 s %]

The chaotic layer considered here is bounded below and
above by the KAM curves x;(a) and x,(a), where « is an
angle parametrization. These are chosen to be the KAM
curves with frequency given by w,=1/y=0.618 03..., where
v is the golden mean and its symmetric opposite w;=—w,.
These KAM curves exist for k<<0.9716... (as estimated by
Greene’s residue criterion [25]). They are constructed by lo-
cally determining the action-angle coordinate transformation
x=x(a) and y=y(«@), which reduces the mapping to a rigid
rotation in the angle coordinate @— a+ w [8]. The boundary
conditions chosen are that the density is constant on each of
these curves, and to satisfy symmetry we choose p;=w, and
p,=wy;, where p,;, are the densities on the lower and upper
boundaries. The average density gradient is then Ap/Aw=
—1. To implement these conditions numerically, it is conve-
nient to employ general curvilinear coordinates that are
adapted to the bounding KAM curves.

A coordinate transformation x=C(a), where a=(a,s), is
constructed between these curves by radial interpolation:

W, — S §— wy

x,(a), (5)

x/(a) +
W, — W w, — W

x(a,s) =

where s €[ w;, w,] is chosen to coincide with the frequency
on the bounding KAM curves. A grid @, ;=(«;;,s;;) is con-
structed equally spaced in both « and s: «; ;=ih, and s;;
=s,+jh,, with grid spacing h,=1/2N and h;=(w,—w,)/2N,
and N is the numerical grid resolution. The boundary condi-
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FIG. 1. Finite numerical resolution error e, scaling for various
D, plotted against grid size &, for k=0.9716. The dashed line satis-
fies e ~ h2.

tions now take the simple form p, ;=p, for j=—N and p;;
=p, for j=N, and the combined constraints of symmetry and
periodicity require p_; ;=—p;_; and py,;;j=—pi_y_j, Where
pn+1,; lies on the “pseudo-grid-point” outside the computa-
tional domain.

To solve for the temporal evolution of the advection dif-
fusion, the method of operator splitting can be applied [33]:
the scalar is first advected by the mapping, p"*'"?(x)
= Ap"(x), and then the scalar diffuses, p"*'(x)=Dp"*"*(x).

The advection d,0+v-Vp=0 simply carries the scalar
along with the flow, or in this case carries the scalar one
“time step” of the mapping:

Ap"(x) = p"(T"'x). (6)

For each grid point e, ;, the Cartesian coordinates are com-
puted x; ;=C(e,;), the mapping is inverted 7(x;,)=X; ; and
the coordinate transformation is inverted C(a/i” j)=xi" ;- To
then estimate p(ai”j), bilinear interpolation is used. The ad-
vection operation may be expressed p"*?>=L 4p"+B 4, where
B 4 is a boundary term arising from the bilinear interpolation
of points al-'!- near the computational boundary.

The diffusive operator is determined by assuming that the
advective flow is far greater than the parallel diffusive flow,
so that the diffusion operator is two dimensional—i.e., in the
Poincaré section. The Laplacian is

_ M [P
V20 =g [d,(\ep® + a,(\gp")], (7)

where p*=g*“p,+g%p, and p'=g""p,+g"p,, where p,
=dp/da and p;=dp/ds, the “raising” metric elements are
g*=Va-Vb, and Vg is the coordinate Jacobian. The deriva-
tives p, and p, are calculated on the “half-grid”:

_ (Pi1je1 * Pix1j = Pijs1 = Pij)
pa|i+1/2,j+l/2 =
2h,

. ®
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p=10"°

FIG. 2. Poincaré plot showing the stochastic sea (gray dots), a segment of the unstable manifolds (thick line) emanating from the (0, 1),
(1,2), (1, 3), and (1, 4) periodic orbits (X), and the density contours (black lines) for D=1073 (left), D=107> (middle), and D=10" (right).
The horizontal x axis is [0.0, 0.5], the vertical y axis is [0.0, 0.7], and the perturbation parameter k=0.9716.

(pi+1,j+1 — Pix1,jt Pijr1 — pi,/')
2h;

ps|i+l/2,j+l/2 = , 9)
as are the metric elements Vgg®, Vgg®, and \gg*. These
are combined to construct the diffusion operator on the full
grid—for example,

20, (N8E*Pi ;= N8E Paliviinjrin+ V8E  Palivirnjm1n
— V&g palicinjin

- \gg “policinjoin- (10)

This discretization is similar to that described by Giinter et
al. [34] (alternative numerical methods have been developed
[35-37]). The diffusion d,p=DV?p is solved implicitly:

piy' =iy =D Viplj AL, (1)

where the term Az is equal to the time step of the mapping
(hereafter set equal to 1) and is included to remind the reader
of the discrete-time nature of the model. The diffusion op-
eration is written Lpp™!'+Bp=p™"2, and the total
advection-diffusion temporal evolution operator is given as

Lpp"™ '+ Bp=Lp"+B,. (12)

One may iterate this equation to relax an initial system to the
steady state. It is, however, far quicker to set p"”= p" and
solve for the steady state directly. In this case, the discretized
advection balances the discretized diffusion and it is just re-
quired to solve the linear system (Lp—L 4)p=B 4—Bp.

The numerical approach can easily be extended to a
continuous-time system by including additional Poincaré
sections between that implicitly defined by the mapping, Eq.
(2). Thus, the discrete-time model employed here is similar
to a finite-resolution realization of a continuous-time model;
however, a detailed comparison between the discrete-time
model and its continuous-time counterpart is left for future
work.

The numerical resolution required is dependent on the
level of diffusion. Chaotic flows have structure on all length
scales. The finite-difference approach provides a simple glo-

bal approximation, but it cannot resolve structures with
length scale less than A. Diffusion is a smoothing operation;
however, as the diffusion decreases the resolution required
increases. For the following results, grid resolutions up to
N=2!"in each dimension are used. The vector of unknown
quantities, p; j, has length O(N?). While the diffusion opera-
tor Ly has a simple structure, coupling only several nearest-
neighbor grid points, that could be exploited for efficiency,
the advective operator L4 does not. If the operator Lp—L 4
were represented as a square matrix, it would have dimen-
sion O(N*) and could not even be stored in memory on most
machines. Fortunately, the operator Lp—L 4 is sparse and
Krylov methods that require only the product (Lp—L 4)p,
a vector of length O(N?), are suitable. In the following
results, the bi-conjugate gradient stabilized (Bi-CGSTAB)
method [38] is iterated until the root-mean-square error in
the solution, at a given N, is less than the tolerance 10714,
The scaling of the numerical resolution error e, defined as the
root mean square of the difference between the midpoint
interpolated solution at resolution N and higher-resolution
2N values, is shown in Fig. 1 for various values of D.

III. STRUCTURE OF THE STEADY-STATE SOLUTION

To begin, the density contours for the case k=0.9716,
with various levels of diffusion, are shown in Fig. 2. For this
value of k, the computational domain is almost totally filled
by stochastic field lines and islands. For large diffusion, the
solution is insensitive to the fine-scale structure of the advec-
tion. As the diffusion decreases, the density contours coin-
cide more closely with the advective structures. In particular,
the density is flattened inside the island chains and, perhaps
most strikingly, is influenced by the multiple unstable mani-
folds that comprise the irregular component.

Shown in Fig. 2 are the first few “lobes” of the unstable
manifolds of the (0, 1), (1, 2), (1, 3), and (1, 4) hyperbolic
periodic orbits, x,,,, where the eigenvalues N\, and A of the

=I1Y,VT(x;) are real re-

full-periodicity tangent map V7,
ciprocals [7]. The unstable manifolds may be computed (for
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FIG. 3. Density along the (0,1) unstable manifold, plotted
against length from the (0,1) unstable periodic orbit, for the pertur-
bation parameter k=0.9716, and various values of diffusion D.

some distance at least, until the exponential magnification of
numerical error overwhelms the calculation) by mapping a
short line segment emanating from the hyperbolic periodic
orbit in the unstable direction, v,, where VT, v,=\,v, and
N\, > 1. (The unstable manifold W" associated with a hyper-
bolic periodic orbit is formally defined as the set of points
that approach the periodic orbit backward in time:
XEW'=T'X—X,, as n——x.)

As D decreases, the density contours are influenced not
only by the “primary” unstable manifold associated with the
(0,1) unstable periodic orbit, but also by the unstable mani-
folds associated with additional, higher-order unstable peri-
odic orbits inside the stochastic sea, and for decreasing D
give increasing structure to the solution. Shown in Fig. 3 is
the density along the (0, 1) unstable manifold. As D de-
creases, the density tends to flatten along the unstable mani-
fold: if coordinates could be constructed that “straightened
out” the unstable manifold, then perhaps the solution could
also be straightened out to some degree. However, the un-
stable manifolds quickly develop wild oscillations that lie at
the heart of the complexity of chaotic systems: it seems un-
likely that a coordinate system adapted to this structure could
be globally well defined.

Regarding the flattening of the density across the islands,
there exists a critical island width W, given by the balance of
the advection with the diffusion, above which the density is
flattened across the island. The radial variation in the advec-
tion operation scales linearly with radial variation Ay,
whereas the diffusion operation scales like Ay~2. Thus, from
Eq. (1), the critical island width W is expected to satisfy W
~D'3, Numerically, the critical island width may be defined,
as suggested by Sovinec er al. [36], by the existence of an
inflection in the density at the elliptic periodic orbit at the
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FIG. 4. (Color online) Density contours (black lines), showing
the density inflection, and Poincaré plot (gray dots), across the (0,1)
island, for D=1073 and k=0.191787.

center of the island. Considering the (0, 1) island, Wit_h center
at (x,y)=(0,0) and width well approximated by V2W=\k,
the inflection is given when ps|0,1,2=0. For a given D,
the critical island width is easily determined numerically
(see, for example, Fig. 4) and satisfies the expected scaling
(Fig. 5).

Given that as D becomes small the density is flattened
both along the unstable manifolds and across the islands and
that together the islands and the stochastic sea comprise al-
most all of the computation domain for k=0.9716, one may
be tempted to conclude that the density flattens across the
domain as D becomes small. This cannot be the case here, as
the boundary conditions enforce a gradient across the chaotic

1.0001

0.010}

0.001 | |
1078 107° 107" 1072

D

FIG. 5. Critical island width W against diffusion coefficient D.
The dashed line satisfies W=2D'?3
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FIG. 6. Particle flux Q as a function of perturbation parameter &,
for various values of diffusion D, where D=|Q(0)|.

layer. The relevant measure of radial transport is then the
particle flux

Q=Dpr-nVEda, (13)

where the integral is over the coordinate boundary and n is
normal to the boundary. If there were no barriers to transport
within the chaotic layer, the particle flux would become un-
bounded.

In the integrable case k=0, the solution satisfies Vp-n=
—1 on the coordinate boundary and the diffusive flux is Q=
—D. The particle flux as a function of perturbation parameter
k, for various values of D, is shown in Fig. 6. For large D,

PHYSICAL REVIEW E 76, 046211 (2007)

the steady-state solution is largely independent of the struc-
ture of the flow and the chaotic enhancement to the transport
is small. For smaller D, where the steady-state solution is
closely aligned with the structure of the flow v-Vp=0, the
chaotic enhancement is larger; however, the transport is not
without bound. A numerical fit to the particle flux shows that
|Q|=~ BD'~7, where B and y vary weakly with k: for k=0,
B=1, and y=0 and for £k=0.9716, 8=0.69, and y=0.14.
The increase in the particle flux with k, for a given D, is
surprisingly small. The resolution of this apparent paradox is
that as D becomes smaller, the system becomes dominantly
Hamiltonian, and for Hamiltonian systems the near-critical
cantori become extremely effective partial barriers against
radial advective transport. (For D=0, the steady-state bal-
ance between the advection and diffusion is somewhat patho-
logical, as there is no diffusion: there exists no mechanism
for particles to deviate from the coordinate boundary.)

To illustrate the relationship between the density contours
and the cantori, a set of cantori is constructed (Table I). It is
convenient to label the cantori with the continued fraction
representation: every irrational number w may be expressed
as [39]

1
1 =[a0,a1,a2,...], (14)
a+

w=day+

ayte+

where the integers a; are called the partial quotients. The
continued fraction representation of an irrational gives rise to
an infinite sequence of partial quotients. By truncating at the
Jjth  partial quotient, a rational approximation p;/q;
=[ag.a,,...,a;], called the jth convergent, to the irrational is
obtained. The convergent, action-minimizing periodic orbits
form a sequence of consecutively better approximates to the
irrational cantorus. Cantori of particular importance are those
with noble frequency, where the continued fraction represen-
tation terminates with a infinite sequence of 1’s, as these

FIG. 7. Poincaré plot showing the stochastic sea (gray dots), the coordinate boundary (dashed curve), the selected cantori (black dots),
and the cantori density contours (black lines) for D=1073 (left), D=107> (middle), and D=10" (right). The horizontal x axis range is [0.0,
0.5], the vertical y range is [0.1, 0.7], and the perturbation parameter k=0.9716.
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FIG. 8. Variation o in density p along (p,q) periodic orbits, for the first seven levels of the Farey tree, for the perturbation parameter
k=0.9716, plotted against frequency w=p/q for D=10"* (left), D=1073 (middle), and D=107° (right). The upper (lower) row is for the

elliptic (hyperbolic) periodic orbits.

present barriers of locally minimal flux to the radial advec-
tive motion [7].

The periodic orbits required for this article are located
using action-extremizing techniques, where a Newton
method is used to set the action gradient to zero. Each of the

TABLE 1. Selected cantori and boundary KAM curves.

Continued fraction ) (ps.95) (P10-910)
[0,1,1,1,17] 0.61803...
[0,1,1,2,17] 0.58015... (7,12) (76,131)
[0,1,1,3,1%] 0.56069. .. (9,16) (97,173)
[0,1,1,4,1%] 0.54883... (11,20) (18,215)
[0,2,4,1,17] 0.45114... (14,31) (57,348)
[0,2,3,1,17] 0.43928... (11,25) (23,280)
[0,2,2,1,1%] 0.41981... (8,19) (89,212)
[0,2,1,1,17] 0.38194... (5,13) (55,144)
[0,2,1,2,17] 0.36715... (7,19) (76,207)
[0,2,1,3,17] 0.35925... 9,25) (97,270)
[0,3,3,1,17] 0.30521... (11,36) (23,403)
[0,3,2,1,17] 0.29568... (8,27) (89,301)
[0,3,1,1,17] 0.27638... (5,18) (55,199)
[0,3,1,2,17] 0.26855... (7,26) (76,283)
[0,4,2,1,17] 0.22820... (8,35) (89,390)
[0,4,1,1,17] 0.21653... (5,23) (55,254)

selected cantori are approximated by the tenth convergent
minimizing, periodic-orbit, {(x;,y;), i=0, g—1}, as indi-
cated in Table I and plotted in Fig. 7. (Table I also includes
the continued fraction representation of the boundary KAM
curve.) Contours of the density, the “cantori contours,” given
by the average density {p)=2>,p(x;,y;)/q, are also shown. As
the diffusion decreases, the correlation between the density
contours and the cantori improves.

Cantori are approximated by minimizing periodic orbits,
so the density variation on the cantori is approximated by the
variation o on the periodic orbits, where o={p(x;,y;)
—({p)|). This quantity is shown (Fig. 8), on a Farey tree [7] of
periodic orbits, beginning with the (0, 1) and (1, 2) rationals
(level 0). The subsequent levels of the tree are constructed by
successively adding the mediants, formed by adding the nu-
merators and denominators of adjacent rationals: e.g., at
level 1, (1, 3) is added; at level 2, (1, 4) and (2, 5) are added;
etc. With a strong advective coupling along streamlines and
weak diffusive coupling across streamlines, it is expected
that the “shorter” streamlines will have smaller variation.
This is often the case, particularly so for the elliptic periodic
orbits. This figure shows that the variation decreases as the
diffusion decreases. Also, as the periodic orbits get longer,
the variation converges (the branches of the tree get smaller
in length), so the cantorus variation limit is well defined. For
example, for the convergents to the [0,3,1”] cantorus, the
variations ¢, on the minimizing periodic orbits (increased
by a factor of 100) for D=107° are ¢,,;=0.001, o7,,=0.001,
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FIG. 9. Poincaré plot (gray dots), selected ghost circles (black
curves), and coordinate boundary (dashed curves) in both (x,y)
coordinates (above) and (a,s) ghost coordinates (below).

0'2/720.013, 0'3/1120.041, 0'5/18:0.197, 0-8/29:0'220’ O13/47
=0225, 0-21/76=0'229’ 0'34/123=0.229, and 0'55/199=0.229.
This figure also shows that it is not always the case that
following an alternating path along this tree reduces the
variation, particularly so for the hyperbolic orbits. Alternat-
ing paths along the Farey tree converge to noble irrationals,
which are associated with the most robust KAM curves and
the cantori of minimal advective flux.

In the chaotic regions, points near the hyperbolic orbits
may be advectively coupled to regions of phase space with
quite different values of density, thus leading to large density
gradients and enhanced diffusion. The elliptic orbits are
shielded somewhat from the chaos when the size of the is-
land exceeds the critical island width W~ D'3. One may
expect that the stable elliptic orbits have smaller variation
than the hyperbolic orbits, and this is confirmed by Fig. 8.
Perhaps this argument could be refined to illustrate that the

PHYSICAL REVIEW E 76, 046211 (2007)

KAM curves, which are approximated by both the elliptic
and hyperbolic periodic orbits and where the nearby unstable
manifolds have vanishing extent, have locally minimizing
variation (and thus justify the imposed boundary condition
that the density be constant on the KAM curves taken as the
computational boundary). However, when the KAM curves
break into cantori, the nearby elliptic orbits become unstable
[25] and are no longer insulated from the chaos. Further-
more, it is not the elliptic orbits that approximate cantori, but
the hyperbolic orbits.

IV. GHOST CIRCLES AND GHOST COORDINATES

Despite the lack of conclusive evidence, the correlation
between the density contours and the cantori shown in Fig. 7
is suggestive that the cantori are important barriers to
advective-diffusive transport. This section explores to what
extent coordinates adapted to the cantori can be used to or-
ganize the dynamics. Coordinate curves may be constructed
that fill in the gaps in the cantori [21,40], but there are rea-
sons to believe, as argued by MacKay and Muldoon [27],
that curves adapted to the periodic orbits are preferable. Just
as in the integrable case, where the (action) coordinate
curves are adapted to the curves invariant under the advec-
tive flow, here the coordinate curves are adapted to the peri-
odic orbits that approximate the cantori. To do this, it is
required to construct a set of “rational” coordinate curves.

It seems a natural criterion that the coordinate curves be
required to pass through the periodic orbits, but there is some
freedom in how the spaces between the periodic orbits are to
be filled. Various rational coordinate curves have been sug-
gested [41]: in particular, ghost circles [26,27] and
quadratic-flux minimizing curves [42]. The continuous-time
analog of quadratic-flux-minimizing curves [43,44] has been
exploited to simplify the description of perturbed toroidal
magnetic fields [45,46]. Here, a coordinate system based on
ghost circles is described.

A (p,q) ghost circle is constructed [27] by first locating
the minimax periodic orbit, {x;,, i=0, g—1}. This is a
simple task for the standard map, as the minimax orbits, for
k=0, lie on the symmetry line x=0 [47]. The derivative of
the action gradient is a cyclic, tridiagonal matrix Dsz,q
called the Hessian. For the minimax orbits, this matrix ge-
nerically has a single negative eigenvalue and the corre-
sponding eigenvector u determines the direction, in configu-
ration space, in which the action decreases. By deforming the
set of points {x;, i=0, g—1} in the direction +u, then flow-
ing down the action gradient according to

dx; W
dr 0x;

l

the set {x;, i=0, g—1} will evolve, with decreasing action,
into the minimizing orbit and in doing so will trace out a
smooth curve, a ghost circle. Different ghost circles, as iden-
tified by their periodicity, are disjoint and are graphs over x
[27] (each vertical line x=const passes through each curve
only once). A continuous coordinate system, “ghost coordi-
nates,” is constructed by radially interpolating between a fi-
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D=107°

Xﬂ//d D=10""

\Z/ D=10""
Zi

FIG. 10. Density contours (gray lines), selected cantori (black dots), and the average cantori density contours (black lines) plotted in
ghost coordinates for D=1073 (left), D=1073 (middle), and D=10"7 (right). The horizontal & range is [0.0, 0.5], the vertical y range is [0.0,
0.61803], and the perturbation parameter k=0.9716. The thick black line is the (0,1) unstable manifold.

nite set of ghost circles. The “upward” advective flux across
the rational ghost circle (in fact, for any curve connecting the
minimax and minimizing orbits) is given by the difference in
action between these periodic orbits [7].

The selection of which ghost circles to use as the coordi-
nate framework is arbitrary and depends on the application.
Here a set is chosen with periodicity given by the fifth con-
vergent of the selected cantori, given in Table 1. These ghost
circles are shown in Fig. 9. Although these seem rather low-
order approximates to the irrational cantori, which formally
have g=, the fact that the cantori exhibit a strong clustering
[22,25] near the low-order periodic orbits allows them to be
approximated by low-order ghost circles.

The integration parameter 7 in Eq. (15) is arbitrary. The
angle a parametrization, given by

de T3 1dx
—=2, ), (16)

dr 5 qdrt
reduces to the rigid rotation angle in the integrable case. This
angle reduces the motion in periodic orbits to simple linear
motion. However, because of the strong clustering, the high-
order periodic orbits are not evenly spaced in x and forcing
the gaps between the periodic orbits to be equal in « causes
the ghost coordinates to become highly irregular. While this
is no problem for the ghost circles themselves, and ghost
circles of arbitrarily high order may be constructed, difficul-
ties are encountered in the subsequent interpolation. Here the
angle a=x is used and, because the ghost circles are graphs
over x, an extension of the simple linear interpolation, Eq.
(5), ensures that the interpolated coordinate curves do not
intersect.

A Poincaré plot of the advective flow (the standard map)
is shown (Fig. 9), in both (x,y) and ghost coordinates. That
the selected cantori lie close to coordinate curves is dis-
played in Fig. 10, which also shows the steady-state density
contours in ghost coordinates. By plotting the cantori density
contours, one can see that the constructed ghost coordinates
regularize the dynamics in regions where the cantori domi-

nate the transport. In this figure, the (0, 1) unstable manifold
is also shown. Additional density contours are plotted across
the (1, 3) and (1, 2) islands, where the influence of the (1, 3)
and (1, 2) unstable manifolds can be seen.

By employing a coordinate system adapted to the chaotic
structure of the flow, the solution for small but nonzero dif-
fusion has been partitioned into regions of rapid mixing and
density flattening associated with (rational) islands and un-
stable manifolds and regions of dominantly regular motion
and density gradients where transport is restricted by (irra-
tional) cantori. This gives the density profile (averaged over
) the structure of a smoothed devil’s staircase [28] (Fig. 11).

The devil’s staircase, also called Cantor’s function C, is
constructed here in a similar fashion to the common example
of a Cantor set. Starting with the interval [0, 1], the open
middle third (3,3) is deleted. In this deleted interval, the
Cantor function C(w) is set to the midpoint of the deleted

interval—that is, for wE(%,%) we have C(w)z%. This is

repeated in the remaining intervals [O%] and [%,1]. The

next deleted sets are (é s %) and (Z 8), and the Cantor function

9°9
in these intervals is C=f—1 and C=%, respectively. By continu-
ing this process indefinitely, one arrives at the Cantor func-
tion. The remaining set, comprised of all the points that are
never deleted (such as the end points %, %, é, %, etc.), is a
Cantor set.

It is interesting that Cantor sets, the cantori, give rise to a
density profile with the structure of a smoothed Cantor func-
tion. It is not the case that the density profile will agree
exactly with the devil’s staircase as shown. The figure is
intended to illustrate that the fractal properties of the density
profile are similar to the fractal structure of the staircase,
with the diffusion providing smoothing. A detailed study of
the smoothed staircase structure of the density profile will be

given elsewhere.

V. COMMENTS

Ghost coordinates represent a natural extension of the
concept of action-angle coordinates to Hamiltonian chaotic
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FIG. 11. Radial density profiles, for D=10"> (left) and D=10"% (middle), in ghost coordinates for the perturbation parameter k

=0.9716, compared to the devil’s staircase function C (right).

flows. They are adapted to invariant remnants of the advec-
tive flow, the periodic orbits, and by constructing ghost
circles of increasingly high periodicity, the irrational invari-
ant sets—i.e., the cantori—coincide with coordinate curves.
The above results suggest that cantori are the most signifi-
cant barriers to advective-diffusive transport in chaotic sys-
tems and that the “chaotic” ghost coordinates naturally re-
veal the smoothed devil’s staircase structure of the solution.

To resolve more details of the devil’s staircase structure,
the ghost coordinates can be adapted to additional cantori.
Formally, the devil’s staircase is discontinuous. This corre-
sponds to the limit D=0, in which case the KAM surfaces, if
any are present, present complete barriers to transport and
can thus support discontinuous density profiles. The cantori,
however, are leaky, partial barriers. Streamlines can pass
across the cantori, and thus presumably in this limit the can-
tori cannot sustain sharp density drops. In this case, however,
the density is a fractal: the density is constant along each of
the infinitely many unstable manifolds that comprise the sto-
chastic sea, and the densities on different streamlines have no
interaction. In this case, sharp density drops can be sustained
almost everywhere in the chaotic sea.

With small diffusion, the extent to which cantori can sup-
port density gradients is presumably determined by the level
of advective flux across the cantori: the smaller the advective
flux, the greater the density gradient that can be supported.
Near-critical cantori and KAM curves will be similarly ef-
fective barriers against transport.

This work is somewhat incomplete. A more careful inves-
tigation of the structure of the periodic orbits, with an analy-
sis incorporating the advective-diffusive length scale, may
allow some universal statements regarding steady-state solu-
tions to advective-diffusive transport in a wider class of cha-
otic flows. In this article we have not comprehensively dem-
onstrated that cantori are the most effective barriers against
advective-diffusive transport, but they are the most important
barriers against purely advective transport, when D=0, and
they clearly play a similarly important role when D is small.
Hopefully, this work will serve as a basis for future investi-
gations.

Finally, a natural extension of this work is to continuous-
time flows, perhaps to study the effect of cantori on heat and
particle transport in the partially stochastic magnetic fields
relevant to plasma confinement devices [48]. The Hamil-
tonian flow in this case could be provided by the guiding
center drift Hamiltonian [49,50]. More substantial numerical
and experimental investigations may show that cantori play
an important role in restricting transport in magnetically con-
fined plasmas.
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