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A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible
calcium carbonate �travertine� deposition. Specific systems studied here are the terraces and domes observed at
geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites
and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including
corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow
profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem
describing the precipitation front. These shapes match the measured shapes near the vent at the top of observed
travertine domes well. Closer to the base of the dome, the solutions deviate from observations and circular
symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film
break-up. We relate our model to that recently proposed for stalactite growth, and calculate the linear stability
spectrum of both travertine domes and stalactites. Lastly, we apply the theory to the problem of precipitation
pattern formation arising from turbulent flow down an inclined plane and identify a linear instability that
underlies scale-invariant travertine terrace formation at geothermal hot springs.
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I. INTRODUCTION

Geophysical pattern formation concerns how geological
patterns and landscapes are formed as a result of the under-
lying physical and chemical dynamics. The aim is to predict
the static, dynamical, and statistical properties of the variety
of geological structures formed. Recently studied examples
include travertine motifs, namely, dams �1�, domes �2�, ter-
races �2–5�, stalactites �6,7�, as well as that of other patterns
such as sand dunes �8,9�, black smoker chimneys at hydro-
thermal vents �10�, columnar joints �11�, and braided river
networks �12�.

This paper focuses on the formation of travertine struc-
tures near geothermal hot springs. In such systems, hot
spring water emerges from a vent, and deposits calcium car-
bonate as a mineral generally termed travertine as it degasses
carbon dioxide �1–4�. The formation of stalactites in lime-
stone caves, which are also caused by carbonate precipita-
tion, will also be briefly discussed.

The majority of the work done on the subject has focused
on the microscopic aspects of the problem, such as the role
of biomineralization due to thermophilic microbes �3,4�, the
CO2 degassing mechanisms �13,14�, mineral compositions
�15,16�, and crystal structure �17,18�. Here we are interested
in the formation of macroscopic structures and motifs, such
as domes, stalactites, and terraces �2�, which are universal,
i.e., independent of microscopic details. In addition, we are
interested in the resulting patterns and their correlations
rather than absolute rates of growth; accordingly, micro-
scopic mechanisms that contribute to kinetics, including
nucleation processes and potential biomineralization effects,
are present in our work through the choice of time scale.
There are no extra terms in the equations of motion whose
presence can be attributed specially to any one of these mi-
croscopic processes.

There are two principal mathematical difficulties encoun-
tered in studying these macroscopic structures. First, the
problem is highly nonlinear. As the carbonate is precipitated
onto the surface, the surface evolves, which then changes the
flow path of the fluid, thus affecting how precipitation takes
place. This interplay between fluid flow and surface growth
leads to a moving-boundary problem, which is mathemati-
cally difficult to solve. Second, the problem involves a vari-
ety of depositional processes, including solute advection, a
complex sequence of chemical reactions, CO2 degassing, as
well as mass transfer between a solid and a liquid. Given that
each of these processes is complicated and nontrivial to
model on its own, a holistic approach capturing all of them
would not be mathematically tractable.

The purpose of this paper is to explore a simplified math-
ematical formulation of this problem that captures the essen-
tial large-scale dynamics. Because of the complexity of the
problem, the resulting equations are very complicated, mak-
ing it difficult, if not impossible, to understand the whole
flow system using this approach. It turns out, however, that
the equations can be solved analytically under some simple
situations, where symmetry can be exploited and simplifica-
tions can be made. The formations of domes �2� and stalac-
tites �6,7� are examples of such situations, as is the pioneer-
ing work of Wooding on travertine dams �1�. In these
systems, there is a thin film of fluid flowing over the motif in
a laminar fashion �in the case of domes and stalactites, for
example�. We will see that these simple motifs are straight-
forward to calculate in the case that capillary forces can be
neglected. If the fluid film becomes too thin, due to its
spreading over the surface, contact lines can be formed, re-
sulting in rivulets and the breaking of pure rotational sym-
metry. In the case of domes, this is manifested in a fluting
pattern near the base of the dome �2�. Such effects are diffi-
cult to include analytically, although we have previously
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shown that they can be captured correctly using a cell dy-
namical system model �2�, and this is discussed in more de-
tail below.

Although we cannot use this analytical theory to study the
detailed shapes of the complex landscape of ponds and ter-
races, we are able to expose the dynamical linear instabilities
whose evolution into the nonlinear regime give rise to the
landscape. We will see that the linear stability spectrum, in
the absence of capillarity effects, always predicts a positive
growth rate. The absence of a length scale arising in this
calculation suggests that the actual landscapes might be scale
invariant, a conclusion that is reinforced by our studies of the
statistical properties of these landscapes using our cell dy-
namical system model and photographic evidence �2,19�

The study reported here is a complement to our simula-
tion work �2,19,20� implemented as a cell dynamical system.
This model has been shown to be capable of describing the
actual dynamics �2�, not only in the simple cases where the
analytical approach is successful, but also in the fully non-
linear regime. For example, it has been shown that this cel-
lular model generically gives rise to a complex, terraced
landscape, which is similar to the one observed in the field.
The cellular model also makes detailed predictions for the
landscape statistics, including the pond area distribution and
the distribution of pond anisotropy. In addition, the model
successfully predicts that the main mode of pond or terrace
growth is uphill pond inundation, a result confirmed by time-
lapse photographic studies.

Although seemingly different, both the analytical ap-
proach and the cell dynamical system approach incorporate
the same physics, and so should be expected to yield identi-
cal predictions. In Ref. �2� this was tested by using the cel-
lular model to solve the problem of dome formation. The
analytical theory in the absence of surface tension cannot
account for the fluting seen away from the vent of domes
because the fluting arises from contact line formation. The
analytical theory for domes, as we will discuss in detail be-
low, contains one parameter that sets the scale for the pat-
terns: this scale factor r0 is a combination of the upward
growth velocity, the mass transfer coefficient describing how
material is incorporated into the growing substrate, the flux
of water emerging from the vent, the gravitational accelera-
tion, and the fluid viscosity. When surface tension effects are
included, the capillary length d0 must also be included. Thus,
our theory is a two parameter theory for the entire range of
travertine depositional phenomena. The analytical theory can
be used to predict the position on the dome at which capil-
lary effects become important: this must occur at a location
that is independent of the ratio r0 /d0 and hence this critical
angle has a prescribed dependence on the underlying param-
eters which enter into the formula for r0. This prediction,
arising from the analytical theory, was verified to occur also
in the computer simulations of the cellular model �2�. As a
result, we conclude that the two formulations are indeed
equivalent, and may be used interchangeably depending on
which is more suited to the problem at hand.

This paper is organized as follows. In Sec. II, we derive
the equations governing the dynamics of fluid flow coupled
to the moving boundary problem describing travertine pre-
cipitation. Section III describes the circularly symmetric so-

lutions of these equations, and presents the linear stability
analysis of the steady state uniformly translating solutions.
We compare our analysis to a similar one �6,7� that describes
the shapes of stalactites in Sec. IV and compute the linear
stability spectrum of these structures too. We turn in Sec. VI
to a study of turbulent flow down an inclined plane, and
calculate the linear stability spectrum for the coupled flow
and moving boundary problem, exposing the linear instabil-
ity that is at the heart of the terraced landscape architecture.
We conclude in Sec. VII.

II. MODEL FOR PRECIPITATION PATTERN FORMATION

We consider a stream of water flowing over a terrain,
from which calcium carbonate is then, due to geochemical
processes to be discussed below, precipitated onto the land-
scape. The landscape is thus constantly changing in response
to the fluid flow. This change of landscape, in turn, affects
the flow path of the fluid, which than influences how subse-
quent precipitation takes place. We derive the governing
equations describing both fluid flow and surface growth. We
first focus on the surface growth and related precipitation
dynamics and then move onto the fluid flow. These two as-
pects will be combined to provide the complete description
of the system.

A. Surface growth

A surface can generally be characterized by the local cur-
vature �. In one dimension or in cases where symmetry re-
duces the system to be effectively one dimensional, � is de-
fined by

� =
��

�s
, �1�

where � is an angle between the local tangent of the curve
and a fixed axis and s is the arc length measured from some
fixed point on the curve, as shown in Fig. 1. If the normal
velocity vn of the surface is prescribed everywhere, then the
evolution of the curvature follows the kinematic equation
�21–23�:

� ��

�t
�

�

= − �2�1 +
�2

��2�vn, �2�

The time derivative in the equation is defined with respect to
fixed �. The first term in Eq. �2� describes the change in �

FIG. 1. The coordinate system for the model of fluid flow
coupled to precipitation moving boundary dynamics.
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due to the change in the overall scale of the object, whereas
the second term describes the change in � at a point due to
the difference in growth rates in the neighborhood of that
point.

Equation �2� is purely geometrical; for any given function
vn, the evolution of � is determined. So, physics enters in
constructing a realistic and mathematically tractable model
for vn, which, in the case considered here, depends on water
chemistry, surface kinematics, chemical advection, and fluid
flow state. In carbonate systems, in additional to the CaCO3
concentration, precipitation is mainly controlled by the CO2
concentration �partially reflected in the measured pH�, which
is also influenced by its temperature-dependent solubility in
the fluid. As the pH increases or the temperature decreases,
the solvability of CaCO3 decreases and supersaturated
CaCO3 will be precipitated onto the surface. While the de-
crease in temperature is mainly due to heat loss to the envi-
ronment, the increase in pH is due to the loss of CO2 by a
variety of outgassing mechanisms �13,14�. Although the de-
tailed water chemistry and depositional processes are quite
complicated, for the purposes of the present work, it suffices
to use a simplification of the governing chemical reactions
Ca2++2HCO3

−�CaCO3�s�+H2O+CO2�g�. In summary, the
system tends to produce more CaCO3 as CO2 concentration
decreases through outgassing.

Mass transfer between a fluid and a solid is a complicated
problem �1,24,25�; these nontrivial chemical processes only
make it harder. A complete description of the precipitation
dynamics, which will give us the normal growth velocity vn,
involves writing down, in addition to the fluid dynamics
equations, advection-reaction-diffusion equations for each
chemical and appropriate boundary conditions. Short et al.
�6,7� followed this approach in the study of stalactite forma-
tion. What they found, after solving all these equations and
taking limits appropriate for the time scales of interest to
them, is that vn is proportional to the local fluid thickness h
with all the chemistry entering only into the proportionality
constant.

A simple interpretation of this result can be obtained by
studying the scales of processes involved in stalactite forma-
tion, using parameter values from Ref. �7�. The fluid flow is
a laminar flow, with a Reynold’s number of about 0.01−1.
The thickness of the flow h is typically on the order of
10 �m. The time scale for the concentration of CaCO3 to
equilibrate across the layer is thus h2 /D�0.1 s, where D is
the diffusion constant. Next, the traversal time, the time for a
parcel of fluid to flow along the stalactites, is about 100 s.
Because only 1% of the total CaCO3 mass is precipitated
throughout the flow, we can assume that the CaCO3 concen-
tration and thus the pH, are uniform both across the fluid
layer and along the stalactite. The temperature can also be
assumed to be constant since the fluid is so thin. The precipi-
tation rate is then controlled only by the CaCO3 available,
which is proportional to the thickness of the fluid.

In other carbonate systems, such as at travertine-forming
hot springs, this relation between vn and h does not hold
simply due to the fact that the fluid thickness is larger and the
velocity is larger; as a result a turbulent boundary layer is
formed near the precipitation front. What happens outside
the boundary layer is too distant to affect precipitation near

the boundary. In a turbulent flow, instead of depending on h,
the precipitation front velocity vn depends on the fluid veloc-
ity �24,25�. Wooding �1�, in the study of steady-state dam
formation, took this into consideration and arrived at the
conclusion that vn is directly proportional to the depth-
averaged tangential fluid velocity U, i.e.,

vn = GU , �3�

where G is a mass transfer coefficient depending on water
chemistry and spectral features of the turbulent flow �24,25�.
For the present purposes, the functional form of G is not of
interest: we shall treat it as a phenomenological parameter,
and as we shall see, its role in the theory developed here is to
contribute to the characteristic length scale r0 of patterns.

To summarize: all the details of water chemistry, includ-
ing supersaturation, outgassing, solute diffusion, fluid turbu-
lence, temperature, and pH, which on their own are compli-
cated processes and are nontrivial to model, enter into the
picture only through a mass transfer coefficient G. In prin-
ciple, G may exhibit spatial fluctuations; however, we shall
assume that these are on a scale small compared to the fea-
tures we are describing, and thus we will consider G to be a
constant locally along the flow path. Over the entire geother-
mal spring system, it is possible that there will be a small
spatial variation in the mean value of G, but the weak depen-
dence of G on governing parameters �1,24,25� strongly sug-
gests that this can reasonably be neglected.

B. Fluid dynamics

A complete description of incompressible fluid dynamics
is given by the Navier-Stokes equation

�u�

�t
+ u� · �u� =

− 1

�
� P + ��2u� + g� , �4�

with �� ·u� =0 for incompressibility, no-slip, and stress-free
boundary conditions at the solid-liquid and liquid-gas inter-
faces, respectively, where u� , �, P, �, and g are the fluid
velocity, density, pressure, viscosity, and gravitational accel-
eration. We will use the Poiseuille solutions of the Navier-
Stokes equations for domes, where the flow is laminar, but
for turbulent flows, such as those which form the travertine
terraces, we will employ a depth-averaging approximation,
in conjunction with the Chézy approximation �26� for hy-
draulic friction.

Since the spatial scale over which the landscape changes
is usually much larger than the fluid thickness, i.e., h��1,
we can make use of the shallow water approximation and
expand Eq. �4� in powers of h�. If we take � to be zero, we
arrive at the de Saint-Venant equation �27�

��Uh�
�t

+
��U2h�

�s
= − gh

�h

�s
+ gh sin � −

CfU
2

h
�5�

with equation of continuity

�h

�t
+

��Uh�
�s

= 0, �6�

where Cf is the Chézy coefficient �26� which empirically
describes the energy lost due to turbulence, in a manner con-
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sistent with Kolmogorov’s 1941 scaling theory of turbulence
�K41� �28,29�, and s is the arc length measure from a refer-
ence point at the top, as shown in Fig. 1.

The de Saint-Venant equation only holds on flat surfaces.
When the surface grows, flow instabilities trigger various
patterns to form; and the de Saint-Venant equation is no
longer valid. For a general curved surface, the Dressler equa-
tion �30,31� has to be used:

1

g

�u0

�t
+

�E

�s
=

− Cfu
2

gh�1 − �h/2�
, �7�

�1 − �h�
�h

�t
+

�q

�s
= 0, �8�

where

u�s,n,t� =
u0�s,t�
1 − �n

, �9�

E�s,t� = � + h cos � +
ph

�g
+

u0
2

2g�1 − �h�2 , �10�

q�s,t� = −
u0

�
ln�1 − �h� , �11�

where � is the height of the underlying surface measured
from a fixed horizontal axis, as shown in Fig. 1, ph is the
pressure head at the fluid surface, � is the fluid density, E is
the energy density, and q is the local flux. When � is set to
zero and � is small, the Dressler equations reduce to those of
de Saint–Venant.

As we have seen, the way fluid flows depends on the
landscape it is flowing over, which itself is evolving over
time. Now, Eqs. �7�–�11� �or Eq. �4�� and Eq. �3� describe
these two dynamics, respectively. However, we do not have
to consider both dynamics on the same footing because there
is a separation of time scales; the rate of fluid flow is on the
order of cm/s, but the rate of precipitation is on much slower
geological scales. The latter is on the order of 1 mm/day
and 1 cm/century in the cases of Yellowstone travertines
�3,32,33� and stalactites �7�, respectively. Accordingly the
fluid flow responds quickly to the landscape but the land-
scape responds extremely slowly to the fluid flow. We can
then assume that the fluid flow is in its steady state when we
discuss the landscape evolution; i.e., we can drop all the time
derivatives in the fluid flow equations. This quasistationary
model will now be used to study the steady states of a variety
of geological motifs and their stabilities.

III. TRAVERTINE DOMES

A. Steady state

Our first example is the circularly symmetrical domes
found in Yellowstone National Park, as shown in Fig. 2�a�. A
number of approximations and simplifications can be made
before we proceed. First, the growth rate of these domes is
on the order of 1−5 mm/day and the fluid flow rate is on

the order of 1 mm/s, so we have a separation of time scales.
Second, our field observations indicate that the thickness of
the fluid film flowing over the domes is very small compared
to the curvature of the surface; thus, we make the approxi-
mation that the fluid is flowing down a �locally� constant
slope. Third, as suggested by the field observations, the
domes have a high degree of circular symmetry, so we can
assume the solution to be circularly symmetrical and focus
only on the radial part of the solution, which is effectively
one dimensional. Fourth, the flow is apparently laminar, so
we can use the Poiseuille-Hagen profile for the velocity in
thin film:

u�y� =
gh2 sin �

2�
	2

y

h
− � y

h
�2
 , �12�

where � is the slope of the surface and y is the transverse
coordinate, as shown in Fig. 1. By assuming circular sym-
metry, h can be related to the axial distance from the vent r
by the conservation of fluid volume

observation
theory prediction
simulation
with surface tension
simulation
without surface tension

Fluting

(b)

FIG. 2. �Color online� Travertine dome at Mammoth Hot
Springs, WY. �a� Dome whose central pond is 50.3 cm in diameter.
�b� Dome profile compared with theory and simulation of Ref. �2�.
The black curve is the analytical prediction from Eq. �17�, using the
value r0=43 cm. The red filled circles show the profile of a simu-
lated dome, including the effects of surface tension. The blue
dashed line is a consensus dome profile generated by averaging the
dome shown with one other field observation. The blue filled
squares show the profile of a simulated dome without surface ten-
sion �2�.
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Q = 2�r�
0

h

u�y�dy =
2�grh3 sin �

3�
, �13�

where Q is the total volumetric flux coming out of the vent.
Equations �12� and �13� can be combined to give

U �
1

h
�

0

h

u�y�dy = �	 sin �

r2 �1/3

, �14�

where 	�gQ2 /12��. We will see later that the assumption
of laminar flow is self-consistently verified. Putting Eq. �14�
into Eq. �2� and using Eq. �3� gives

� ��

�t
�

�

= − �2	1 +
�2

��2
G�	 sin �

r2 �1/3

. �15�

This is the governing equation for the dome profile. Sug-
gested by the shape of the dome, we seek a solution which
steadily translates upwards without a change of shape, i.e.,

�t�
�=0, with velocity vt. Equation �15� gives

G�	 sin �

r2 �1/3

= vt cos � . �16�

Rearranging terms gives the shape of the dome as a one-
parameter family of curves

r���
r0

=� sin �

cos3 �
, �17�

where the scale factor r0��G3	 /vt
3. Equation �17� is plotted

in Fig. 2�b�. Good agreement is obtained between our theory
and the observations below a critical angle �c. From the fit
and the typical parameter values G�10−8, vt�1 mm/day
and Q�1 cm3/s, we obtain U�25 mm/s and h
�1–10 mm, and a Reynolds number Re�Uh /��10–100.
The assumption of laminar flow is self-consistently verified.

The agreement between this analysis and observation
shows that the growth of the dome is mainly determined by
the geometry, because the only r dependence enters through
the mass conservation, which is determined by geometry. To
see this, suppose that the dome was a one-dimensional ob-
ject. Then, the mass conservation Eq. �13�, would become
Uh=q0, for some constant flux q0, without any r dependence.
Under the same approximation of local flatness, the final
equation for U �14�, would thus be independent of r. We
would then not be able to solve for r by substituting U into
Eq. �2�. In this case, we would have to solve the equations
without using the locally flat approximation. In other words,
the fact that we can ignore the details of the flow, by assum-
ing local flatness, to obtain the shape of the domes implies
that geometry plays a more important role than fluid flow in
the formation of domes.

For angles �
�c, the analytical profile deviates from our
field photograph. The point of deviation is associated with an
apparent change in the dome morphology, with a fluting pat-
tern superimposed on the dome profile. This is due to the
effects of surface tension at the air-water-travertine interface
�2�. Instead of covering the whole surface uniformly, the
fluid separates and covers only a fraction of the surface.
Along the wetted surface, the regular growth law still applies

and thus the surface grows, until a point at which the differ-
ence in heights between the wetted and dry surfaces is so
large that the flow changes its path to flow along the dry
surface. This process repeats itself and, on average, results in
slower growth when compared with a uniformly wetted
dome, so the theoretical prediction should be higher than the
observation for �
�c, as seen in Fig. 2�b�. The analytical
solution for the dome profile neglects surface tension, but
leads to a prediction for the scaling dependence of the critical
angle on the model parameters �2�.

It is not trivial to include surface tension in our analytical
model but its effect can be examined by using the cellular
model, in which one can switch on and off surface tension.
Figure 2�b�, reproduced from Ref. �2� shows the prediction
of dome shapes from the cellular model with and without
surface tension. It is clear that by appropriate choice of d0 the
simulation result coincides with the observation when sur-
face tension is present, and agrees with the analytical predic-
tion otherwise. This is direct evidence for the effect of sur-
face tension near fluting.

For completeness, we mention that this is not an artifact
of having “enough fitting parameters to fit an elephant.” In
Ref. �2� a scaling argument for the critical angle was pre-
sented in which capillary effects become important. The in-
clusion of surface tension introduces an additional length
scale, namely, the capillary length dc, into the problem. Now,
the only other length scale in the problem is r0

=�gG3Q2 /�vt
3. Since �c is dimensionless, it can only depend

on the ratio r0 /dc and G. For a given chemical environment,
G is fixed and we are left with the prediction, derived from
our analytical solution, that

�c = f̂��gQ2/�vt
3

dc
� , �18�

where f̂�x� is a scaling function. This data collapse, which
predicts � depends not on the parameters separately, but only
on the combination ��gQ2 /�vt

3� /dc, was verified using our

discrete cellular model �2�, wherein the form of f̂�x� was
calculated.

B. Linear stability analysis

To complete the analysis, we study the stability of the
solution �17�. By following the approach Liu and Goldenfeld
used in studying the linear stability of dendritic solidification
�34�, we consider a perturbed solution r���= r̄���+�r���e�t,
where r̄��� is the solution in Eq. �17� and �r is a perturba-
tion. Substituting this into the governing Eq. �15� and ex-
panding in �r we obtain

�
d�r

d�
+

2G	1/3 cos �

3
	1 +

d2

d�2
�r sin1/3 �

r̄5/3 = 0, �19�

where the boundary conditions are

�r�0� = 0, �r��

2
� = 0 �20�

for symmetric modes and
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d��r�0��
d�

= 0, �r��

2
� = 0 �21�

for antisymmetric modes. This is an eigenvalue problem and
the spectrum tells us the stability of the solution. It is suffi-
cient to examine the asymptotic behaviors of �r for different
values of � to extract sufficient information about the stabil-
ity. Expanding Eq. �19� in small � gives

d2�r

d�2 −
1

�

d�r

d�
+

3

4�2�r = 0, �22�

which is independent of � and which possesses power-law
solutions of the form �r��1/2 , �3/2. These correspond to the
symmetric and antisymmetric modes, respectively.

The asymptotic behavior in the opposite limit can be stud-
ied by making the transformations g���=�r����cot � and x
=tan �, which results in

d2g�x�
dx2 + p�x�

dg�x�
dx

+ q�x�g�x� = 0, �23�

where

p�x� = ���x�1 + x2� −
2x

1 + x2 , �24�

q�x� =
���1 + x2

2�x
+

2x2 − 1

�1 + x2�2 , �25�

and

�� �
3	1/6G3/2�

2vt
5/2 . �26�

The asymptotic behaviors of these functions, as x→ +
, are

p�x� � ��x3/2 +
��

2x1/2 −
2

x
+ O� 1

x5/2� �27�

and

q�x� �
��x1/2

2
+

��

4x3/2 +
2

x2 + O� 1

x7/2� . �28�

The asymptotic behavior of g�x� as x→ +
 for positive val-
ues of �� can be computed by defining g�x��exp�S�x��,
where S�x� satisfies

d2S

dx2 + �dS

dx
�2

+ p�x�
dS

dx
+ q�x� = 0. �29�

Using the Eikonal approximation that S��x�� �S��x��2,
which is valid for x→ +
, Eq. �29� can be solved asymptoti-
cally to give the two linearly independent solutions

S1�x� �
− 2��

5
x5/2 − ��x1/2 + ln�x� �30�

and

S2�x� �
− 1

2
ln�x� , �31�

which are equivalent to

g1�x� �
1

x
exp�− 2��

5
x5/2 − ��x1/2� �32�

and

g2�x� �
1
�x

+
3

2�x3 −
7

4�x5 + O� 1

x11/2� , �33�

where a series expansion in the form of

g2�x� =
1
�x

�
n=0



an

xn/2 �34�

is performed to arrive at Eq. �33�.
We see from the asymptotic formula �33� that

�r2�x� � �xg2�x� � 1 + O� 1

x5/2� �35�

as x→
 or �→� /2. This means that �r2��� does not satisfy
the boundary condition �r��=� /2�=0. The solution �r1���
is the only solution that satisfies the boundary condition �20�.

To obtain the full eigenfunctions, we use the asymptotic
formulas �32� and �33� as initial conditions and integrate
numerically from a large value of x=c �c=10 in this case�
back to x=0. The Gram-Schmidt orthonormalization proce-
dure is employed to ensure the linear independence of the
two eigenfunctions. The eigenfunctions are normalized such
that

�
0

c

�ri�x��rj�x�dx = �ij . �36�

Figure 3 shows �r1��� and �r2��� for ��=0.1, 0.5, 1.0, and
3.0. From the graph, we confirm that �r1��� satisfies the
boundary conditions �20�, while �r2��� does not.

Note that �r1��� satisfies only the boundary conditions for
the symmetric modes but not the antisymmetric modes. We
need a linear combination of �r1��� and �r2��� to form a
solution that satisfies the latter. However, since �r2��� does
not satisfy the boundary condition at �=� /2, such a linear
combination would not satisfy it either.

To conclude, there are always solutions to Eq. �19� satis-
fying the boundary conditions for the symmetric modes for
every positive value of �, i.e., the domes are unconditionally
linearly unstable. This seems to be a contradiction with the
field observation of domes, which are presumably stable. We
will postpone the discussion of this issue to the end of the
next section, after we have discussed stalactite formation.

IV. STALACTITES

In studying the formations of travertine domes near geo-
thermal hot springs, it helps to study a similar geophysical
process, namely, the formation of stalactites, which are cy-
lindrical structures formed by precipitation of calcium car-
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bonate in limestone caves. Here, we will summarize the re-
sults Short et al. �6,7� obtained and apply our formulation to
study the stability of stalactites.

A. Steady state

As discussed earlier, the growth rate of stalactites is di-
rectly proportional to the local fluid thickness h. From the
field observation, stalactite formation shares the following
features with dome formation: They are both circularly sym-
metrical, formed under a shallow water laminar flow, and can
be assumed to be locally flat. So, by using the analysis of
dome formation, in particular, from Eq. �13�, we have

h = � �

r sin �
�1/3

, �37�

where ��3�Q /2�g is a constant. The dynamical Eq. �2�
then becomes

� ��

�t
�

�

= − �2�1 +
�2

��2�	G� �

r sin �
�1/3
 , �38�

where G depends on water chemistry and the input flux �6,7�.
Following the same strategy employed in the case of traver-
tine domes, we obtain a uniformly translating solution

r��� =
r0

sin � cos3 �
, �39�

where the tip velocity vt comes in as an integration constant
and the scale r0���G /vt�3. By defining ��r /r0, z�� /r0,
and using the trigonometric relation tan �=−dz /d�, we ob-
tain

z�

�1 + z��2 +
1

�
= 0, �40�

which is the result derived in Refs. �6,7�.

B. Linear stability analysis

We study the stability of solution �39� by introducing the
perturbation

r��� = r̄��� + �r���e�t, �41�

where r̄ is the unperturbed solution given by Eq. �39� and �r
is the perturbation. Substituting Eq. �41� into Eq. �38� and
expanding the resulting equation in �r gives

��
d�r

d�
+ cos �	1 +

d2

d�2
��r sin � cos4 �� = 0, �42�

where ���3G3� /vt
4. We follow the same approach as in the

case of the dome and study the asymptotic behaviors of the
solutions of Eq. �42�. For �→0, we expand Eq. �42� in � and
obtain

��
d�r

d�
+ 	1 +

d2

d�2
��r = 0, �43�

whose solution is given by r���, where �=−1−�. Because
��0 for all �
0, the solution diverges as �→0. This
shows that there are no eigenmodes for �
0. As a result, we
conclude that the steady-state solution Eq. �39� is linearly
stable against the class of perturbations considered here.

Let us also look at the asymptotics as x→
 for complete-
ness. Following the strategy employed in the study of dome
stability, we make the transformation g���=tan ��r��� and
x=tan �. Equation �42� then becomes

d2g

dx2 + u�x�
dg

dx
+ v�x�g�x� = 0, �44�

where

u�x� =
− 8x

1 + x2 +
���1 + x2�3/2

x
�45�

and

v�x� =
���1 + x2�3/2

x2 +
20x2 − 5

�1 + x2�2 +
1

�1 + x2�5/2 . �46�

As x→
,

u�x� � ��x2 +
3��

2
−

8

x
+

3��

8x2 +
8

x3 + O� 1

x4� �47�

and

0 2 4 6 8 10
tan(θ)

0

0.5

1

1.5

δr
1(θ

)
λ’ = 0.1
λ’ = 0.5
λ’ = 1.0
λ’ = 3.0

(a)

0 2 4 6 8 10
tan(θ)

-0.2

0

0.2

0.4

δr
2(θ

)

λ’ = 0.1
λ’ = 0.5
λ’ = 1.0
λ’ = 3.0

(b)

FIG. 3. The eigenfunctions of Eq. �19� for ��=0.1, 0.5, 1.0, and
3.0. �a� The first eigenfunction satisfies the boundary conditions for
symmetric modes, implying the instability of the dome solution. �b�
The second eigenfunction does not satisfy the boundary condition at
infinity.
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v�x� � ��x +
3��

2x
+

20

x2 + +
3��

8x3 + O� 1

x4� . �48�

By following the same asymptotic analysis as we did in the
last section, we get

g1�x� � exp�− ��x3

3
−

3��x

2
� �49�

and

g2�x� �
1

x
+

10

��x4 −
98

5��x6 + O� 1

x7� . �50�

These can be used as the initial conditions to integrate nu-
merically from a large value of x, giving the full eigenfunc-
tions. Again, the Gram-Schmidt orthonormalization proce-
dure is employed. The two branches of solutions �r1,2��� are
plotted in Fig. 4. They do not satisfy the boundary conditions
as they both diverge at �=0. So the stalactite solution is
stable.

V. COMPARISON BETWEEN DOMES AND STALACTITES

We have shown that there is a continuous spectrum of
unstable modes for travertine domes but stalactites, which
are formed by an apparently similar process, are predicted to
be linearly stable. We need to �a� explain why it is that
domes can be observed in the field and �b� interpret the
source of the difference in stability between the two seem-

ingly related growth motifs. We initially found it surprising
that there is a qualitative difference in stability, even though
the dynamics of domes and stalactites seem to differ in only
relatively minor ways: the growth of domes depends on the
depth-averaged fluid velocity whereas the growth of stalac-
tites depends on the fluid thickness. In both cases, the ap-
proximation of local flatness is used, so this is unlikely to be
the source of the difference.

Our interpretation is that the difference in stability arises
from the direction of growth and as a result, the manner in
which surface tension effects correct the zeroth order solu-
tions we have discussed. The direction of growth is impor-
tant because it dictates the way in which shape perturbations
propagate. For domes growing with sufficiently large vt,
shape perturbations are advected away from the vent down
the body of the dome in a manner reminiscent of the way in
which shape perturbations are advected down the body of a
growing dendrite �35�. These perturbations may also grow
during this process, but the development of this instability is
in practice regularized by any nonzero surface tension, lead-
ing to contact line formation, film break-up, and the forma-
tion of rivulets. This heuristic argument is supported by the
shape of the linear stability eigenfunctions shown in Fig. 3.
For stalactites, on the other hand, the fluid becomes increas-
ingly thick as it flows down toward the tip and perturbations
only increase the growth velocity of the tip, rather than cause
growing instabilities away from the tip. Thus, the only place
where surface tension is significant is at the tip of the stalac-
tite, where the surface tension holds a water droplet until the
droplet becomes too heavy and drops. This dynamics, we
believe, mainly contributes to the precipitation rate at the tip,
which affects only the growth rate of the whole stalactite. In
other words, it only renormalizes the value of vt, which, in
any case, is a fitting parameter. Surface tension is, therefore,
not important in the dynamics of stalactite formation and it
should not affect its stability.

Returning now to the case of travertine domes, we con-
clude that the unstable modes are small near the vent and
grow in amplitude near the tail of the dome. This, however,
is precisely the region where the film becomes thin and con-
tact line formation can occur, leading to the fluting pattern
observed in the real systems. The precipitation rate in this
region is also lower, due to the depleted Ca2+ concentration
and this helps stabilize the domes too. It is possible that the
growth of the instabilities predicted here triggers the forma-
tion of contact lines and film break-up. Thus, we conclude
that the dome is in some sense similar to the problem of
dendritic growth, where a smooth tip is followed by a train
of side-branches, widely interpreted to be due to a noise-
induced instability �36,37�. It is possible that the full inclu-
sion of surface tension in the model would have as important
a role in selection and stability as it does in dendritic growth
�38,39�.

VI. DAMMING INSTABILITY

Having studied the formation of domes and stalactites, we
now try to understand some aspects of the large scale mor-
phology of hot spring landscapes. We see in Fig. 5 that the

0 2 4 6 8 10
tan(θ)

-1

0

1

2

3

δr
1(θ

)

λ’ = 0.1
λ’ = 0.5
λ’ = 1.0
λ’ = 3.0

(a)

0 2 4 6 8 10
tan(θ)

-2

0

2

4

δr
2(θ

)

λ’ = 0.1
λ’ = 0.5
λ’ = 1.0
λ’ = 3.0

(b)

FIG. 4. The eigenfunctions of Eq. �42� for ��=0.1, 0.5, 1.0, and
3.0. These solutions do not satisfy the boundary conditions, as they
all diverge at �=0.
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pattern formed is complicated, with ponds of similar shapes
but different sizes. Empirical data shows that the distribution
of pond sizes indeed follows a power law �20�. This scale-
invariant pattern hints at an underlying scale-invariant pre-
cipitation dynamics, i.e., a dynamics without a characteristic
length scale.

It is difficult to predict analytically the statistical proper-
ties of the landscape, such as the pond size distribution, due
to the mathematical complexity of the equations involved.
We can, nevertheless, study a simple case of precipitation
over a planar slope. By studying the linear stability of this
dynamics, we should be able to expose the essential physics
of the formation of these scale-invariant patterns. The non-
linear regime of the modeling can be studied using the cel-
lular model we introduced earlier. In this section, we con-
sider a one-dimensional flow down an inclined plane, and
evaluate the linear stability spectrum.

The fluid flow in travertine systems is, unlike in the cases
of dome and stalactite formations, generally turbulent. It is
therefore necessary to use the formulation of Eqs. �7�–�11�.
The turbulent drag leads to a steady flow regime, about
which we linearize. Since the angle � is the same along a
constant slope, it is more convenient to use the arc length s
as the independent variable in the growth equation, so the
dynamics of local curvature � is given by

� ��

�t
�

n

= − ��2 +
�2

�s2�Gu0, �51�

where the subscript n denotes a derivative taken at a point
moving along the outward normal of the curve. This, to-
gether with the Dressler equations �7�–�11�, gives the com-
plete description of the system.

We scale the independent variables to their natural units

t� =
U

R
t, s� =

s

R
, �� =

�

R
�52�

and define the following dimensionless variables:

u0� =
u0

U
, h� =

h

H
, �� = R�, � �

H

R
, �53�

where U, H, and R are the characteristic scales of the fluid
velocity, fluid thickness, and landscape, respectively, and �

is the ratio between the H and R, which is small in the
regime of shallow water flow. The governing equations then
become �we drop all the primes on the variables for simplic-
ity�

� ��

�t
�

n

= − ��2 +
�2

�s2�Gu0, �54�

�Fm
�u0

�t
+

�E

�s
=

− CfFmu0
2

h�1 − ��h
2 � , �55�

�1 − ��h��
�h

�t
+

�q

�s
= 0, �56�

with

E = � + �h cos � +
ph

�g
+

�Fmu0
2

2�1 − ��h�2 , �57�

q =
− u0

�
ln�1 − ��h� , �58�

where we defined the Froude number Fm�U2 /gR.
The uniform solution of this set of equations is given by

ū0 =� sin �

CfFm
, �59�

h̄ = 1, �60�

�̄ = �0, �61�

�̄ = 0, �62�

where �0 is the initial inclination of the slope. The linear
stability analysis is performed by adding harmonic perturba-
tions to the solution

u0 = ū0 + �u0eips+�t, �63�

h = 1 + �heips+�t, �64�

� = �̄ + ��eips+�t, �65�

� �
��

�s
= ip��eips+�t, �66�

and linearizing the resultant equations to the first order in the
perturbations, resulting in three equations for �u0, �h, and
��,

ip��� = p2G�u0, �67�

�� + ipū0��h + ip�u0 −
�u0p2

2
�� = 0, �68�

FIG. 5. �Color online� Travertine formation at Angel Terrace,
Mammoth Hot Springs, WY, showing a large pond, of order 1 m in
diameter, and smaller features.
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�Fm��u0 = ���cos �̄ + ip� sin �̄ + p2�2ū0
2Fm�

− ��
CfFmū0

2�ip

2
+ �h�− ip� cos �̄ + CfFmū0

2�

+ �u0�− ip�Fmu0 − 2CfFmū0� . �69�

A single dispersion relation can be obtained by combining all
three equations and eliminating �u0, �h, and ��. The result is
a cubic equation in �,

�3 + a2�p��2 + a1�p�� + a0�p� = 0, �70�

where

a2�p� = 2iū0p +
2Cfū0

�
, �71�

a1�p� = p3i�ū0
2G + p2�G sin �

Fm
+

Cfū0
2G

2
+

cos �̄

Fm
− ū0

2�
+ p� iG cos �̄

�Fm
+

3iCfū0
2

�
� , �72�

a0�p� = p4�− �ū0
3G +

�ū0G cos �̄

2Fm
� + p3�− iGū0

sin
�̄Fm

+ iGCfū0
3� + p2�− Gū0 cos �̄

�Fm
� . �73�

For the parameter set ��0 ,G ,Fm ,Cf ,��
= �� /6 ,10−8 ,10,0.1,0.01�, the three roots of Eq. �70� �i are
computed numerically and are plotted in Fig. 6. From the
graph, we see that the first branch of the solutions is always
unstable, while the remaining two branches are always
stable, implying that the solution is unconditionally linearly
unstable. This is the damming instability. To conclude, we
found that the trivial flow down a constant inclined plane is
unstable toward all length scales, suggesting that when fully
developed into the nonlinear regime, the landscape would
have no selected length scale—a surmise in accord with field
observations and our cell dynamical system simulations.

VII. CONCLUSION

By combining fluid dynamics and surface growth kine-
matics, we formulated a mathematical framework to study
geological pattern formation due to carbonate precipitation
and applied it to the study of the formation and stability of a
variety of motifs. The theory successfully predicted the
shape of observed spherically symmetric domes for angle �
less than a critical angle �c. By comparing with results from
a cellular model, we showed that the departure of our theo-
retical prediction from observation for �
�c is due to the
neglect of surface tension. We also showed that domes are
linearly unstable toward axisymmetric perturbations but the
instability is manifested in the tail of the dome away from
the vent. The instability is masked by the thinning of the
fluid film and ultimately the formation of contact lines due to

surface tension. This contrasted with the case of stalactites,
whose growth forms are linearly stable to axisymmetric per-
turbations. The difference between the stabilities of the dome
and stalactite solutions is attributed to the different geom-
etries and the different role surface tension plays in these two
systems.

This formulation cannot predict the complex landscape
formed in the fully nonlinear regime, but a linear stability
analysis for a one-dimensional flow showed that the apparent
scale-invariant landscape is consistent with our equations. In
future work, we hope to examine the full two-dimensional
instability problem, in order to investigate the dynamics of
pond formation, possibly as a transverse morphological in-
stability, akin to meandering in step-flow processes on vici-
nal surfaces �40�.
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