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Random matrix analysis of complex networks
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We study complex networks under random matrix theory (RMT) framework. Using nearest-neighbor and
next-nearest-neighbor spacing distributions we analyze the eigenvalues of the adjacency matrix of various
model networks, namely, random, scale-free, and small-world networks. These distributions follow the Gauss-
ian orthogonal ensemble statistic of RMT. To probe long-range correlations in the eigenvalues we study
spectral rigidity via the Aj statistic of RMT as well. It follows RMT prediction of linear behavior in semi-
logarithmic scale with the slope being ~1/72. Random and scale-free networks follow RMT prediction for
very large scale. A small-world network follows it for sufficiently large scale, but much less than the random

and scale-free networks.
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I. INTRODUCTION

Random matrix theory (RMT), initially proposed to ex-
plain statistical properties of nuclear spectra, had successful
predictions for the spectral properties of different complex
systems such as disordered systems, quantum chaotic sys-
tems, large complex atoms, etc., followed by numerical and
experimental verifications in the last few decades [1,2].
Quantum graphs, which model the systems of interest in
quantum chemistry, solid state physics, and transmission of
waves, have also been studied under the RMT framework
[3]. Recently, RMT has been shown to be useful also in
understanding the statistical properties of empirical cross-
correlation matrices appearing in the study of multivariate
time series of the following: price fluctuations in the stock
market [4,5], EEG data of the brain [6], variation of different
atmospheric parameters [7], etc.

In our previous studies [8,9] complex networks have been
analyzed under the RMT framework. These works consider
nearest-neighbor spacing distribution (NNSD) of eigenvalues
spectra of adjacency and Laplacian matrices of various ex-
tensively studied networks. The NNSD gives the probability
for finding neighboring eigenvalues with a given spacing,
and it follows two universal properties depending upon un-
derlying correlations among the eigenvalues. For the corre-
lated eigenvalues, NNSD follows Gaussian orthogonal en-
semble (GOE) statistics of RMT, whereas it follows
Poissonian statistics for the uncorrelated eigenvalues. One of
the main advantages of the RMT approach is that depending
on the nature of eigenvalues correlations one can separate the
system dependent part from the random universal part, which
are intermingled due to the complexity of the system [2,4-7].
RMT analysis for the various networks shows that the NNSD
of complex networks also follows universal GOE statistics of
RMT [8]. This finding suggests that different results of GOE
statistics, which have successfully been applied to under-
stand the systems coming from various fields starting from
nuclei to the stock market can be applied to study networks
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as well. Our earlier works concentrate on the NNSD studies
of networks. NNSD carries information for the correlation
between two adjacent eigenvalues, but does not tell about the
correlation between two far-off eigenvalues. Therefore even
though NNSD follows GOE statistics of RMT, other proper-
ties may show deviations, which suggests that one cannot
rely on NNSD results exclusively. To probe for long-range
correlations as well, current work considers the spectral ri-
gidity test via the well known Aj statistic of RMT. It is found
that the spectral rigidity of the complex networks follows
RMT prediction, with scale depending upon the properties of
the networks. Present work also analyzes the next-nearest-
neighbor spacing distribution (NNNSD) of the adjacency
matrix of the networks.

The paper is organized as follows: following this intro-
duction, Sec. II explains various aspects of complex net-
works studies. Section III describes some basics of RMT
relevant to our studies. Section IV illustrates the RMT analy-
sis for various model networks, namely; random, scale-free,
and small world. The NNSD is the most widely studied prop-
erty in random matrix literature, therefore this section in-
cludes NNSD results for the above mentioned model net-
works [8], and presents results for NNNSD and the A
statistic of these networks. Finally, Sec. V discusses and
summarizes results with some possible future directions.

II. COMPLEX NETWORKS

The last ten years have witnessed a rapid advancement in
the studies of complex networks. The main concept of the
network theory is to define complex systems in terms of
networks of many interacting units. A few examples of such
systems are interacting molecules in living cells, nerve cells
in the brain, computers in Internet communication, social
networks of interacting people, airport networks with flight
connections, etc. [10-12]. In the graph theoretical terminol-
ogy, units are called nodes and interactions are called edges
[13]. Various model networks have been introduced to study
the behavior of complex systems having underlying network
structures. These model networks are based on simple prin-
ciples, still they capture essential features of the underlying
systems.
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A. Structural properties

In the random graph model of Erdos and Rényi any two
nodes are randomly connected with probability p [14]. This
model assumes that interactions between nodes are random.
Recently, with the availability of large maps of real world
networks, it has been observed that the random graph model
is not appropriate for studying the behavior of real world
networks. Hence many new models have been introduced.
Watts and Strogatz proposed a model, popularly known as
the “small-world network,” which has properties of small
diameter and high clustering [15]. Moreover, this model net-
work is very sparse: a network with a very few number of
edges, another property shown by many real-world networks.
In addition to the above mentioned properties, Barabdsi and
Albert show that degree distributions of many real-world
networks have a power law. This implies that some nodes are
much more connected than the others [16]. Barabdsi-Albert’s
scale-free model and Watts-Strogatz’s small-world model
have contributed immensely in understanding evolution and
behavior of the real systems having network structures. Fol-
lowing these two new models came an outbreak in the field
of networks. These studies show that real world networks
have coexistence of randomness and regularity [10,17,18].

B. Spectral properties

Apart from the above mentioned investigations which fo-
cus on direct measurements of the structural properties of
networks, there have been lot of studies demonstrating that
properties of networks or graphs could be well characterized
by the spectrum of associated adjacency matrix A [19]. For
an unweighted graph, it is defined in the following way:
A;;=1, if i and j nodes are connected, and zero otherwise.
For an undirected network, this matrix is symmetric and con-
sequently has real eigenvalues. Eigenvalues give information
about some basic topological properties of the underlying
network [19,20]. Spectral properties of networks have also
been used to understand some of the dynamical properties of
interacting chaotic units on networks, for example, the larg-
est eigenvalue of the adjacency matrix determines the tran-
sition to the synchronized state [21]. The distribution of the
eigenvalues of a matrix having finite probability p of non-
zero Gaussian distributed random elements per row follows
the Wigner semicircular law in the limit p—1. For very
small p also, which corresponds to the sparse random matrix,
one gets a semicircular law with several peaks at different
eigenvalues [22].

With the increasing availability of large maps of real-
world networks, analyses of spectral densities of adjacency
matrix of real-world networks and model networks having
real-world properties have also begun [23-26]. These analy-
ses show that the matrix constructed by zero and one ele-
ments corresponding to a unweighted random network also
follows the Wigner semicircular law [23] with degeneracy at
A=0. Small-world model networks show very complex spec-
tral density with many sharp peaks [26], while the spectral
density of the scale-free model networks exhibits a so-called
triangular distribution [23,25,26]. Spectral density and
NNSD of the random matrices constructed by zero and one
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elements have been studied extensively in Ref. [27]. These
studies show that NNSD of the random matrices follow the
GOE distribution of RMT.

III. RANDOM MATRIX STATISTICS

In the random matrix studies of eigenvalues spectra, one
has to consider two kinds of properties: (i) global properties,
like spectral density or distribution of eigenvalues p(\), and
(ii) local properties, like eigenvalue fluctuations around p(\).
Among these, the eigenvalue fluctuations is the most popular
one. This is generally obtained from the NNSD of the eigen-
values. The eigenvalues of the network are denoted by A\, i
=1,...,N, where N is the size of the network and \; <\,
Vi. In order to get universal properties of the eigenvalue
fluctuations, one has to remove the spurious effects due to
the variations of spectral density and to work at constant
spectral density on the average. Thereby, it is customary in

RMT to unfold the eigenvalues by a transformation \;
=N(\;), where NO\)=/Y p(\')d\’ is the averaged inte-
grated eigenvalue density [1]. Since the analytical form for N
is not known, we numerically unfold the spectrum by poly-

nomial curve fitting. Using the unfolded spectrum, we calcu-
late the nearest-neighbor spacings as

S(li) = N1 = Ny,
and due to the above unfolding, the average nearest-neighbor
spacings (s;) becomes unity, being independent of the sys-

tem. The NNSD P(s) is defined as the probability distribu-
tion of these s(l’)’s. In the case of Poisson statistics,

P(sy) =exp(=sy), (1)
whereas for GOE

2
T s
P(sl)zgsl exp(— Tl> (2)
For the intermediate cases, NNSD is described by the Brody
formula [28]:

Pg(s)) = AsP exp(- BsP), (3a)

where A and B are determined by the parameter 3 as follows:

p+1
A=(1+pB)a and a=[l"<%)} . (3b)

This is a semiempirical formula characterized by the single
parameter 3, popularly known as the Brody parameter. 8
=1 corresponds to the GOE statistics and B=0 corresponds
to the Poisson statistics.

Apart from NNSD, the next-nearest-neighbor spacings
distribution (NNNSD) is also used to characterize the statis-
tics of eigenvalues fluctuations. We calculate this distribution
P(s,) of next-nearest-neighbor spacings,

s = (Niwa = /2, 4)

between the unfolded eigenvalues. A factor of 2 in the de-
nominator is inserted to make the average of next-nearest-
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neighbor spacings (s,) unity. According to Ref. [1], the
NNNSD of GOE matrices is identical to the NNSD of
Gaussian symplectic ensemble (GSE) matrices, i.e.,

218 64

P(sy) = 36—77383 eXP(- 9_77s§>' (5)

The NNSD and NNNSD reflect only local correlations

among the eigenvalues. The spectral rigidity, measured by

the Aj statistic of RMT, gives information about the long-

range correlations among eigenvalues and is a more sensitive

test for RMT properties of the matrix under investigation

[1,29]. In the following we describe the procedure to calcu-
late this quantity.

The Aj statistic measures the least-square deviation of the

spectral staircase function representing the averaged inte-

grated eigenvalue density N(\) from the best straight line
fitting for a finite interval L of the spectrum, i.e.,

x+L
As(L;x) = % mibnf [N(X) —a\ — b]?dN, (6)

where a and b are obtained from a least-square fit. The av-
erage over several choices of x gives the spectral rigidity
A5(L). For the Poisson case, when the eigenvalues are uncor-
related, A;(L)=L/15, reflecting strong fluctuations around
the spectral density p(\). On the other hand, for the GOE
case, As(L) depends logarithmically on L, i.e.,

1
Ay(L)~ 5 InL. )
IV. RESULTS

In the following we present results for the ensemble av-
eraged NNSD, NNNSD, and Aj; statistic of random, scale-
free, and small-world networks.

A. Random network

First we consider an ensemble of random networks gen-
erated by using the Erdos-Rényi algorithm. Starting with N
=2000 nodes, random connections between pairs of nodes
are made with probability p. The average degree of the graph
is k=2n/N=p(N-1) ~ pN. There exists a critical probability
p.(N) for which one gets a large connected component. The
degree distribution of this random graph is a binomial distri-
bution P(k):Ck_lpk(l—p)N‘l‘k. For p=0.01, this method
yields a connected network with average degree p X N=20.
Note that for a very small value of p one gets several dis-
connected components. In this study the choice of p is high
enough to give a connected component typically spanning all
the nodes.

We calculate the eigenvalues spectrum of the network
generated according to the above algorithm. First the eigen-
values are unfolded by using the technique described in Sec.
III. This method yields the eigenvalues with constant spectral
density on the average. These unfolded eigenvalues are used
to calculate NNSD. The same procedure is repeated for an
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FIG. 1. (Color online) Nearest-neighbor spacings distribution
(NNSD) P(s,) of the adjacency matrices of different networks [(a)
random network, (b) scale-free network, and (c¢) small-world net-
work]. All follow GOE statistics. The histograms are numerical
results and the solid lines represent the fitted Brody distribution
[Eq. (3a)]. All networks have N=2000 nodes and an average degree
k=20 per node. Figures are plotted for the average over ten random
realizations of the networks. Insets show respective spectral densi-
ties p(N).

ensemble of the networks generated for different random re-
alizations. Note that p is always chosen such that the algo-
rithm generates a network with average degree k=20. Figure
1(a) plots the ensemble average of NNSD. By fitting this
ensemble averaged NNSD with the Brody formula given in
Eq. (3a) we get an estimation of the Brody parameter B
=0.9786~ 1. This value of the Brody parameter clearly indi-
cates the GOE behavior of the NNSD [Eq. (2)]. The inset of
Fig. 1(a) shows the corresponding spectral density which fol-
lows the well known Wigner’s semicircular distribution. The
same unfolded eigenvalues are used to calculate NNNSD.
For this we calculate next-nearest-neighbor spacings as given
in Eq. (4) and plot their distribution in Fig. 2(a). It can be
seen from the figure that the NNNSD agrees well with the
NNSD of GSE matrices as given in Eq. (5).

As explained in the Introduction, NNSD and NNNSD
only tell about the short range correlations among the eigen-
values. Therefore to probe for the long range correlations we
study the A;(L) statistic of the spectrum of this network.
A4(L) is calculated following Eq. (6). Figure 3 plots this
statistic for the same ensemble as used for the NNSD and
NNNSD calculations above. It can be seen that the A;(L)
statistic agrees very well with the RMT prediction, given by
Eq. (7), up to a very large value of L, i.e., L~ 300. The inset
of this figure shows the same in semilogarithmic scale. Here
one can see the expected linear behavior of A;(L) with slope
of 0.0978 which is very close to the RMT predicted value
1/7*~0.1013 [Eq. (7)].

Note that here an ensemble of ten networks of dimension
N=2000 is considered. Statistical properties of eigenvalue
spectra of members of this ensemble have very small devia-
tions from each other and hence justify ensemble averaging
calculations [30]. Each individual network in the ensemble
follows random matrix predictions with very good accuracy,
however, to make the statistical analysis more credible, we
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FIG. 2. (Color online) Next-nearest-neighbor spacings distribu-
tion (NNNSD) P(s,) of the adjacency matrices of different net-
works [(a) random network, (b) scale-free network, and (c) small-
world network] is compared with the nearest-neighbor spacings
distribution (NNSD) of GSE matrices. Figures are plotted for aver-
age over ten realization of the networks. All networks have N
=2000 nodes and an average degree k=20 per node.

present the results for an ensemble of ten networks. Here we
would like to mention that an ensemble of networks of much
smaller dimensions, say N=100, has been studied as well
and it follows GOE predictions of RMT. However, for this
case, many more realizations are required to get good accu-
racy.

B. Scale-free network

A scale-free network is generated by using the model of
Barabdsi and Albert [16]. Starting with a small number, m
of the nodes, a new node with m =m, connections is added
at each time step. This new node connects with an already
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L

FIG. 3. (Color online) The A5(L) statistic for eigenvalues spec-
tra of the random network. The circles are numerical results and the
solid curve is GOE prediction of RMT. The inset shows the Az(L)
in semilogarithmic scale; in this scale it has the slope 0.0978. The
figure is plotted for an average over ten realizations of the networks.
All networks have N=2000 nodes and an average degree k=20 per
node.
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FIG. 4. (Color online) A5(L) statistic for eigenvalues spectra of
the scale-free network. The circles are numerical results and the
solid curve is the GOE prediction of RMT. The inset plots the A3(L)
in semilogarithmic scale; in this scale it has the slope 0.0975. The
figure is plotted for the average over ten realizations of the net-
works. All networks have N=2000 nodes and an average degree k
=20 per node.

existing node i with probability m(k;) ck;, where k; is the
degree of the node i. After 7 time steps the model leads to a
network with N=7+m, nodes and m7 connections. This
model generates a scale-free network, i.e., the probability
P(k), that a node has degree k and decays as a power law
P(k)~k™, where \ is a constant and for the type of prob-
ability law (k) used here N=3. Other forms for the prob-
ability (k) are also possible which give different values of
\. However, the results reported here are independent of the
value of \.

Using the above algorithm an ensemble of scale-free net-
works of size N=2000 and average degree k=20 is gener-
ated. To calculate NNSD, NNNSD, and Aj; for the spectra of
this ensemble, we follow the same procedure as described in
the previous section. Figure 1(b) shows that the NNSD of the
scale-free network follows GOE with 8=0.9626~ 1. The in-
set of this figure plots the spectral density of this network.
Figure 2(b) shows that the NNNSD of the adjacency matrix
of this network agrees well with the NNSD of the GSE ma-
trices. Figure 4 shows the A;(L) statistic for the adjacency
matrix of scale-free network. Here we see that the A;(L)
statistic for the scale-free network agrees very well with the
RMT prediction for very large L, i.e., L~ 150, and deviations
are seen only after L=150. The inset of this figure shows the
expected linear behavior of A3(L) in semilogarithmic scale
for L=150 with the slope of 0.0975, a value very close to
the RMT predicted value 1/7>.

Universality of NNSD and NNNSD for random and scale-
free networks seems to give the impression that these net-
works have the same amount of randomness, but Az results
tell us that the scale-free network is not as random as the
random network. This is obvious from their construction al-
gorithms as well, but As statistics is capturing this property
which is a very important result. The finding also suggests
that scale-free networks have some specific features that can-
not be modeled by RMT. It may be noted that one can gen-
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0.3

FIG. 5. (Color online) A;(L) statistic for the eigenvalues spectra
of the small-world network. The circles are numerical results and
the solid curve is GOE prediction of RMT. The inset plots the A5(L)
up to L=30 in the semilogarithmic scale, in this scale A3(L) has the
slope 0.1024. The figure is plotted for the average over ten realiza-
tions of the networks. All networks have N=2000 nodes and an
average degree k=20 per node.

erate scale-free networks by using other algorithms as well
[31,32], for these networks also spacing distributions and
spectral rigidity results will have qualitatively similar behav-
iors, except that the range of agreement of L with the random
matrix prediction would depend upon the amount of random-
ness in the networks.

C. Small-world network

Small-world networks are constructed using the following
algorithm of Watts and Strogatz [15]. Starting with a one-
dimensional ring lattice of N nodes in which every node is
connected to its k/2 nearest neighbors, we randomly rewire
each connection of the lattice with the probability p such that
self-connections and multiple connections are excluded.
Thus p=0 gives a regular network and p=1 gives a com-
pletely random network. The typical small-world behavior is
observed around p=0.005 [8]. For N=2000 and an average
degree k=20, an ensemble of fen different realizations of the
network is generated.

Again the same procedure as described in Sec. IV A has
been used to calculate NNSD, NNNSD, and A; for the spec-
tra. Figure 1(c) shows that the NNSD of this network again
follows GOE statistics with B very close to 1, ie.,
=1.0136. The inset shows that the corresponding spectral
density is complicated with several peaks. One peak is al-
ways at A=0. The exact positions of other peaks may vary
but the overall form of spectral density remains similar. Fig-
ure 2(c) plots the NNNSD of the adjacency matrix of the
small-world network. It can be seen that the NNNSD agrees
well with the NNSD of GSE matrices. Figure 5 shows the
As(L) statistic for the spectrum of adjacency matrix corre-
sponding to the small-world network with p=0.005. The in-
set of this figure shows the expected linear behavior of As(L)
in a semilogarithmic scale for L =30 with a slope of 0.1024,
a value very close to the RMT predicted value 1/7°. It can
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be seen here that A;(L) statistics for the small-world network
agrees very well with the RMT prediction for sufficiently
large L, i.e., L~ 30, but much less than the same for random
and scale-free networks, implying that besides randomness,
the small-world network has specific features also. This
again suggests that the behavior of Aj statistics can be used
to understand the amount of randomness in the networks.
More specifically, deviation from the GOE predicted behav-
ior corresponds to the system specific features in the net-
work.

Note that in this paper, results for networks with the av-
erage degree 20 are presented. We have studied sparser
({k)<20) and denser networks ({k)>20 to (k) ~N) as well.
The same universal behavior is found for these networks as
far as there exists a certain amount of randomness, i.e., the
presence of some minimal random connections among the
nodes. There exist problems with very sparse networks as of
average degree 2 and very dense networks as of degree ~N.
For sparse networks ((k) ~2) sometimes one can get several
degeneracies in eigenvalues [22]. In this case, one has to first
get rid of the degeneracies to conclude anything under the
RMT framework [33].

Similarly, for dense networks, universal spacing distribu-
tion is observed till a very large value of average degree. For
(k) ~N, the largest eigenvalue has a very high value com-
pared to the rest of N—1 eigenvalues which are very close to
each other, becoming equal in the limiting case of globally
connected networks (k)=N-1. For example, random net-
works with p=0.95 (which means that the network has 95%
of maximum possible connections) also follow RMT predic-
tions of universal spacing distributions till a very large scale.
As the number of connections are increased further one starts
getting degenerate eigenvalues and for p=0.999 high degen-
eracies at various values (such as A=—1,0,1) are observed
keeping it trivially out from the RMT studies.

V. DISCUSSIONS

We use RMT to study complex networks and show that in
spite of spectral densities of the adjacency matrices being
different for different networks, their eigenvalue fluctuations
are the same and follow the GOE statistics of RMT. We
attribute this universality to the existence of a minimal
amount of randomness in all these networks and show that
randomness in the network connections can be quantified by
the Brody parameter. In addition to the NNSD, we present
the results of NNNSD and spectral rigidity via the A; statis-
tic of RMT. The NNNSD of the eigenvalues of these model
networks are identical to the NNSD of GSE matrices which
again agrees with the RMT prediction given in Eq. (5).
NNSD and NNNSD suggest that there exists short range cor-
relations among the eigenvalues. A spectral rigidity test
shows that the A;(L) statistics follows random matrix pre-
dicted linear behavior in a semilogarithmic plot for suffi-
ciently large scale L with slope being ~1/7 [see Eq. (7)],
suggesting long-range correlations among the eigenvalues.
The above findings show that statistics of the bulk of eigen-
values of the model networks is consistent with those of a
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real symmetric random matrix and deviation from this could
be understood as a system dependent part.

Universal GOE behavior of NNSD and NNNSD tell us
that the networks are sufficiently random, or there exists a
minimal amount of randomness required to introduce the cor-
relations among the neighboring eigenvalues. The A5 analy-
sis seems to characterize the level of randomness in networks
depending on the range of correlations among eigenvalues.
A5 analysis of the random network follows the RMT predic-
tion for a very long range of L, which is not very surprising
as the random network follows RMT at each level starting
from semicircular density distributions. However, interest-
ingly scale-free and small-world networks also follow RMT
for a sufficiently large value of L. Beyond this value of L,
deviation in the spectral rigidity is seen, indicating a possible
breakdown of the universality. This is quite understandable
as a small-world network is highly clustered and a scale-free
network also has specific features like hubs, so it is natural
that they are not as random as the random network. But it is
interesting to realize that Aj statistics rightly captures this
information. Moreover, the small-world network is generated
exactly at the small-world transition by using the Watts and
Strogatz algorithm which yields a network with a very high
clustering coefficient and very low number of random con-
nections. The results presented in this paper show that this
very small number of random connections makes the net-
work sufficiently random to introduce the correlations among
the eigenvalues for the sufficiently long range.

According to the many recent studies, randomness in con-
nections is one of the most important and desirable ingredi-
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ents for the proper functionality or the efficient performance
of systems having underlying network structures. For in-
stance, information processing in the brain is considered to
be because of random connections among different modular
structures [34]. We feel that the role of random connections
and behavior and evolution of such systems can be studied
better under the RMT framework. Also this RMT approach
may be used to detect the connections most responsible to
increase the complexity of networks. For example, the effect
of the oxygen molecule on the biochemical network of a
metabolic system is recently studied and is shown to increase
the complexity of the system leading to a major transition in
the history of life [35].

In summary, we use RMT to analyze spectra of complex
networks and show that these networks follow universal
GOE statistics. These results tell that the random matrix
theory, a very well developed branch of physics, can be ap-
plied to the complex networks studies. So far we have only
concentrated on the model networks studied vastly in the
recent literature, providing a basis to the random matrix
analysis of networks. Future investigations would involve
studies of real-world networks [36].
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