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It is shown that the large-deviation statistical quantities of the discrete-time, finite-state Markov process
Pn+1

�j� =�k=1
N HjkPn

�k�, where Pn
�j� is the probability for the j state at the time step n and Hjk is the transition

probability, completely coincide with those from the Kalman map corresponding to the above Markov process.
Furthermore, it is demonstrated that, by using simple examples, time correlation functions in finite-state
Markov processes can be well described in terms of unstable periodic orbits embedded in the equivalent
Kalman maps.
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I. INTRODUCTION

Over the last three decades, nonlinear dynamics and chaos
have played significant roles not only in natural science and
mathematics but also in engineering and social science �1–5�.
Chaotic dynamics has many different aspects. This is one of
the reasons that many researchers in various fields have stud-
ied it extensively for such a long time.

The most important characteristic of chaos is the “trajec-
tory instability,” which makes long-term predictability im-
possible �1,2,4,6�. This characteristic can be quantified with a
positive Lyapunov exponent. Owing to the long-term unpre-
dictability, chaotic dynamics can be used as random number
generators. On the other hand, one cannot predict the state of
a physical variable obeying a stochastic process in the future.
However, the origin of the unpredictability in stochastic pro-
cesses is believed to be different from that for chaotic dy-
namics. In connection with this fact, one may ask “Is it pos-
sible to precisely simulate a stochastic processes with a
chaotic dynamics suitably constructed?” In other words, does
a hidden dynamics exist that gives the same statistics as the
stochastic process under consideration? The present paper is
concerned with this question.

The possibility of the construction of a one-dimensional
chaotic map that is equivalent to a finite-state Markov pro-
cess

Pn+1
�j� = �

k=1

N

HjkPn
�k� �1�

�n=0,1 ,2 ,3 , . . . � was proposed by Kalman �7� in 1957.
Here, Pn

�j� is the probability that the system is in the jth state
at time step n �� j=1

N Pn
�j�=1�. Hjk is the transition probability

from the kth state to the jth state in a time step and satisfies
� j=1

N Hjk=1. Kalman showed how to construct the one-
dimensional chaotic map

xn+1 = f�xn� �2�

corresponding to the process �1�, where the mapping func-
tion f�x� is completely determined by the transition matrix

Ĥ= �Hjk�. The mapping dynamics �2� constructed by Eq. �1�
is called the Kalman map and a simplified review is given in
Appendix A. The Kalman map is a sort of piecewise linear
Markov transformation, which maps each interval of the par-
tition onto a union of intervals of the partition. Markov trans-
formations have been studied by many researchers �8–10�
and play an important role in the study of chaotic dynamics.
In fact, Kalman map gives the invariant probability same as
the corresponding Markov map �1�. Recently, Kohda and
Fujisaki �11� showed that the double-time correlation func-
tion obtained from �2� precisely agrees with that obtained
from the corresponding Kalman map.

In the sense that the stochastic process is generated by the
deterministic chaotic dynamics, the latter may be called the
hidden dynamics of the stochastic process. This fact leads to
a quite interesting problem. It is well known that statistical
quantities including dynamical correlation functions in cha-
otic dynamics can be well approximated in terms of unstable
periodic orbits embedded in the corresponding strange attrac-
tor. Therefore, if a stochastic process can be determined by a
corresponding chaotic dynamics, it is naturally expected that
the statistical quantities in a stochastic process can be deter-
mined from the corresponding chaotic dynamics, particularly
in terms of unstable periodic orbits embedded in the latter
dynamics and, therefore, in the stochastic dynamics. The
main aim of the present paper is to show the possibility of
the determination of the statistics of the stochastic process
�1� in terms of unstable periodic orbits of the corresponding
Kalman map. That is, the present paper is concerned with the
hidden dynamics of a finite-state, discrete-time stochastic
process, and, in particular, the relation between statistical
properties of stochastic processes and unstable periodic or-
bits subtended in the hidden dynamics. The main results of
the present paper are as follows: �i� The large-deviation sta-
tistical quantities calculated in the stochastic process �1� rig-
orously coincide with those derived from the corresponding
Kalman map. Furthermore, �ii� by using several simple sto-
chastic processes, we show that double-time correlation
functions of stochastic processes can be well approximated
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by those obtained in terms of unstable periodic orbits embed-
ded in the corresponding Kalman map.

The present paper is organized as follows. In Sec. II, we
briefly summarize statistical quantities of the process �1� and
the construction of the corresponding Kalman map. It is
shown that the statistical quantities, i.e., the invariant density,
the double-time correlation function, and the large-deviation
statistical quantity for the stochastic process rigorously coin-
cide with those obtained from the Kalman map. In Sec. III,
making use of simple models, we show that the double-time
correlation function of the stochastic process can be well
approximated by those determined in terms of unstable peri-
odic orbits embedded in the Kalman map. Concluding re-
marks and discussion are given in Sec. IV. In Appendix A,
explicit mapping functions are given for two- and three-state
stochastic processes. Appendix B is devoted to the proof of
the statements in Sec. II. In Appendix C, we briefly review
the Markov method, which enables the double-time correla-
tion function to be expanded in terms of same-time correla-
tion functions. Furthermore, in Appendix D, we give a com-
parison of the double-time correlation function determined
with a single unstable periodic orbit.

II. EQUIVALENCE OF STATISTICAL DYNAMICS
GENERATED BY A STOCHASTIC PROCESS

AND THE KALMAN MAP

In the matrix form, the Markov process �1� is written as

Pn+1 = ĤPn, �3�

where Pn= �Pn
�1� , Pn

�2� , . . . , Pn
�N��T is the probability matrix and

Ĥ is the transition matrix with jk element Hjk. The steady
probability distribution is determined by

P* = ĤP*, �4�

where P*= �P*
�1� , P*

�2� , . . . , P*
�N��T. This implies that P* is the

eigenvector of Ĥ with the eigenvalue 1.
Let us consider the dynamical variable un at the time step

n, and let un take the value a�j� if the system is in the jth
state. The double-time correlation function for the fluctuation
�un=un− �u	, �u	 �=� j=1

N a�j�P*
�j�� being the average value, is

given by

Cn = ��un�u0	 = �
j=1

N

�
k=1

N

�a�k��Ĥn�kj�a�j�P*
�j� �5�

with �a�j�=a�j�− �u	.
Furthermore, for the sake of later discussion, we here

briefly summarize the large-deviation theoretical study of the
stochastic process. Consider a steady time series �uj�. The
finite-time average

ūn =
1

n
�
j=0

n−1

uj �6�

with n being the time span of averaging, is a fluctuating
variable. For n→�, the average approaches the ensemble

average �u	. However, for a large but finite n, ūn shows a
fluctuation. Let Qn�u� be the probability density that ūn takes
the value u. As is known, for large n, Qn�u� asymptotically
takes the form Qn�u�
e−S�u�n �12�, where S�u�, called the
rate function or the fluctuation spectrum �13�, is a concave
function of u and has a minimum S=0 at u= �u	. The fluc-
tuation spectrum characterizes the fluctuation statistics of the
time series �uk�. The large-deviation theoretical characteristic
function Zq�n� for the time series �uk� is defined by

Zq�n� = �exp�qnūn�	 =�exp�q�
k=0

n−1

uk
� , �7�

where q is an arbitrary real number and �¯	 is the ensemble
average. For large n, Zq�n� asymptotically takes the form
Zq�n�
e��q�n, where ��q� depends only on the parameter q
and characterizes the statistics of �uk�. The fluctuation spec-
trum S�u� is derived by the Legendre transform of ��q� as
��q�=−minu�S�u�−qu� �13–19�.

If we introduce the generalized transition matrix Ĥq with
its jk element defined via �15�

�Ĥq� jk = Hjkexp�qa�k�� . �8�

The large-deviation theoretical characteristic function is writ-
ten as

Zq�n� = �
k=1

N

�Ĥq
nP*�k. �9�

Therefore, one finds that the characteristic function ��q� is
determined by the largest eigenvalue of the generalized tran-

sition matrix Ĥq �15�.
It is known that the same steady probability distribution

as that in Eq. �4� can be produced by a one-dimensional map,
called the Kalman map, suitably constructed. In the remain-
ing part of this section, we first explain how to construct the
Kalman map. The following discussion is the simplified one
proposed by Kalman �7�.

First, we define the positions � j �j=1,2 , . . . ,N2� with �1

=0 and �N2 =1 in such a way that they satisfy

�N

��j−1�N+1 − ��j−1�N
= H1j

−1,

�2N − �N

��j−1�N+2 − ��j−1�N+1
= H2j

−1,

�3N − �2N

��j−1�N+3 − ��j−1�N+2
= H3j

−1,

�
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�kN − ��k−1�N

��j−1�N+k − ��j−1�N+k−1
= Hkj

−1,

�

�NN − ��N−1�N

��j−1�N+N − ��j−1�N+N−1
= HNj

−1 �10�

�j=1,2 , . . . ,N�. These equations are solved to yield

��j−1�N+k =
1

N
� j − 1 + �

�=1

k

H�j
 �11�

�k=0,1 ,2 , . . . ,N�. We thus find that ��j−1�N+k−��j−1�N+k−1

=Hkj /N. With these � j, we construct the piecewise linear
one-dimensional map f�x� in the range ��j−1�N�x�� jN �j
=1,2 , . . . ,N� as follows:

f�x� =�
H1j

−1�x − ��j−1�N� ���j−1�N � x � ��j−1�N+1� ,

�N + H2j
−1�x − ��j−1�N+1� ���j−1�N+1 � x � ��j−1�N+2� ,

�2N + H3j
−1�x − ��j−1�N+2� ���j−1�N+2 � x � ��j−1�N+3� ,

�
��k−1�N + Hkj

−1�x − ��j−1�N+k−1� ���j−1�N+k−1 � x � ��j−1�N+k� ,

�
��N−1�N + HNj

−1�x − ��j−1�N+N−1� ���j−1�N+N−1 � x � ��j−1�N+N� .

�12�

Therefore, one finds �f��x��−1=Hkj for ��j−1�N+k−1�x
���j−1�N+k. Examples for N=2 and 3 are shown in Appendix
A. One should note that the dynamics xn+1= f�xn� with the
mapping function �12� shows a chaotic behavior since the
local expansion rate ln � f��x�� of the mapping function is ev-
erywhere positive. Therefore, the mapping system �12� turns
out to be hyperbolic.

Let u�xn� be a dynamical variable taking the value u�x�
=a�j� if x satisfies ��j−1�N�x�� jN �j=1,2 , . . . ,N�. The time
correlation function Cn

K of u�xn� is given by

Cn
K = ��u�xn��u�x�	 , �13�

where �¯	 is the ensemble average. Here, xn= fn�x� and
�u�xn�=u�xn�− �u	. The large-deviation statistical character-
istic function is defined by

Zq
K�n� =�exp�q�

m=0

n−1

u�xm�
� . �14�

As is shown in Appendix B, one finds that Cn=Cn
K and

Zq�n�=Zq
K�n�.

It should be noted that dynamical statistical quantities are
determined in terms of unstable periodic orbits embedded in
chaotic dynamics �20�. This fact implies that, since the Mar-
kov stochastic process �1� is described by the corresponding
Kalman chaotic dynamics, dynamical statistical quantities
such as time correlation functions and large-deviation theo-
retical statistical characteristic functions of the Markov sto-
chastic process �1� can be determined by unstable periodic
orbits embedded in the “stochastic process.” In the following

section, we discuss the determination of dynamical quantities
of the stochastic process in terms of periodic orbits embed-
ded in the Kalman map.

III. PERIODIC-ORBIT DETERMINATION OF TIME
CORRELATION FUNCTIONS IN SIMPLE

STOCHASTIC PROCESSES

In this section, we show that the time correlation func-
tions Cn for stochastic processes with N=2 and 3 are well
determined by unstable periodic orbits embedded in the cha-
otic dynamics corresponding to the stochastic processes.
From Eq. �5�, the time correlation function for the stochastic
process can be rigorously obtained as follows. Let �� and e�

be, respectively, the �th eigenvalue and the eigenvector of Ĥ,

i.e., Ĥe�=��e�. One should note that there is one eigenstate
with the eigenvalue ��=1. Without losing generality, we put
�1=1. With the expansion �a�j�P*

�j�=���b�e�
�j�, e�

�j� being the
jth component of e�, with the expansion coefficient b�, we
obtain

Cn = �
�

�g���
n �15�

with g�=b�� j=1
N �a�j�e�

�j�, where ��� implies summation except
for the eigenvalue �1=1.

As shown in Appendix C, the time correlation function
can be approximately obtained as follows. First, introduce
the vector variable

un � „h1�xn�,h2�xn�, . . . ,hM+1�xn�…T � u�xn� , �16�

where un�h1�xn�=� j=1
N a�j�Ij�xn� with the step function Ij�x�

defined as
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Ij�x� = �1, for � j−1 � x � � j ,

0, otherwise.
�17�

Also hj�x�=h1�f j−1�x�� �j=1,2 , . . . ,M +1�. The time correla-

tion function Cn is given by the 1-1 element �Ĉn�1,1 of the

correlation matrix Ĉn��unu0
T	− �u0	�u0

T	. If M is suitably

chosen, the matrix Ĉn is approximately determined by Ĉn

� 	̂nĈ0, where 	̂= Ĉ1Ĉ0
−1 �18,20�. Thus the time correlation

function Cn is determined by Ĉ0 and Ĉ1. This method is
referred to as the Markov method �Appendix C�. It should be
noted that, for a piecewise constant function G�x�
=� j=1

N GjIj�x�, its long-time average is replaced by the en-
semble average:

�G�x�	 � lim
n→�

1

n
�
j=1

n

G„f j−1�x�… = �
k=1

N

GkP*
�k�. �18�

By definition, the functions u�x� and u�f�x��, which are rel-

evant to the calculation of Ĉ0 and Ĉ1, are piecewise constant

in the x space. Therefore Ĉ0 and Ĉ1 are obtained as ensemble
averages as in Eq. �18�.

On the other hand, we can determine the quantities Ĉ0 and

Ĉ1 in terms of infinitely many unstable periodic orbits that
can describe the invariant density 
�x� �21–24�. In particular,
the invariant density of one-dimensional chaotic systems can
be obtained as follows �25�:


�x� = lim
n→�

�
j=1

N�n�

� j
�n���x − pj

�n�� �19�

with

� j
�n� =

Cn

��fn���pj
�n���

�j = 1,2, . . . ,N�n�� ,

where pj
�n� is a fixed point satisfying fn�pj

�n��= pj
�n�, N�n� is the

total number of fixed points of fn, and Cn is the normaliza-
tion constant. Thus the dynamical correlation functions can
be approximately expanded in terms of unstable periodic or-
bits.

Hereafter we will compare the exact time correlation
functions with those approximately determined by periodic

orbits for N=2 and 3. The transition matrices Ĥ for N=2 and
3 under study are, respectively,

�0.41 0.83

0.59 0.17

, �0.10 0.24 0.33

0.33 0.45 0.31

0.57 0.31 0.36
� . �20�

We use the values a�1�=0 and a�2�=1 for the N=2 case,
a�1�=0, a�2�= 1

2 , and a�3�=1 for the N=3 case. The results are
shown in Fig. 1 and Table I for N=2 and Fig. 2 and Table II
for N=3. Figures 1�a� and 2�a� show the strange attractors of
the one-dimensional maps corresponding to the transition
matrices in Eq. �20�. Figures 1�b� and 2�b� are the compari-
sons of the exact invariant densities �thick lines� with the
approximate ones �thin lines� in terms of unstable 15-
periodic orbits by use of the formula Eq. �19�. Figures 1�c�
and 2�c� are the chaotic time series �left� and the switching
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FIG. 1. Comparison of the re-
sults obtained by the Markov pro-
cess and the Kalman map for N
=2. �a� Kalman map correspond-
ing to the Markov process with
the transition matrix given in Eq.
�20�. �b� Comparison of the exact
invariant density �thick line� with
the approximate invariant density
�thin line� in terms of unstable 15-
periodic orbits by making use of
the formula �19�. �c� Chaotic time
series generated by the mapping
dynamics �left� and the state evo-
lution �right� corresponding to �a�.
The stochastic evolution is gener-
ated by the equivalent Kalman
dynamics.
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between the states �right� which is generated according to the
chaotic time series. The comparison between the time corre-
lation function obtained with the Markov method �M =0 and
1, respectively, for N=2 and 3� and the unstable periodic
orbits with the exact result from Eq. �15� is given in Tables I
and II. One finds that the Markov method with unstable pe-
riodic orbits works quite well. The above results imply that
the statistical quantities in the stochastic process can be de-
termined in terms of unstable periodic orbits embedded in
the Kalman map.

IV. CONCLUDING REMARKS AND DISCUSSIONS

In the present paper, we showed that the large-deviation
statistical quantities of a discrete-time, finite-state Markov

process precisely coincides with that obtained by the Kalman
map corresponding to the Markov process. The chaotic dy-
namics is self-generated and has an inner dynamics. In this
sense, although the Kalman dynamics generates the stochas-
tic process under consideration, two dynamics are different.
Nevertheless, if one observes the dynamics of the coarse-
grained variable, namely, the variable u�x� being independent
of x if ��j−1�N�x�� jN for each label j, provided one cannot
distinguish the dynamics of the chaotic dynamics and the
stochastic dynamics, then the two dynamics give rigorously
the same results for statistical quantities, i.e., the invariant
probability, double-time correlation functions and the large
deviation statistical quantities.

Differences between the stochastic process and the Kal-
man dynamics are caused by the fact that the chaotic variable

TABLE I. Comparison of the exact time correlation function Cn

from the formula �15� with the approximate one obtained by the
Markov method with M =0 for N=2. The long-time average for the
latter was replaced by the ensemble average with unstable periodic
orbits. See Eq. �19� and Fig. 1�b�.

n Exact Approximate

0 0.2425 0.2335

1 −0.1027 −0.0984

2 0.0421 0.0434

3 −0.0193 −0.0173

4 0.0097 0.0078

5 −0.0044 −0.0041

6 0.0025 0.0019

7 0.0003 −0.0004

8 0.0000 0.0000
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FIG. 2. Comparison of the re-
sults obtained by the Markov pro-
cess and the Kalman map for N
=3. �a� Kalman map correspond-
ing to the Markov process with
the transition matrix given in Eq.
�20�. �b� Comparison of the exact
invariant density �thick line� with
the approximate invariant density
�thin line� in terms of unstable 15-
periodic orbits by making use of
the formula �19�. �c� Chaotic time
series generated by the mapping
dynamics �left� and the state evo-
lution �right� corresponding to �a�.
The stochastic evolution is gener-
ated by the equivalent Kalman
dynamics.

TABLE II. Comparison of the exact time correlation function Cn

from the formula �15� with an approximate one by the Markov
method with M =1 for N=3. The long-time average for the latter
was replaced by the ensemble average with unstable periodic orbits.
See Eq. �19� and Fig. 2�b�.

n Exact Approximate

0 0.1538 0.1538

1 −0.0327 −0.0321

2 0.0085 0.0093

3 −0.0028 −0.0021

4 0.0007 −0.0004

5 −0.008 −0.0003

6 0.0006 0.0001

7 0.0000 0.0000

8 0.0000 0.0000
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xn is continuous, whereas the states of the present stochastic
process are discrete. Furthermore, the Lyapunov exponent is
determined for the chaotic dynamics, while it cannot be de-
termined for the stochastic process. The Lyapunov exponent
�= �ln � f��x� � 	=�
�x�ln � f��x� �dx for the Kalman map is eas-
ily calculated as

� = �
j=1

N

P*
�j��

k=1

N

Hkj ln Hkj
−1. �21�

Although the Lyapunov exponent is the key concept of a
chaotic system and cannot be defined in a stochastic process
in a conventional sense, the Lyapunov exponent of the Kal-
man dynamics is fully determined by the quantities con-
tained in the stochastic process. In this sense, the quantity
�21� can be called the Lyapunov exponent of the stochastic
process �1�. One can conclude that the origins of the unpre-
dictability in the finite-state Markov stochastic process and
the Kalman dynamics, more exactly speaking, the chaotic
dynamics, are the same. It is worthwhile to note that Eq. �21�
is identical to the equality between the Lyapunov exponent
and the Kolmogorov-Sinai entropy of the one-dimensional
map �4,26,27�.

Since a Markov stochastic process can be generated by
the Kalman map, the statistical quantities of the stochastic
process are determined by the chaotic dynamics. By making
use of simple examples, we showed in Sec. III that dynami-
cal quantities of the stochastic process can be well approxi-
mated in terms of unstable periodic orbits of the Kalman
dynamics.

Recently, statistical quantities of the turbulence can be
approximated with an admissible unstable periodic orbit
�28�. Furthermore, the time correlation function of chaotic
dynamics can be well approximated with an appropriate un-
stable periodic orbit embedded in the attractor �20�. In the
case of Kalman dynamics, we show in Appendix D that the
approximation of time correlations with an appropriate un-
stable periodic orbit is well done. It is found that the admis-
sible unstable periodic orbit have a passing rate that is simi-
lar to the invariant density of the Kalman map.

In closing the paper, let us discuss the applicability of
Kalman dynamics to more general stochastic processes. As
discussed in the present paper, the Kalman map precisely
explains the statistics of finite-state discrete-time Markov
process. However, the Kalman map is a quite special type of
mapping dynamics; even the dynamics is restricted in map-
ping systems in the sense that the Kalman map is piecewise
linear and everywhere hyperbolic. In physical systems ob-
served in experiments, mapping dynamics are usually neither
piecewise nor everywhere hyperbolic. This fact implies that
physically observed stochastic processes generically cannot
be described by finite-state Markov stochastic processes. It
would be quite interesting and important to study the possi-
bility of constructing a chaotic dynamics which describes
more complicated stochastic dynamics such as continuous-
state and continuous-time stochastic processes.
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APPENDIX A: KALMAN MAPS FOR TWO-
AND THREE-STATE PROCESSES

In this appendix, examples of the Kalman map are shown
for N=2 and 3. One should note that the dynamics xn+1
= f�xn� with the mapping function �12� shows a chaotic be-
havior since the local expansion rate ln � f��x�� of the mapping
function is everywhere positive. Therefore, the mapping sys-
tem �12� turns out to be hyperbolic.

Let us first consider the two-state stochastic process. The
positions � j �j=1,2 ,3� are obtained as

�1 =
H11

2
, �2 =

1

2
, �3 =

1

2
�1 + H12� . �A1�

The mapping function of the Kalman map corresponding
to the above is given by

f�x� =�
H11

−1x �0 � x � �1� ,

�2 + H21
−1�x − �1� ��1 � x � �2� ,

H12
−1�x − �2� ��2 � x � �3� ,

�2 + H22
−1�x − �3� ��3 � x � 1� .

�A2�

The above function is drawn in Fig. 3.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � �

�

FIG. 3. Kalman map constructed from the two-state stochastic
process. The positions � j are given in Eq. �A1�.
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For the three-state stochastic process, the positions �j �j
=1,2 , . . . ,8� are obtained as

�1 =
H11

3
, �2 =

1

3
�H11 + H21�, �3 =

1

3
,

�4 =
1

3
�1 + H12�, �5 =

1

3
�1 + H12 + H22�, �6 =

2

3
,

�7 =
1

3
�2 + H13�, �8 =

1

3
�2 + H13 + H23� . �A3�

The mapping function of the constructed one-dimensional
map is given by

f�x� =�
H11

−1x �0 � x � �1� ,

�3 + H21
−1�x − �1� ��1 � x � �2� ,

�6 + H31
−1�x − �2� ��2 � x � �3� ,

H12
−1�x − �3� ��3 � x � �4� ,

�3 + H22
−1�x − �4� ��4 � x � �5� ,

�6 + H32
−1�x − �5� ��5 � x � �6� ,

H13
−1�x − �6� ��6 � x � �7� ,

�3 + H23
−1�x − �7� ��7 � x � �8� ,

�6 + H33
−1�x − �8� ��8 � x � 1� .

�A4�

The function f�x� is drawn in Fig. 4.

APPENDIX B: PROOFS OF THE STATEMENTS IN SEC. II

1. Invariant probability density

Let us consider the chaotic dynamics xn+1= f�xn� with the
piecewise linear mapping function �12�. The probability den-
sity 
n�x� obeys the evolution equation 
n+1�x�=H
n�x� with

the Frobenius-Perron operator H. One can show that the in-
variant density 
�x��=H
�x�� is expanded as


�x� = �
j=1

N2

cjIj�x� . �B1�

Here the function Ij�x� is defined as

Ij�x� = �1, for � j−1 � x � � j ,

0, otherwise
�B2�

�j=1,2 , . . . ,N2�. The coefficients c1 ,c2 , . . . ,cN2 are deter-
mined as follows. First, note the relation

HIj�x� = �
�

Ij�y��

�f��y���
= �

k=1

N2

Ik�x�Hkj , �B3�

where Hkj is the kj element of an x-independent N2
N2

matrix Ĥ. The matrix Ĥ is obtained as follows. By putting
j= �j−1�N+ j�, k= �k−1�N+k� with 1� j�N, 1�k�N, 1
� j��N, and 1�k��N and by noting that Ij�y�� / �f��y�� �
=Hj�jIj�y��, Eq. �B3� is written as

Hj�j�
�

Ij�y�� = �
k=1

N2

Ik�x�Hkj . �B4�

Multiplying Ik�x� to Eq. �B3� and integrating it over x, we
obtain

Hkj = N
Hj�j

Hk�k
� I�k−1�N+k��x��

�

I�j−1�N+j��y��x��dx = Hkj�kj�,

�B5�

where we used I�k−1�N+k��x���I�j−1�N+j��y��x��
=� j�kI�k−1�N+k��x�.

The explicit form of the N2
N2 matrix Ĥ is given by

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � �

�

FIG. 4. Kalman map constructed from the three-state stochastic
process. The positions � j are given in Eq. �A3�.
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Ĥ =�
H11 0 . . . 0 0 H12 0 . . . 0 0 . . . H1N 0 . . . 0 0

H11 0 . . . 0 0 H12 0 . . . 0 0 . . . H1N 0 . . . 0 0

� � � � � � � � � � � � � � � �
H11 0 . . . 0 0 H12 0 . . . 0 0 . . . H1N 0 . . . 0 0

0 H21 . . . 0 0 0 H22 . . . 0 0 . . . 0 H2N . . . 0 0

0 H21 . . . 0 0 0 H22 . . . 0 0 . . . 0 H2N . . . 0 0

� � � � � � � � � � � � � � � �
0 H21 . . . 0 0 0 H22 . . . 0 0 . . . 0 H2N . . . 0 0

� � � �
0 0 . . . 0 HN1 0 0 . . . 0 HN2 . . . 0 0 . . . 0 HNN

0 0 . . . 0 HN1 0 0 . . . 0 HN2 . . . 0 0 . . . 0 HNN

� � � � � � � � � � � � � � � �
0 0 . . . 0 HN1 0 0 . . . 0 HN2 . . . 0 0 . . . 0 HNN

� . �B6�

With the expression �B1� and the relation �B3�, we get

H
�x� = �
j=1

N2

cj�
k=1

N2

Ik�x�Hkj . �B7�

Equating Eqs. �B1� and �B7�, one obtains

cj = �
k=1

N2

Hjkck. �B8�

By noting the relation �B5�, Eq. �B8� is rewritten as

c�j−1�N+j� = �
k=1

N

Hjkc�k−1�N+j , �B9�

where we put j= �j−1�N+ j�, k= �k−1�N+k�, 1� j�N, 1
�k�N, and 1� j��N, 1�k��N. Since the right-hand side
of Eq. �B9� is independent of j�, we find that c�j−1�N+j� is free
of j�. Therefore, by putting c�j−1�N+1=c�j−1�N+2=c�j−1�N+3

= ¯ =c�j−1�N+N�cj, Eq. �B9� is written as

cj = �
k=1

N

Hjkck, �B10�

and the probability density 
�x� given in Eq. �B1� is rewritten
as


�x� = �
j=1

N

cjIj�x� , �B11�

where we have defined

Ij�x� = �1, for ��j−1�N � x � � jN,

0, otherwise.
�B12�

In order that Eq. �B10� agrees with the result �4� in the sto-
chastic process, we need cj =�P*

�j�, where � is independent of
j. Furthermore, noting the normalization condition of the
probability density 
�x�, we find cj =NP*

�j� �j=1,2 , . . . ,N�.

Equation �B10� thus turns out to be identical with Eq. �4� in
the stochastic process.

2. Double-time correlation function

The equivalence of the double-time correlation functions
derived from the Markov process �1� and that from the cor-
responding Kalman map was recently shown by Kohda and
Fujisaki �11�. The following discussion is a simplified ver-
sion of their proof. The time correlation function Cn

K for a
function u�xn�, where u�x� takes the value a�j� if ��j−1�N�x
�� jN, is rewritten as

Cn
K =� �u�xn��u�x�
�x�dx . �B13�

By defining the quantities a�k� by a�k�=a�k� for k= �k−1�N
+k� �1�k�N ,1�k��N� and �a�k�=a�k�− �u	 and inserting

the expression �B1� and �u�x�=�k=1
N2

�a�k�Ik�x� into Eq. �B13�,
one gets

Cn
K =� 
�x��u�x�Ln�u�x�dx =� �u�x�Hn�
�x��u�x��dx

= �
j=1

N2

�
k=1

N2

cj�a�j��a�k� � Ik�x�HnIj�x�dx , �B14�

where L is the time evolution operator defined by LG�x�
=G(f�x�). By noting that

HnIj�x� = �
k=1

N2

Ik�x��Ĥn�kj , �B15�

the time correlation function is expanded as
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Cn
K = �

j=1

N2

�
k=1

N2

�k�a�k��Ĥn�kj�a�j�cj , �B16�

where �k��Ik�x�dx. Putting j= �j−1�N+ j� and k= �k−1�N
+k� with 1� j�N, 1�k�N ,1� j��N, and 1�k��N, we
get �k=��k−1�N+k�−��k−1�N+k�−1=Hk�k /N, and therefore
�k�=1

N ��k−1�N+k�=�kN−��k−1�N=N−1. These relations lead to

�Ĥn�kj = �Ĥn−1�kj�Hj�j �B17�

�n=1,2 ,3 , . . . �. Furthermore, since �a�j�=�a�j� and cj

=NP*
�j�, Eq. �B16� is reduced to the time correlation function

�5� obtained in the stochastic process.

3. Large-deviation theoretical characteristic function

The large-deviation theoretical characteristic function for
the time series �u�xm��, where u�x� takes the value a�j� if
��j−1�N�x�� jN �j=1,2 , . . . ,N�. The characteristic function
is rewritten as

Zq
K�n� =� Hq

n
�x�dx , �B18�

where Hq is the generalized �order-q� Frobenius-Perron op-
erator �14,29� defined as

HqG�x� � H�equ�x�G�x�� = �
�

equ�y��G�y��
�f��y���

. �B19�

Noting the relation

HqIj�x� = �
k=1

N2

Ik�x��Ĥq�kj �B20�

with the matrix Ĥq whose kj element is defined by

�Ĥq�kj = Hkjexp�qa�j�� �B21�

�Ĥq=0= Ĥ�, one obtains

Hq
nIj�x� = �

k

Ik�x��Ĥq
n�kj . �B22�

Therefore, since Hq
n
�x�=� j�kcjIk�x��Ĥq

n�kj, we obtain

Zq
K�n�=� j�kcj�k�Ĥq

n�kj. If we put j= �j−1�N+ j�, k= �k−1�N
+k� with 1� j�N, 1� j��N, 1�k�N, and 1�k��N,
then noting that cj =cj, �k=Hk�k /N, and

�Ĥq�kj = �Ĥq�kj�kj�, �B23�

�Ĥq
n�kj = �Ĥq

n−1�kj��Ĥq� j�j , �B24�

where �Ĥq�kj =Hkje
qa�j�

, we obtain Zq
K�n�=� j�k�Ĥq

n�kj
cj

N . By
making use of cj =NP*

�j�, the above expression coincides with
Eq. �9�.

As proved above, the results of the present chaotic dy-
namics constructed in the preceding section are precisely the

same as those of the stochastic process. Therefore, the one-
dimensional chaotic dynamics with the mapping function
�12� precisely simulates the stochastic process �1�.

APPENDIX C: MARKOV METHOD FOR TIME
CORRELATION FUNCTIONS

OF A ONE-DIMENSIONAL MAP

We consider a chaotic one-dimensional map

xn+1 = f�xn� �C1�

�n=0,1 ,2 , . . . �. The time series �un� under consideration is
given by un=h�xn�, where h�x� is a unique scalar function of
x. In terms of the time evolution operator L defined by
LG�x�=G(f�x�), un obeys the equation of motion un+1=Lun.
The time correlation function Cn= �unu0	, where �¯	 denotes
the long-time average, with un being chosen such that �un	
=0, can be obtained by the Markov method proposed in Ref.
�18� as follows.

First, we introduce the vector variable

u�x� � �h1�x�,h2�x�, . . . ,hM+1�x��T, �C2�

where h1�x� is identical to h�x� under consideration. M is the
number of new scalar variables h2 ,h3 , . . . ,hM+1, and is as-
sumed to be suitably chosen. The functions h1 ,h2 , . . . ,hM+1
are chosen so as to have vanishing means and to have com-
ponents linearly independent of each other. The vector vari-
able un-defined by

un = Lnu0, u0 = u�x� �C3�

obeys the equation of motion un+1=Lun.
With the projection operator method �30�, the above equa-

tion can be written in the form of the Mori equation of mo-
tion with a memory term. If M is appropriately chosen, the
contribution from the memory term is expected to be small
and can be ignored �18�. With this approximation, the Mori
equation reduces to

un+1 � 	̂un + gn �C4�

with

	̂ � ��Lu0�u0
T	�u0u0

T	−1. �C5�

The fluctuating force gn is orthogonal to u0, i.e., �gnu0
T	=0̂

�n�0�. By noting this property, the time correlation matrix

Ĉn��unu0
T	 obeys Ĉn+1� 	̂Ĉn, which yields

Ĉn � 	̂nĈ0. �C6�

By noting that 	̂= Ĉ1Ĉ0
−1, the time correlation function Cn is

thus given by the 1-1 component of Ĉn. The above approach
to the time correlation function is called the Markov method
�18,20�.

APPENDIX D: DETERMINATION OF TIME
CORRELATION FUNCTIONS IN TERMS
OF ONE UNSTABLE PERIODIC ORBIT

In Sec. III, we determined time correlation functions of
the Markov process in terms of many unstable periodic orbits
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embedded in the corresponding Kalman map. In particular,
we describe time correlation functions with static quantities

�Ĉ0 and Ĉ1� and those static quantities with many unstable

periodic orbits. However, for calculation of Ĉ0 and Ĉ1 we do
not have to determine the invariant density in terms of so

many unstable periodic orbits because Ĉ0 and Ĉ1 include
only low-order momentums. Here, as the simplest case, we
determine dynamical correlations in terms of only a single
periodic orbit with a passing rate which is similar to the
invariant density. Thus we use the approximation to deter-

mine Ĉ0 and Ĉ1 in terms of an appropriate unstable periodic
orbit instead of the long-time average as

�G�x�	 �
1

Np
�
j=0

Np−1

G�xj
�p�� , �D1�

where xj+Np

�p� =xj
�p� �j=1,2 , . . . ,Np� is a period-Np unstable pe-

riodic orbit appropriately chosen. If this approximation
holds, then the dynamical correlation functions can be ap-
proximately expanded in terms of an unstable periodic orbit
�20�.

Hereafter we will compare the time correlation functions
with those obtained by periodic orbits for N=2. The transi-

tion matrix Ĥ for N=2 under study is the same as in Sec. III.
The results are shown in Fig. 5. Figure 5�a� shows the

comparison between the time correlation functions obtained
with the Markov method �M =0� and the unstable periodic
orbit shown in Fig. 5�b� with the exact one, Eq. �15�. One
finds that, even if only one unstable periodic orbit is used,
the approximation works well.
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