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Discrete surface growth process as a synchronization mechanism for scale-free complex networks
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We consider the discrete surface growth process with relaxation to the minimum [F. Family, J. Phys. A 19,
L441 (1986)] as a possible synchronization mechanism on scale-free networks, characterized by a degree
distribution P(k)~ k™, where k is the degree of a node and \ its broadness, and compare it with the usually
applied Edward-Wilkinson process (EW) [S. E. Edwards and D. R. Wilkinson, Proc. R. Soc. London, Ser. A
381, 17 (1982)]. In spite of both processes belonging to the same universality class for Euclidean lattices, in
this work we demonstrate that for scale-free networks with exponents A <3 the scaling behavior of the
roughness in the saturation cannot be explained by the EW process. Moreover, we show that for these ubig-
uitous cases the Edward-Wilkinson process enhances spontaneously the synchronization when the system size
is increased. This nonphysical result is mainly due to finite size effects due to the underlying network.
Contrarily, the discrete surface growth process does not present this flaw and is applicable for every A.
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The study of the dynamics on complex networks became
a subject of great interest in the last few years since it was
realized that they are useful tools to understand biological,
social, and communications systems [1,2]. Networks are
constituted by nodes associated to individuals, organizations
or computers and by links representing their interactions.
The classical model for random networks is the Erdés-Rényi
(ER) model [3-5] characterized by a Poisson degree distri-
bution P(k)=exp(—(k)){k)*/k! where k is the degree or num-
ber of links that a node has and (k) is the average degree.
However, it was found [1] that many real networks are char-
acterized by a scale-free (SF) degree distribution given by
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for ki, <k<kg. where k.;, is the smaller degree that a
node can have, k,,, is a cutoff that diverges when the system
size N— o and \ represent the broadness of the distribution.
Most of the observed networks such as Internet, the World
Wide Web, and metabolic networks have 2 <\ <3 [1,2].

It was shown that the topology of the network is very
relevant to determine their statics and dynamics properties,
such as robustness and percolation thresholds [6,7], the av-
erage shortest path length [8] and transport [9]. An important
quantity characterizing networks is its diameter (maximal
hopping) d. In a network of a total of N nodes, d scales as
In N [5], which leads to the concept of “small worlds” or “six
degrees of separation” [10]. For scale-free (SF) networks
with A <<3 [11] d scales as In In N, which leads to the con-
cept of ultrasmall worlds [2,12].

Very recently, the research focus is changing from the
study of the network topology to the study of dynamical
processes on the underlying network. Of particular interest
are the studies on the dynamics and fluctuations of task
completion landscapes of queuing networks. If for each node
on the network there is a scalar 42 which specifies the time it
takes to finish a job or the amount of work that has been
assigned to it, the fluctuations on / indicates how synchro-

1539-3755/2007/76(4)/046117(4)

046117-1

PACS number(s): 89.75.Hc, 81.15.Aa, 68.35.Ct, 05.10.Gg

nized or balanced is the system. Jobs synchronization and
load balance are required in many applications such as
packet routing on the Internet [13] or in parallel computing
[14,15].

These synchronization processes are usually mapped into
a nonequilibrium surface growth via an Edwards-Wilkinson
(EW) equation [16] on complex networks [17-19]. The EW
equation for the evolution of the growing interface in com-
plex networks is given by

N
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where h;=h,(t) is the height of the interface of node i, A;; is
the element ij of the adjacency matrix that take the value 1 if
i and j are connected and zero otherwise, N is the system
size, v is a coefficient that represent the “surface tension”
and 7,= 7;(¢r) is a random Gaussian uncorrelated noise with
{m}=0; {min;}=2D5,;8(t—1'), where D is the diffusion coef-
ficient and {---} represent averages over configurations. The
interface is characterized by its roughness W(r) at time f,
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that represents the fluctuations of the height of the interface
around the mean value {h).

There are several technical advantages of using the con-
tinuous EW equation to model queue synchronization or load
balance processes [17-19] mainly because it is a linear con-
tinuous equation. However, some real implementations of
this process are intrinsically discrete. For this reason, in this
work we use the discrete growth model of surface relaxation
to the minimum (SRM), which is very well known on Eu-
clidean lattices [20,21], on SF networks. It is also a well-
known fact that on Euclidean lattices this discrete model
belongs to the same universality class of the EW equation.
This might be one of the motivations of using EW to model
these discrete processes. In the SRM model at each time step
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a node 7 is chosen with probability 1/N. If we denote by v; the nodes nearest neighbors of i, then

hish‘ \vd ‘El)i
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=h;=h;+ 1, else,

(4)

node j has the minimum height €v; =h;=h;+1.

These rules mimic a process where the higher loaded node
distributes the excess of load to one of the neighbors which
is less charged. To generate SF graphs of size N, we employ
the Molloy-Reed algorithm (MR) [22]: initially the degree of
each node is chosen according to a SF distribution, where
each node is given a number of open links or “stubs” accord-
ing to its degree. Then, stubs from all nodes of the network
are interconnected randomly to each other with the two con-
straints that there are no multiple edges between two nodes
and that there are no looped edges with identical ends.

We use for the simulation k;,=2 because when k;,> 1
there is a high probability that the network is fully connected
[12] which is required in this work to analyze the interface.

At t=0 we initialize all the values of h; with random
numbers taken from a uniform distribution in [0, 1]. At each
time step we select a node with probability 1/N and use the
rules given by Eq. (4), then the time is increased by 1/N. We
compute W(r) for SF networks with N\ >2 and different val-
ues of N.

In Figs. 1(a) and 1(b) we plot W(¢) for the SRM as func-
tion of ¢ for A=2.5 and A=3.5, respectively. In both figures
we can see a very short growing regime for W(z) after which
the system saturates with a width W,. This fast regime before
the saturation can be explained in terms of finite size effects.
For almost all growth processes the correlation length grows
with time until it reaches the characteristic length of the sys-
tem [20], which for complex random networks is the diam-
eter d. As explained above, the diameter is very small, and
the system reaches the saturation time very fast. We focus the
attention on the steady state of W because only at the steady
state does it matter to analyze the fluctuations in the load
balance of multiprocessors in parallel computing or synchro-
nization of queues.

For N=2.5 we found by a linear fitting of W(z) in the
steady state that W, behaves with N as W,~In N [see the
inset of Fig. 1(a)]. The same scaling behavior was obtained
for all other values of A <3. We also run all the simulations
for an initial flat interface and found no differences in W,
[23]. For A=3.5, W, does depend weakly on the system size
for big enough networks [see the inset of Fig. 1(b)]. Korniss
reported this lack of finite size effect for the growing net-
work model of Barabasi-Albert [1] that has A=3 [24].

As mentioned above, it is well known that this model in
Euclidean lattices belongs to the EW universality class rep-
resented by Eq. (2), so it is expected that Eq. (2) will show
the same scaling behavior as the SRM model. In this work
we demonstrate that surprisingly this is not generally true. In
Figs. 2(a) and 2(b) we show W(z) as function of 7 for differ-
ent values of N from the numerical integration of Eq. (2)
with »=1 and D=1 for SF networks with k. ;,=2 for A
=2.5 and A=3.5.

Counterintuitive, for A=2.5 W, decreases with the system
size, which is a nonexpected result for any growth model. If
this were the case, increasing the system size will be a simple
strategy to minimize the roughness and thus improving syn-
chronization of queues or balance in the load of multiproces-
sors in parallel computing.

We next show that the decreasing of the width for A <3 is
mainly due to finite size effects introduced by the MR con-
struction. It was shown in [24] that for the EW process in
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FIG. 1. Plots of W(z) for SRM and different system size N, N
=256 (O), N=512 (0), N=1024 (), N=2048 (A), N=4096 (<),
and N=8192 (V) for the following: (a) N=2.5, we can see that W,
increases with the system size N. In the inset figure we show W as
function of N in linear log scale (O). The dashed lines represent the
logarithmic fitting supporting that W,~1In N. (b) A=3.5, we can see
that W(z) depend weakly on N. In the inset figure we show in
symbols W‘2 as a function of N. The dashed lines represent the
fitting of W with Eq. (7) (A=10 and B=~0.25). In all the inset of
data’s figures we do not display the errors bars because they are of
the size of the symbols.
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unweighted networks the absolute lower bound of the W? is
€
(k)

The decreasing on the width observed in our numerical re-
sults is because (k) increases with N. As a consequence of
the MR construction which introduces the natural cutoff
Knax=kminN/O=1 [25], (k(N)) is given by

1= 1/1\]()\—2)/()\—1)
kN) =k, 6
M) o ©

W2 =(1-1/N)?

min

)

where k,,=k(N— ). Taking into account the results pre-
sented in Eq. (5) where we replace (k) by (k(N)) we propose
that

A B
2 2
Wi ~ Wx(oo)<1 N + N(x-z)/(x-n)’ )

where W(2) =W (N — ).

The fitting of W2 with Eq. (7) shows an excellent agree-
ment [see the inset of Fig. 2(a)] with the simulations support-
ing that the decrease in the width for A <3 is mainly due to
the MR construction and for large N, Wf~const.

Thus, the scaling behavior of W, for the SRM model with
A <3 is not well represented by the EW equation with con-
stant coefficients v and D, despite the fact that it is often
used in synchronization problems.

Next we analyze finite size effects for A > 3. For the SRM
model W, was well fitted by Eq. (7) [see the inset in Fig.
1(b)]. Thus, in this regime, the finite size effects can be at-
tributed to the MR construction. For the EW equation we
find the best fitting W2~ W*(«)(1-A/N) with B~0 in Eq.
(7). This behavior cannot be explained as finite size effects
due the MR construction because for A>3, N diverges faster
than N®=2/®=1 and maybe is due to the EW process. The
separation between the finite size effect of the EW process
and the MR construction is still an open question that goes
beyond the aim of this paper and could be the subject of
future researches.

In summary, we simulate the SRM model in SF networks
and compare the results with the EW process. We show that
a discrete model and a continuous model which share the
same scaling properties on Euclidean lattices does not ex-
hibit this equivalence on complex networks. For the SRM
model in SF networks W, diverges with the system size as
In N for A <3. For A>3 for both, the model and the EW
equation, when N— o, W — const. In order to compare the
results of the SRM model with a continuous equation further
investigation including higher order of the Laplacian in the
continuous equation are needed. Also the dynamics could
introduce some weights on the links on the underlying un-
weighted network that even at a linear approximation could
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FIG. 2. Plots of W(¢) from the integration of the EW equation
and different system size N. (a) For A=2.5, N=128 (O), N=256
(@), N=512 (O), N=1024 (A), N=2048 (V), N=4096 (X), and
N=8192 (*). We can see that W, decreases with N. In the inset
figure we show in symbols Wf, as a function of N. The dashed line
is the fitting with Eq. (7) (A=0.10 and B=0.75). (b) For A=3.5,
N=128 (O), N=256 (0), N=512 (&), and N=1024 (A). The
dashed line represents the fitting with Eq. (7) (A= 1.15 and B=0).

affect the EW unweighted process. This is the aim of our
future research. Finally, we can conclude that despite the fact
that the SRM model and the EW equation belongs to the
same universality class in Euclidean networks, in SF net-
works they do not have the same behavior.
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