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In this paper we report on a theoretical investigation of the nonlinear dynamics of the polarization of
multitransverse mode vertical-cavity surface-emitting lasers (VCSELs) under current modulation. Special at-
tention is given to the comparison with a previously studied case of single-transverse mode VCSEL emitting in
two orthogonal polarizations. The consideration of spatial effects in VCSEL modifies the polarization dynamics
that accompanies the period doubling route to chaos for large modulation amplitudes. Depending on the
modulation parameters, the excitation of a higher order transverse mode may either induce chaotic pulsing in
an otherwise regularly pulsating VCSEL, or induce a time-periodic pulsing dynamics in an otherwise chaotic
VCSEL. Bifurcation diagrams obtained for different modulation frequencies, several values of the dichroism,
and different transverse mode characteristics allow us to identify the different scenarios of polarization dy-
namics in a directly modulated VCSEL. Temporal analysis of carrier number radial profile reveals considerable
changes for the multitransverse mode case only constituting the physical origin of the reported changes in the

temporal and polarization dynamics.
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I. INTRODUCTION

Semiconductor lasers can be divided in two main catego-
ries depending on the dimensions and the geometry of the
active cavity: edge-emitting lasers (EELs) and vertical-cavity
surface-emitting lasers (VCSELs). VCSELs present signifi-
cant advantages over their edge-emitting counterparts, in-
cluding low threshold current, low cost, circular output
beam, and easy fabrication in two-dimensional arrays. Al-
though VCSELs are intrinsically single-longitudinal mode
devices, emission in multiple transverse and polarization
modes is usually found [1]. The polarization is not well fixed
and small changes of the injection current or the device tem-
perature may result in a polarization switching (PS) between
the two linearly polarized modes. While emission in several
transverse modes is usually attributed to spatial-hole burning
effects [2—4], a number of different physical mechanisms can
be responsible for PS phenomenon in VCSELs. Therefore,
different models of PS in VCSELs have been suggested, for
example, those taking into account spin relaxation mecha-
nisms in semiconductor quantum wells (spin flip model,
SFM) [5,6], thermal effects [7], or the relative modification
of the net modal gain and losses with the injection current
[8-10].

The dynamics of directly modulated semiconductor lasers
has been studied for more than twenty years. Depending on
the modulation parameters (modulation depth and modula-
tion amplitude), but also on the laser internal parameters, the
laser may exhibit ultrafast sharp pulses in the emitted power
but also complex time-dependent dynamics such as period
doubling and possibly chaotic pulsating behavior [11-20].
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Most of the existing studies relate to conventional EELs
[11-16]. Studies of nonlinear dynamics in directly modulated
VCSELSs remain scarce [ 17-20], while being of great interest
both for fundamental and applied research [21]. Nonlinear
dynamics has been theoretically analyzed for linearly polar-
ized single-transverse mode [17,18] and multimode VCSELSs
[18,19]. Chaotic behavior appears in the multimode regime
due to transverse mode competition [18,19]. Also, the non-
linear dynamics of the two orthogonal polarizations of a di-
rectly modulated single-transverse mode VCSEL has been
studied [20]. Chaotic dynamics due to polarization competi-
tion has been found in a large range of laser and modulation
parameters [20]. The chaotic dynamics of the polarization is
found for much smaller amplitudes and frequencies of modu-
lation than the chaotic dynamics of the transverse modes of
the VCSEL. This occurs since the differences in gain or loss
between the two polarizations of a given transverse mode are
much smaller than gain or loss differences between different
transverse modes [20] and then stronger competition be-
tween the orthogonal polarizations is obtained.

In this paper we generalize those previous studies by ana-
lyzing the dynamical behavior of the polarization of a mul-
titransverse mode VCSEL subject to current modulation. Our
theoretical study is based on a model that takes into account
polarization and spatial effects. We first analyze the case of a
single-transverse mode VCSEL. We study the role played by
the spatial effects by comparing with results obtained by us-
ing a spatially independent description of that system. The
inclusion of the spatial effects leads to the appearance of new
polarization dynamics. In the second part of our work we
focus on the multitransverse mode VCSEL. Chaotic regimes
that involve several polarized transverse modes are found in
a large range of parameters. Special attention is given to the
comparison with the case of a single-transverse mode VC-
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SEL emitted in two orthogonal polarizations for a better un-
derstanding of the effect of the additional higher-order trans-
verse mode in the dynamics. The range of modulation
amplitudes in which we obtain complex dynamics is larger
than for the single-transverse mode case. However, situations
in which the addition of the higher-order mode leads to sim-
pler dynamics are also found.

Our paper is organized as follows. In Sec. II the theoret-
ical model is presented. In Sec. III we present our results
corresponding to the role played by the spatial effects on the
polarization of the single-transverse mode VCSEL. In Sec.
IV we analyze the nonlinear dynamics of the polarization of
the multimode VCSEL. Finally, in Sec. V a brief discussion
and a summary of our results are presented.

II. MODEL

In this work we consider a model of a multitransverse
mode VCSEL [22-24] that takes into account two of the
mechanisms that can define the polarization of the laser. The
first one is associated with the combined effect of the VC-
SEL anisotropies, the linewidth enhancement factor, and the
spin-flip relaxation processes within a framework known as
the SFM model [5]. The second mechanism is related to the
effect of having different electrical field profiles for each
linear polarization due to the birefringence of the device [9].
We consider cylindrically symmetric weak index-guided de-
vices with the structure illustrated in the Fig. 1 of Ref. [24].
The radius of the core region and the length of the cavity are
denoted as a and L, respectively. Subscripts x and y will be
used to denote the polarization direction. Birefringency is
taken into account by assuming that the core refractive index
in the x direction, 7, ,, is larger than in the y direction,
Neore—hence the x polarized mode emission frequency is
lower than that of the y polarized mode—while the cladding
refractive index, n.,44 1S the same in both directions. We
will consider a small value of the index step (0.005) in such
a way that the appropriate transverse modes of the structure
are the linearly polarized modes of mn order, LP,,,. That
index step we consider is much greater than the contribution
due to the carrier-induced refractive index and then the evo-
lution obtained with our model, based on a modal expansion,
would coincide with the one obtained with a full spatiotem-
poral model [25]. Here we treat the case of VCSELSs that can
operate in the fundamental (LPy;) and in the first order
(LP,,) transverse modes. Subscripts 0,1 will be used to de-
note the LP,; and LP;; modes, respectively. In the basis of
the linearly polarized modes and considering radial symme-
try of the cavity the optical field can be written as [22-24]

E(r,) = [(Eo (1) () + Ey (1)1 ()5 + (Eqy (1) oy (r)
+ Ely(t) zﬂly(r))f]ei“a’+ c.c., (1)

where ¢; and ¢, ; are the modal profiles of the LP,, and LPy,
modes, respectively, obtained by solving the Helmholtz
equation [9]; Ey; and E; are the modal amplitudes of these
modes, the subindex j stands for the linear polarization state
of the given mode; « is the electric field decay rate that
includes the internal and facet losses, and « is the alpha
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factor or linewidth enhancement factor that describes phase-
amplitude coupling mechanisms in semiconductor lasers.
The equations that describe the polarization and transverse
mode behavior of the VCSEL, written appropriately in the
cylindrical basis, read [24]

Eq,= k(1 +ia)[Eg (g0, — 1) + iEg,800] = (Ya + i1%0) Eo..
EOy = K(l + ia)[EOy(gOy - l) - iEOng_vx] + (7{1 + iypO)EOy’

Elx = K(l + ia)[Elx(glx - Kr) + iElyglxy] + i’}/]‘)rElx
- (’ya+i’)/p1)E1x’

Ely = K(l + ia)[Ely(gly - Kr) - iElxglyx] + i’)/prEly
+(7u+i7pl)El)"

aN;r’t) =DV N- %[N<1 + X > |Ei_;'|2'/ff,~("))
t i=0,1 j=x,y
S pC() —in S (EnEly - EyEL) inlr) w,-y<r>] :
i=0,1
on(r,1)

YDV - ye[n S 3 E LU0

ot i=0,1 j=x.y

~iNS (EE;, - EyE) () ¢,»y<r>] G

i=0,1

where N(r,t) is the total carrier number and n(r,?) is the
difference in the carrier numbers of the two magnetic sub-
levels. The possibility of having an external gain-loss aniso-
tropy for both polarizations is considered through the dichro-
ism, 7,, parameter. The possibility of having different losses
for both transverse modes is also considered by taking into
account the «, parameter, which is the relative loss of the
LP;; mode with respect to the LP;; mode. The frequency
splitting between the orthogonal polarizations of the LPy,
mode, 2v,,/(2m), between the orthogonal polarizations of
the LP;; mode, 2v,,/(27), and between the two transverse
modes with the same polarization, )/p’/ (277), are obtained
from the calculation of the waveguide modes via the Helm-
holtz equation. We have chosen the values of 7.y, v, Meore.ys
and 7,44 in such a way that y,=1 ns~!, a value that corre-
sponds to the one used in Ref. [20]. The total injected current
is uniformly distributed across a circular disk contact of ra-
dius denoted as s, and then C(r)=1 if r<s, and C(r)=0,
elsewhere. The prefactor u(z) allows for the generation of a
sinusoidal current and then wu(f) = .+ Ap sin(27F t), where
Mg 18 the dc bias injection current, Ay is the modulation
amplitude, and F,=1/T is the modulation frequency. The
normal gain normalized to the threshold gain, g;(i=0,1,;j
=x,y), is defined as
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TABLE 1. Values and definitions of various parameters.

| (where i=0,1;

Symbol Value Meaning of the symbol
a 3 um Radius of the core region
L 1 pum Length of the cavity
Neorex 3.5000035 Refractive index of the core in the x direction
Neore,y 3.5 Refractive index of the core in the y direction
Neladd 3.495 Refractive index of the cladding region
k 300 ns~! Field decay rate
a 3 Linewidth enhancement factor
Ve 1 ns™! Decay rate for the total carrier population
Vs 50 ns! Spin-flip relaxation rate
D 3 cm?s! Diffusion coefficient
* of the polarized transverse modes, Iij=|Eij
f N(r,1) ll’,-zj(r )rdr Jj=x,y), are plotted as a function of the dc current u,c. The
_20 threshold current w,,, is slightly larger, 1.135, than in the
8ij= = > (3) . . ; .
) spatially independent model, 1, because carriers can diffuse
f Wi (r)rdr out of the active region in the spatially dependent model [4].
0 Emission above threshold is in the y polarization of the fun-
and g;; (i=0,1;jk=xy,yx) is given by damental transverse mode, as in Ref. [20]. The inclusion of
spatial-hole burning effects in our model is responsible for
f - n(r 00 () () rdr the excitation of the higher-order mode. The emission in that
0 N ik mode is also in the y polarization. Experimentally, the first
8ijk= . 4) order transverse mode often appears with linear polarization

f lﬁizj(r)rdr
0

Note that the modal gains for the x and y polarizations are
different due to the different optical mode profiles. However,
we neglect the material gain difference since the frequency
splitting is very small compared to the width of the gain
curve. The rest of the parameters that appear in the equations
are specified in the Table I. In the following section we will
present the results obtained by integrating numerically the
previous set of equations. Time and space integration steps
of 0.01 ps and 0.12 microns, respectively, have been used.
The boundary conditions for the carrier distribution are taken
as N(,1)=0, n(,7)=0.

III. FUNDAMENTAL TRANSVERSE MODE OPERATION:
COMPARISON WITH THE SPATTIALLY INDEPENDENT
MODEL

In this section we will study the nonlinear dynamics of the
two orthogonal linearly polarized fundamental transverse
modes of the VCSEL when subject to a sinusoidal modula-
tion of the current. Our results are obtained with the model
of the previous section with similar parameters to those used
in Ref. [20] for allowing a direct comparison with the results
obtained with a spatially independent model of a single-
transverse mode VCSEL. First we present some results cor-
responding to the cw operation of the VCSEL. We show in
Fig. 1(a) the transverse and polarization mode-resolved light-
current characteristics of the VCSEL when the current injec-
tion is uniform over a disk of radius equal to the radius of the
waveguide, i.e., s=a=3 um. In that figure the intensities

orthogonal to the fundamental mode [1]. In our model such a
situation can be observed by choosing the vy, and k, param-
eters; however, for comparison purposes we consider the pa-
rameters of Ref. [20]. Nonlinear dynamics of our system is
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1.5 s=3um
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FIG. 1. Light-current characteristics of a VCSEL with a current
injection region of (a) radius s=3 um and (b) s=4 um. Other pa-
rameters in this figure are y,=0.1 ns™!, x,=1, and Au=0.
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FIG. 2. Bifurcation diagrams of the (a) total, (b) LPy, ,, and (c)
LPy;, intensities versus Au, for s=3 um, F,=1GHz, v,
=0.1 ns™!, pge=1.1 py, and x,=1.

summarized by using bifurcation diagrams of the polarized
transverse modes. These diagrams are calculated as follows.
The bifurcation parameter Ay is increased step by step. At
each step Au is kept constant during 150 modulation peri-
ods. The initial conditions for the evolution at each value of
Ap are the final conditions that were obtained for the previ-
ous value of Au. In this way bifurcation diagrams with a
slow sweeping of the bifurcation parameter are obtained. The
successive maxima of the intensities /;; that appear in the last
100 modulation periods are then recorded for that Au value.
Those maxima as a function of Au are the points that are
represented in the bifurcation diagrams calculated in this
work.

Our first bifurcation diagrams, shown in Fig. 2, are used
to perform the comparison with the results of the polarization
dynamics obtained with the spatially independent model of
the single-transverse mode VCSEL of Ref. [20]. In Fig. 2
only the fundamental mode is excited since the range of
modulation amplitudes has been chosen for not allowing the
excitation of the LP;; mode. Figure 2(a) also shows the bi-
furcation diagram for the total intensity /. Similar dynamics
to those observed in Fig. 1 of Ref. [20] are observed for
values of Ay smaller than 0.3. An example of those similar
dynamics is found in Fig. 3(a) when Au=0.14. The two
polarizations exhibit chaoticlike dynamics with a fast modu-
lation of their intensities at the modulation frequency in such
a way that when one polarization fires a large pulse, the other
polarization fires a small pulse. However, results differ from
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FIG. 3. Time traces of the intensities of the polarized transverse
modes for specific values of Au (I,: solid thin line; Iy, dotted thin
line; /,: solid thick line; /;,: dotted thick line). Results correspond-
ing to Fig. 2 are plotted when (a) Ax=0.14 and (b) Au=0.62.
Results corresponding to Fig. 4 are plotted when (¢) Au=0.14, (d)
Ap=0.62, and (e) Au=0.18.

those of Ref. [20] when Ax>0.3. In the spatially indepen-
dent model a period-doubling route to chaos is observed in
the LPy; , mode with negligible values of the LPy, , intensity.
When spatial effects are taken into account the LPy,; , is also
excited in such a way that the period-doubling route to chaos
in the LP;;, mode is destroyed. Figure 2 also shows that
chaotic excitation in both polarizations is found over wide
Ap windows if Ap<<0.61. For larger values of Au time-
periodic dynamics is again obtained. We show in Fig. 3(b) a
typical time-periodic dynamics in which a 37-periodic re-
sponse is observed for the LPy; , mode. The results of this
section indicate that as the modulation amplitude increases
the spatial effects become more relevant for describing the
dynamics of the two orthogonal linearly polarized fundamen-
tal transverse modes: the inclusion of spatial effects leads to
the excitation of the otherwise depressed x-LP fundamental
transverse mode, which then competes with the y-LP funda-
mental transverse mode in the period-doubling route to chaos
observed for large modulation amplitudes.

IV. POLARIZATION DYNAMICS OF THE MULTIMODE
VCSEL SUBJECT TO CURRENT MODULATION

In this section we follow two ways for evaluating the
impact of the higher-order transverse mode excitation on the
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polarization dynamics of the VCSEL. The first one corre-
sponds to considering a VCSEL with a larger area of current
injection (s>a) in such a way that the higher-order mode is
excited for smaller values of the current. The second one
corresponds to considering that the loss of the LP,; mode is
larger than the corresponding to the LP; mode, i.e., k. <1,
while maintaining s=a. The first situation is illustrated in
Fig. 1(b) where the transverse and polarization mode-
resolved light-current characteristics of the VCSEL has been
plotted when s=4 um. The LP;; mode appears at u,.=1.1 in
such a way that for larger values the VCSEL keeps on emit-
ting in both modes. Again, as in Fig. 1(a) the polarization of
both transverse modes is the y polarization. The bifurcation
diagrams that correspond to this situation are plotted in Fig.
4. We show that periodic and chaotic dynamics are now
found for all the polarized transverse modes and for the total
intensity. Comparison with Fig. 2 shows that the excitation
of the LP;; mode, even for small Au values, changes the
polarization and total intensity dynamics. The main differ-
ence is that the LP;; mode is now excited with significant
power for all the modulation amplitudes. Time-periodic dy-
namics is now restricted to low values of Au. The compari-
son of Figs. 2 and 4 shows that the excitation of the higher-
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FIG. 4. Bifurcation diagrams of the (a) total,
(b) LPy, ., (c) LPy;,, (d) LPyy,, and (e) LPy;,
intensities versus Au, for s=4 um, F,=1 GHz,
Y.=0.1 ns™!, py=1.1 p,, and x,=1.

0.1 02 03 04 05 06 0.7

0.1 02 03 04 05 06 0.7

order mode causes indeed a disappearance of the windows of
time-periodic regular pulsating dynamics found in the single-
mode case for Au>0.32. We now analyze representative
time traces performing a comparison to those found in the

N(r,t)

125¢ (ns)

N(r,t)

127

. 126
125t (ns)

FIG. 5. Temporal evolution of the total carrier number profiles
when Au=0.14, (a) s=3 um, and (b) s=4 um.
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single-mode case. We show in Fig. 3(c) a typical time-
periodic time trace obtained when Au=0.14, which is a
value slightly above the value where the period-doubling bi-
furcation occurs (see Fig. 4). A 2T-periodic response involv-
ing the x-polarized fundamental mode and the orthogonal
higher-order mode is illustrated in that figure. A comparison
between Figs. 3(a) and 3(c) shows that the excitation of the
higher-order mode modifies the VCSEL dynamics from a
chaotic pulsating dynamics (in the single-transverse-mode
case) into a regularly pulsating dynamics (in the two-
transverse-mode case). The physical origin of this behavior
can be better understood by analyzing the temporal evolution
of the corresponding total carrier number profiles. Figures
5(a) and 5(b) show those profiles for the cases corresponding
to Figs. 3(a) and 3(c), respectively. In the single-transverse-
mode case, Fig. 5(a), the carrier profile always has its maxi-
mum at r=0 and its shape has only very small changes (the
difference between the maximum and minimum value occurs
at r=0 and is around 0.04). Then both, carrier and mode
profiles, remain basically unchanged and the results are simi-
lar to those obtained with the spatially independent descrip-
tion. The situation is different for the multitransverse mode
case, Fig. 5(b), because the shape of the carrier profile

PHYSICAL REVIEW E 76, 046206 (2007)

changes along the evolution. When the time is smaller than
125.6 ns the carrier profile is rather flat in such a way that
the spatial overlap between the carrier profile and both trans-
verse modes is large. Then modal gains of both transverse
modes largely surpass the threshold value and the emitted
pulse at around r=125.6 ns is basically multimode [see Fig.
3(c)]. Around that emission time the shape of the carrier
profile changes, due to the increase in the stimulated recom-
bination of carriers, in such a way that the maximum is now
around r=2.5 um. The change of shape of the carrier profile
just after the pulse emission is well illustrated in Fig. 5(b) at
time=127 ns. The changes in the carrier profile values are
larger than for the single-mode case: the difference between
the maximum and minimum value of the carriers at r=0 is
now around 0.15). Those large changes are associated to the
period-doubling behavior reported in Fig. 3(c). That period-
doubling cannot be obtained with a spatially independent
model since it is not able to account for those dynamic
changes in the carrier profile. This situation holds for a wide
Ap range (0.1<Aup<0.16). The opposite situation is also
found for several Au regions. We show in Fig. 3(d) the time
traces obtained when Au=0.62. Trains of pulses of irregular
heights appear in the LP, , and LP}, , modes. Those pulses

FIG. 6. Bifurcation diagrams of the (a) total,
(b) LPy;, (¢) LPgyy, (d) LPyy,, and (e) LPyy
intensities versus Aw, for s=4 um, F,
=2.5 GHz, y,=0.1 ns™!, wy.=1.1 w,, and x,=1.
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appear each 37, as in the single-mode operation illustrated in
Fig. 3(b), but the height irregularity results in a more com-
plicated dynamics due to the excitation of the higher-order
transverse mode. This situation holds for several Ay inter-
vals (0.21<Aup<0.24, 0.32<Ap<0.39, and Ap>0.61).
The excitation of the higher-order transverse in such a pa-
rameter range therefore modifies the VCSEL dynamics from
a regularly pulsating dynamics (in the single-transverse-
mode case) into a chaotic pulsating dynamics (in the two-
transverse-mode case). We also show in Fig. 3(e) a typical
case in which all the polarized transverse modes evolve in a
chaotic way. Modulation periods can be found where the four
polarized transverse modes are excited with significant
power (see, for instance, 80 ns=r=81 ns, 89 ns=¢
=90 ns). The previous results do not depend on the way of
achieving multitransverse mode operation because bifurca-
tion diagrams obtained for s=3 um, and x,=0.9 (not shown
in this work) are very similar to those shown in Fig. 4.

We now analyze the dependence of the polarization dy-
namics of the multimode VCSEL on the modulation fre-
quency. We show in Fig. 6 the bifurcation diagrams obtained
with the parameters of Fig. 4 but increasing F, to 2.5 GHz, a
value that is approximately twice the relaxation oscillation
frequency of the single-mode VCSEL (1.23 GHz) [20]. A
period-doubling route to chaos is observed when increasing
Ap. The T-periodic solution involves only the y polarization
of both transverse modes. That is also the situation for the 2T
solution while A is smaller than 0.28. For larger Au values
2T-periodic solutions for LPy, , and LP,;, modes also ap-
pear. All the polarized transverse modes participate with sig-
nificant power in the period-doubling cascade that leads to
the chaotic behavior. As an example of that time-periodic
dynamics we show in Fig. 7(a) the temporal evolution of the
4T solution that appears when Au=0.41. Chaotic dynamics
involving all polarized transverse modes is only obtained for
a narrow A range. We illustrate that dynamics in Fig. 7(b),
where the temporal traces of the intensity have been plotted
for Au=0.454. For Au>0.46, LPy;, and LP;; , suddenly
drop in such a way that the chaotic dynamics with appre-
ciable power is only observed for the y-polarized transverse
modes. We show in Fig. 7(c) an example of that dynamics.
The regularity in the time of the emission of the pulses have
disappeared in such a way that bursts of closely spaced low-
power pulses coexist with well separated higher-power
pulses.

We finally present some bifurcation diagrams obtained for
several interesting limit cases. The first one is illustrated in
Figs. 8(a)-8(c) and corresponds to the case in which only the
higher-order mode has significant power. This situation has
been achieved by using the parameters of Fig. 2 and by
choosing a very small value of the relative losses, «,=0.7.
The periodic solutions only appear in the LP;; , mode. A
narrow chaotic window involving only that mode appears
around Au=0.43. The situation changes for larger Au be-
cause chaos in both polarizations of the higher-order mode is
observed when A > 0.455. The second limit case, shown in
Figs. 8(d)-8(f), corresponds to emission in only one linearly
polarized mode but with different transverse modes. That
emission has been obtained by increasing the value of the
dichroism v, of Fig. 4 to 0.5 ns™'. A period-doubling route to
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Time (ns)

FIG. 7. Time traces of the intensities of the polarized transverse
modes for specific values of Au (Iy,: solid thin line; I,: dotted thin
line; /;,: solid thick line; /;,: dotted thick line). Results correspond
to Fig. 5 and are plotted when (a) Au=0.41, (b) Au=0.454, and (c)
Ap=0.6.

chaos involving both y-polarized transverse modes is clear
from those figures. These results are in agreement with pre-
vious reports on chaotic behavior due to the transverse mode
competition in VCSELs [18,19].

V. DISCUSSION AND CONCLUSIONS

The systematic parameter scannings performed in the pre-
vious sections have unveiled several scenarios for the polar-
ization and transverse mode nonlinear dynamics in the VC-
SEL system with large current modulation: time-periodic,
period-doubling, and possibly chaotic dynamics in either one
or the two polarization modes of the VCSEL and with fun-
damental and/or higher-order transverse mode profiles. We
now discuss the robustness of the reported nonlinear dynam-
ics against the inclusion of spontaneous emission noise, as it
should be done when dealing with realistic VCSEL experi-
ments. The spontaneous emission noise is indeed always
present in real devices and can affect the nonlinear dynamics
of the polarization of gain-switched VCSELSs [20]. We have
plotted Figs. 7(a) and 7(b) in logarithmic scale to explicitly
show the minimum values of the intensities of the polarized
transverse modes. Minimum values are above the 10 inten-
sity value. For typical values of the spontaneous emission
rate (,BX‘,,=10‘5 ns~! spontaneous emission rate) the level of
the intensity at which the spontaneous emission fluctuations
dominate the dynamics is around 107 [see Fig. 6(d) of Ref.
[20]]. Then the reported intensity nonlinear dynamics would
remain similar if spontaneous emission fluctuations would
have been included in our model. Then it is expected that
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there would be an appreciable range of the parameters of the
system in which nonlinear dynamics similar to the one de-
scribed in this work would be experimentally observed. This
is confirmed by a preliminary experimental work [27] in
which the polarization dynamics of a gain-switched single-
transverse mode VCSEL has been measured. In that work it
is shown that the competition between polarizations induce a
loss of regularity in the individual polarizations while the
total intensity behaves in a regular way [27]. The simpler
problem of the nonlinear dynamics of the gain-switched lin-
early polarized single-transverse mode VCSEL has only been
addressed from a theoretical point of view [17-19]. In those
works no chaotic response was obtained. However, we show
in Fig. 9 a bifurcation diagram obtained by increasing the
value of the modulation frequency and the dichroism of Fig.
2. A period-doubling route to chaos involving only the LPy, ,
polarized mode is obtained. Similar results were also ob-
tained with the spatially independent model of the single-
mode VCSEL with a different set of parameters [26]. Those
results indicate that the possibility of achieving chaos in the
current modulated linearly polarized single-transverse mode
VCSEL remains a question to be addressed.

0.1 02 03 04 05 0.6 0.7
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0.1 02 0.3 04 05 06 0.7

FIG. 8. Left part: bifurcation diagrams of the
(a) total, (b) LP11,x, (c) LPy;, intensities power
versus Au, for s=3 um, y,=0.1 ns7!, and «,
=0.7. Right part: bifurcation diagrams of the (d)
total, (e) LPy ,, (f) LPy; , intensities versus Au,
for s=4 um, y,=0.5 ns™!, and «,=1. In this fig-
ure F,=1 GHz and u,.=1.1 uy,.

0.1 02 03 04 05 0.6 0.7

FIG. 9. Bifurcation diagram of the LPy, , intensity versus Au,
for s=3 um, F,=2.5 GHz, y,=0.5 ns™!, u;.=1.1 u,, and k,=1.
Results are only plotted for the LPy,; , mode since the other polar-
ized modes have negligible power. »
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In this work we have analyzed in a theoretical way the
nonlinear dynamics of the polarization of a directly modu-
lated multitransverse VCSEL. Our results have been ob-
tained with a spatially dependent model. We have shown that
the spatial effects in a fundamental mode VCSEL modifies
the polarization dynamics that accompanies the period-
doubling route to chaos for large modulation amplitudes. We
have also shown in different parameter regions that the ex-
citation of a higher-order transverse mode may either induce
chaotic pulsing in an otherwise regularly pulsating VCSEL,
or induce a time-periodic pulsing dynamics in an otherwise
chaotic VCSEL. A systematic analysis of bifurcation dia-
grams for different modulation frequencies, different values
of the dichroism, and different transverse mode characteris-
tics allow us to identify the different scenarios of polariza-

PHYSICAL REVIEW E 76, 046206 (2007)

tion dynamics in directly modulated VCSEL. The reported
polarization and transverse mode dynamics are robust when
accounting for spontaneous emission noise, hence motivating
their experimental observations.
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