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Based on the idea conveyed in the author’s prior study [Fluct. Noise Lett. 6, L147 (2006)], a physical
approach for the description of neuronal dynamics under the influence of ion channel noise is developed in the
realm of Nelson’s stochastic mechanics when open to dissipative environments. The formalism therein is
scrutinized using a special membrane with some tailored properties giving the Rose-Hindmarsh dynamics in
the deterministic limit. Led by the presence of multiple number of gates in an ion channel, a dual viewpoint of
channel noise is established. Then, stochastic mechanics is adopted to model those channel fluctuations emerg-
ing from the uncertainty in accessing the permissible topological states of open gates. A mutual interaction
between the above fluctuations and the noise, emerging from the stochasticity in the movement of gating
particles between the inner and the outer faces of the membrane, is portrayed within a system plus reservoir
strategy. Induced by the interaction, renormalizations of the membrane capacitance and of a membrane voltage
dependent potential are found to arise. Consequently, the equations of motion, for the expectation values of the

variables and the pair correlation functions, are obtained in the collective membrane voltage space.
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I. INTRODUCTION

Neuronal activity is under the influence of noise of exter-
nal and internal types. Internal noise, contrary to the external
type of noise that arises from synaptic transmission and net-
work effects, is specific to neurons and generates stochastic
behavior on the level of neuronal dynamics. The major
source of internal noise is due to the existence of a finite
number of voltage-gated ion channels in a patch of neuronal
membrane and that channels have one open state and one or
more closed states. The number of open channels fluctuates
in a seemingly random manner [1], implying a fluctuation in
the conductivity of the membrane, which, in turn, implies a
fluctuation in the membrane voltage (the voltage difference
across the membrane, commonly termed as the membrane
potential). The source of the apparent random behavior of
these channels is believed to be thermal excitation of a mol-
ecule with multiple stable states.

Ion channels are water filled holes in the cell membrane
that are formed by proteins embedded in the lipid bilayer,
with the property that each type of ion channel is selective to
conduct a particular ion species. The dynamics of the
coupled system composed of ions, water, protein, and lipid
molecules has been treated in various approaches: (1) Con-
tinuum approximation [2-4], (2) Brownian motion of each
ion [5,6], (3) molecular dynamics that takes into account the
motion of the involved particles [7,8], and (4) conceiving the
ion channel as a quantum system with two or more states [9].
However, the gating of ion channels is typically modeled,
without any reference to the molecular details, by means of a
Markovian kinetic scheme, in which, stochastic state transi-
tions depend instantaneously on the membrane voltage [1,2].
If a two-state (open or closed) ion channel specification is
assumed, the Markovian transitions can fully be character-
ized by the following residence time probability distributions
of staying in open and closed states, respectively: ¢,(7)
=r, exp(-r,7) and ¢.(7)=r, exp(-r,7), where r, is the open-
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ing rate and r, is the closing rate. If a multistate (one open
state and more than one closed states) ion channel specifica-
tion is assumed, the autocorrelation function for single-
channel conductance is a multiexponential function. The ex-
perimental investigations, using the patch clamp technique
which permits measuring ionic currents through individual
ion channels, reveal however that the closed state residence
time distribution is actually not of exponential type [1]. Non-
exponential distributions such as the stretched exponential
(1) =(d/dr)exp(-=(v7)® and the power law ¢ (1) 78
have been proposed as alternatives to the Markovian scheme,
where v, «, and B are some parameters [ 10—13]. The param-
eters in these distributions are, however, far from being uni-
versal. For example, although it has been measured that 8
=1.5 for a potassium channel [14], B~ 1.7 for a gramicidin
channel [15] and the values B8>2 in other experiments [16]
were also reported. The ion channel gating for the case of
power law distribution with B=1.5 can be modeled using
normal conformational diffusion over multiple degenerate
substates [11,17-23]. A generalization of these discrete dif-
fusion models has also been put forward, in which, depend-
ing on the chosen parameters, power-law-like residence time
distributions with different characteristic time regimes in
several types of ion channels are exhibited [24]. Additionally,
a three state model of channel gating, in which an inactivated
state from the closed state is accommodated with the as-
sumption that the channel’s inactivation occurs from the
closed state with a voltage independent rate, was introduced
[25].

Neuronal dynamics subject to ion channel noise has been
modeled by means of representing the stochasticity of ion
channels as an additional voltage dependent Gaussian noise
term introduced into the deterministic equations of motion
for the gating variables [26] or the conductances [27], in the
Hodgkin-Huxley model [28]. Here, the term (ion) channel
noise denotes how particular responses of populations of ion
channels differ from the mean behavior. Fox and Lu [26]
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used a stochastic automaton model of the channel gates with
exponential probabilities for the residences both in open and
closed gate states, in which the voltage dependent rate con-
stants are the same as of the Hodgkin-Huxley model. Despite
the model does not yield the Hodgkin-Huxley equations in
the deterministic limit, a good quantitative agreement be-
tween the two holds. Internal noise from ion channels has
been shown to be sufficient to cause spontaneous activity
(repetitive firing or bursting) in otherwise quiet neuronal
models [27,29-36], and has been studied in the context of
the coherence of the generated spike trains [37-41]. The ef-
fects of channel noise and temperature on more complicated
behavior such as the coexistence of different dynamical
states (in particular, the states of bursting and tonic firing)
and noise-induced transitions among these dynamical states
have attracted attention recently and have only started to be
investigated within the past few years [42-45].

In a recent paper [46], we have proposed the utilization of
Nelson’s stochastic mechanics [47,48], in the presence of
dissipation, for modeling the effects of ion channel noise on
the voltage dynamics of the membrane. In that framework,
the membrane voltage takes the place of the position and the
momentum operator is defined in the membrane voltage
space. Like in the extremely fruitful system plus reservoir
strategies, often employed in the study of open systems,
there are two systems coupled to each other, and influenced
by the channel fluctuations: (1) The system of interest de-
scribed in the membrane voltage space through a voltage
dependent potential; (2) a system of microscopic dynamical
variables causing dissipation in the number of open ion chan-
nels. Induced by the coupling between the two systems,
some correction terms arise as a result of the renormaliza-
tions of the membrane capacitance and of a voltage depen-
dent potential. The idea conveyed in Ref. [46], however, is in
its infancy mainly because it relies on an ansatz and that the
embracement of an open quantum mechanical type of for-
malism in it needs further justification. It is the central issue
of the present treatise on the matter to elucidate the funda-
mentals of the proposal in Ref. [46], and to elaborate the raw
formalism therein. In doing so, led by the presence of mul-
tiple number of gates in an ion channel, we establish a view-
point, playing a vital role in the study, that conformational
changes in ion channels are exposed to two kinds of noise
that are different in character. The need for the adoption of
stochastic mechanics to study the effects of channel noise
follows from this viewpoint. The manuscript also covers
derivation of the equations of motion for the pair correlation
functions describing neuronal diffusion. We do not conduct
an investigation into a certain type of biological neuron, but
rather pursue a search for the possible universal mechanisms
(independent of the structural details of the neuron) that
might lie behind the profound effects of channel noise. In
this respect, we adopt an idealized membrane tailored to
highlight the most prominent features so that the whole
analysis becomes more manageable and crispier. No particu-
lar residence time distribution is presupposed for the chan-
nels or for the gates, but a temperaturelike parameter, the
value of which needs to be determined by phenomenological
means, is introduced. In our analysis it is presumed, just for
the sake of simplicity, that the Rose-Hindmarsh model [49],
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rather than the Hodgkin-Huxley model, is the proper model
of the deterministic neuron.

This paper is organized as follows. Section II gives the
description of our viewpoint that conformational changes in
ion channels are subject to two different kinds of noise. Sec-
tion III includes the basic concept of stochastic mechanics
and covers a brief discussion on stochastic mechanics open
to dissipative environments. Properties of the special excit-
able membrane that we use is the subject of Sec. IV. How
having multigate channels necessitates the adoption of sto-
chastic mechanics to study the effects of ion channel noise is
discussed in Sec. V. A system, called the intrinsic system,
that leads to dissipation in the channel dynamics is specified
in Sec. VI. The equations of motion, for both the expectation
values of the variables and the pair correlation functions, for
the noisy voltage dynamics of our membrane are obtained in
Sec. VII. Finally, Sec. VII includes some concluding
remarks and further discussion.

II. DUAL NATURE OF ION CHANNEL NOISE

Since the experimental detection of an electrical current
flow within the membrane associated with the movement of
some charged particles called gating particles [50-53], there
is little doubt that the conducting state of a channel depends
on the binding of a gating particle to a site (or channel gate)
on the outer face of the membrane. For a four-gate channel,
like the potassium channel, all the four gates must be occu-
pied by gating particles in order for the channel to open.
Upon depolarization of the membrane, the fraction of chan-
nels with a gating particle on the binding site will increase,
as will the total ionic conductance of the membrane. Model-
ing gating kinetics and relating microscopic charge move-
ment to macroscopic currents is an ongoing study. Alterna-
tives to the traditional discrete-state Markov model in
describing gating current kinetics of ion channels have been
proposed. The use of Kramers’ diffusion theory of reaction
rates is one of them, in which a voltage dependent ion chan-
nel is treated as a Brownian motion particle undergoing spa-
tial diffusion along a one-dimensional energy landscape
[22,54]. Another alternative is the use of the Ramo-Shockley
theorem that states a formula for the total current flowing
into an electrode, held at a fixed voltage, in the voltage-
clamp experiments [55].

It easily follows from the above perspective that confor-
mational changes in ion channels are exposed to two differ-
ent kinds of noise. First, voltage dependent movement of
gating particles between the inner and the outer faces of the
membrane is stochastic; therefore, gates open and close in a
probabilistic fashion, that is it is the average number, not the
exact number, of open gates over the membrane is specified
by the voltage. The noise in this action will be coined as the
intrinsic noise. The second kind of noise, entirely dissimilar
in character to the intrinsic noise, comes up due to the pres-
ence of multiple number of gates in the channels. It is related
to the fluctuations in the topology of open gates, rather than
the fluctuations in the number of open gates. For example, in
a toy membrane just having three potassium channels
(twelve gates), nine open gates can be configured into a va-
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riety of fopological states with the possible results that none
of the channels is open, one is open, or two are open. Since
gating particles, throughout the dynamics, do not follow a
prescribed order in occupying the available closed gates, and
in vacating the open gates, the membrane at two different
times may have the same number of open gates but two
different conductance values. Hence, all the permissible to-
pologies of open gates should be respected in determining
the voltage dynamics. These fluctuations emerging from the
uncertainty in accessing permissible topological states will
be coined as the topological noise.

Since intrinsic and topological noises come up from dif-
ferent sources, their effects on the voltage dynamics should
be formulated individually, nevertheless in a coupled form,
as there is an interaction between the two through the mem-
brane voltage. This is the main objective of the present paper.
We note at this point that, in the currently available studies of
other researchers that model the effects of channel noise on
the voltage dynamics, topological noise is ignored or aver-
aged out. In the seminal paper of Fox and Lu [26], for in-
stance, the stochastic versions of the proportions of open
gates, n for potassium and m for sodium, are introduced first
in a master equation, and then, they are simply raised to the
appropriate power, like n*, to obtain the conductances in a
Langevin description, in which the stochasticity of ion chan-
nels is represented by an additional voltage dependent
Gaussian noise term introduced into the deterministic equa-
tions of motion for the gating variables. But then, undermin-
ing the fluctuations in » and m implies lack of fluctuations in
the conductances. Likewise, in the frequently cited study of
Chow and White [27], an additional voltage dependent
Gaussian noise term is introduced for the conductances, and,
if the covariance of the gate openness, over the ensemble of
gates, is undermined then the channel covariance vanishes.
That is to say, these models accommodate only the intrinsic
noise.

II1. DISSIPATIVE STOCHASTIC MECHANICS
A. Teaspoonful of stochastic mechanics

The subject named usually as stochastic mechanics was
introduced by Nelson [47,48] and up to now many authors,
such as Refs. [56—62], have proposed complementary or al-
ternative works to Nelson’s first formal approach. Stochastic
mechanics provides a classical probabilistic description of
quantum phenomena. For each quantum system, there is a
corresponding Markov process. The spatial probability dis-
tributions of a quantum system and the corresponding Mar-
kov process coincide at any moment and, therefore, there is
an agreement between the two in predicting all the observed
correlations at different times. In Nelson’s approach, a par-
ticle subject to Brownian motion is considered and when two
Wiener processes, forward and backward, that describe
Brownian motion are combined together they transform
Newton’s equation of dynamics into the Schrodinger equa-
tion and yield the complex nature of the wave function. In
his derivation, Nelson studied Brownian motion in a medium
with zero friction and used the Einstein-Smoluchowski
theory for the kinematics, but for Newtonian dynamics he
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used the Ornstein-Uhlenbeck theory. It was assumed that the
particle of mass m undergoes a Brownian motion with a
diffusion constant D inversely proportional to m:

8

D= o (1)
Here, g is normally identified with the Planck’s constant 7 so
that the derivation results precisely in the Schrodinger equa-
tion. The expectation values, which actually correspond to
the average values of the observables over the whole en-
semble of the classical sample paths, then follows from the
probability density |¢(x,z)|* of the stochastic position vari-
able x(r) at at any instant of time ¢, where ¢ satisfies the
Schrodinger equation

Copxn) g Fx)
g —_&

l 2
ot 2m  ox

+ U lx.1) (2)

for the Newtonian potential U(x).

In the approach of stochastic mechanics, pure states of
isolated quantum systems, i.e., wave functions, are associ-
ated with Markovian random processes [63,64]. As an ex-
ample, consider the isolated one-dimensional harmonic oscil-
lator with Hamiltonian

# 1
H(q,0) = ot szqz- (3)

The following wave function provides a coherent state asso-
ciated with each solution {g(r), 6(r)} of the classical equa-
tions of motion of the oscillator:
~1/4 .

W)= (ﬂ) exp{— T2 (- q(0) + “x6(0)

mw 2g g
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Then, the diffusion process x(z) corresponding to Eq. (4)
obeys

0= 2 el - () + 7). (s)

where the overdot denotes time derivative, and 7(r) is a
Gaussian white noise with expectations

(n(1))=0, (62)
(n(t)7(t")) = ja(r —1). (6b)

The process can also be written in the following form
[65,66]:

x(1) = &(r) + q(1), (7)
where
q(1) = @, (8a)
m
0(r) = — ma’q(1), (8b)
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&(t) = = wé(D) + 7(1). (8¢)

The expectation values of the above stochastic variables sat-
isfy (&(2))=0, (x(¢))=q(r), and (x(¢))=¢(z). The variable &(z)
governed by Eq. (8c) is the stationary stochastic process as-
sociated with the ground-state of the harmonic oscillator.
Thus, the process x(¢) for the coherent state of the harmonic
oscillator, described by Eq. (4), is given by the classical de-
terministic trajectory ¢(¢) surrounded by the quantum noise
of the ground state.

Even though a common goal of theories in stochastic me-
chanics lie on the possibility of finding a stochastic process
that is equivalent to quantum mechanics, the approach can
naturally be applied within the scope of classical statistical
mechanics from which it originates. In the present paper,
primarily, aspects of stochastic mechanics from the classical
point of view and its correspondance with quantum mechan-
ics in the mathematical sense will concern us, and therefore,
it is not an absolute necessity to presume that stochastic me-
chanics and quantum mechanics are equivalent in the physi-
cal sense. Hence, we will make no attempt to pursue a dis-
cussion on the pros and cons of the stochastic interpretation
of quantum mechanics in comparison with the widely
accepted Copenhagen interpretation.

B. Stochastic mechanics open to dissipative environments

Early studies of stochastic mechanics in the presence of
dissipative forces from the environment were based on a
rather phenomenological approach in which it was presumed
that thermal and statistic influence of the external world can
be formulated without a detailed description of the interac-
tion between the system and the external world [67,68], by
means of the following nonlinear integro-differential equa-
tion known as the Schrodinger-Langevin equation:

apxn) g Px)
g == S U )
v (. Pl ¥ )
N mi<1 o <ln ¢*>t lx,0), (9)

where (.), denotes the expectation value at time 7 and 7 is the
friction coefficient. However, one can argue that the corre-
sponding Schrodinger-Langevin equation can not be the cor-
rect description of the frictional phenomena on the grounds
that it lacks the potential renormalization, as against the sys-
tem plus reservoir strategies in open quantum systems
[69,70]. In addition, if the potential function includes linear
and quadratic terms of x, then the corresponding
Schrodinger-Langevin equation, incorrectly, results in a time
dependent diffusion constant; a time independent diffusion
constant arises only for pure harmonic motion [71].

In addition to the Schrodinger-Langevin equation, Nel-
son’s quantization method has also been extended, for the
systems interacting with a thermal environment, in such a
way that the states of the system are still described by ran-
dom processes, with the important difference that random-
ness is partly of quantum origin, as for pure states, and partly
due to the elimination of the degrees of the environment, as
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in the classical treatment of Brownian motion [72,73]. In this
context, consider a system of N+ 1 particles with a quadratic
Hamiltonian

N
+ CIOE Kndn» (10)

n=1

1

H=2p-p+3 Ew
nO

where q=(¢¢.91> ----q,) and p=(pg,pi,...,p,) are the posi-
tion and momentum vectors for the entire system. This
model, also known as the Ullersma model, describes a har-
monic oscillator (central or Brownian) with frequency w,
linearly coupled with a thermal bath constituted by the en-
semble of the remaining N oscillators, with frequencies w,,.
The stochastic quantization results for this system, based on
the elimination of the degrees of the environment, are com-
patible (of course, when g=%) with the quantum solution
[73].

The quantum solution for the Ullersma model was ob-
tained, regarding ¢,(¢) and p,() as operators in the Heisen-
berg representation and considering an initial condition
specified by thermal equilibrium for the entire system, using
a system plus reservoir strategy, in which, the central oscil-
lator corresponds to the system [74-77]. The solution was
derived in the limit of large number of oscillators, N— %, by
introducing a continuum of frequencies characterized by the
spectral strength function

> o« (11)

o<w,<o+Aw

Yw)Ao=

and the expectation value {g,), was found to obey the famil-
iar Langevin type equation

d* d<(qo) 2 d<610>t
d2 == < 0>z dt ’ (12)
where
o) = IF Nw)
(1) == | dw— cos(wt) (13)
2J, W
and
QZ_ 2 J‘OC M
_a)o— dw 5 - (14)
0 0}

It is important to note that frequency of the central oscillator
appears in Eq. (12) as if it is ) rather than wy; the frequency
is renormalized to () as prescribed by Eq. (14). Arousal of
such renormalizations is a common experience in open quan-
tum systems as the coupling to the reservoir induces such
effects [69,70]. The Schrodinger-Langevin equation, Eq. (9),
on the other hand, does simply result in the Langevin equa-
tion with no renormalizations. The frequency renormaliza-
tion also occurs when the Ullersma model is quantized using
Nelson’s quantization method [73] as follows:

E Ly (15)

IS

I\J

8
B

which coincides with Eq. (14) in the limit of large reservoir.
When this result is combined with the calculation of the pair
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correlation functions, it is seen that stochastic quantization
and quantum mechanics give the same result for the contri-
bution of the thermal fluctuations [73].

Following the above discussed parallelism between sto-
chastic mechanics and quantum mechanics, in both dissipa-
tive and non-dissipative cases, we shall adopt a formalism
and terminology of (open) quantum mechanical type from
this point onwards; but, keeping in mind that expectation
values in stochastic mechanics are the ensemble averages of
the classical stochastic paths. This adoption benefits from a
direct use of the rich mathematical formulation of open
quantum systems, which is more familiar to most researchers
than stochastic mechanics. The theories developed through-
out the years in open quantum systems—see Refs. [69,70]
for an overview—give a simultaneous microscopic descrip-
tion of the frictional and diffusive phenomena. It is almost
always the case that a system plus reservoir strategy is ac-
commodated, which has been successfully used in many di-
verse fields of physics such as condensed matter physics,
quantum optics, and nuclear physics. Although the quantum
treatment of Brownian particle is an old problem, due to the
renewed interest originated in the pioneering work of Cal-
deira and Leggett [78] on dissipative quantum tunnelling, the
system plus reservoir strategy based formulation of the prob-
lem is often referred to as the Caldeira-Leggett model in the
more recent literature. In order to narrow the diversity and
also for aptness, we shall follow the terminology and the
implementation of the strategy as it is often done in the study
of statistical fluctuations in heavy ion collisions, in which,
the system of interest (described by the macroscopic param-
eters such as the relative position of the two fragments) is
referred to as the collective system and the reservoir
(described by the microscopic internal parameters) is re-
ferred to as the intrinsic system. Employment of an intrinsic
system, described by some microscopic internal parameters,
rather than a conventional reservoir, will serve us better con-
ceptually, later on, in the study of neuronal mechanisms.

The total Hamiltonian, corresponding to the entire system,
is separated into intrinsic and collective Hamiltonians and a
weak coupling:

H(X,p,g,pim) = Hcoll(xvp) + Hint(gvpint) + xF(§), (16)

where & and p;,, denote the set of intrinsic coordinates and
momenta, respectively; and xF(&) describes the coupling
(or interaction) between the collective and the intrinsic sys-
tems. Although systems with an interaction Hamiltonian
more general than xF (&) have been investigated [79], we will
presume that the Hamiltonian given by Eq. (16) captures all
the essentials to serve our purpose for the study of neuronal
mechanisms. The intrinsic system is assumed to be in a state
of large but nearly random excitation with the fluctuations
being distributed as Gaussians. The Gaussian nature of the
random forces is endorsed when the intrinsic system treated
as a set of harmonic oscillators or when the interaction is the
cumulative effect of large number of weak interactions
where a central limit theorem can be applied. For the unper-
turbed system, with the associated Hamiltonian H°=H,,
+H;,, it is assumed that
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(F))=0. (17)

The collective Hamiltonian in the absence of interaction is
taken as

p2
Hcoll(xvp) = E + U(-x)7 (18)

where

pi=—igdlox (19)
is the collective momentum operator and U(x) is the poten-
tial function. The total density operator, denoted by p(7), sat-
isfies the von Neumann (or Liouville~von Neumann) equa-
tion

. dp(?)
"a T

[H,p(1)]. (20)

The aim is to reduce Eq. (20) to an effective one for the
reduced density operator p..;(7), defined by taking the trace
of the total density operator over the intrinsic system,

pcoll(t) = Trintp(t) (21)

so that the expectation value of an operator A acting on the
collective space can be simply determined through taking the
trace over the collective system by virtue of

(A),=Tr(p(1)A) = Treoupeon()A). (22)

Note that the parameter g in Egs. (19) and (20) corresponds
to the Planck’s constant # in quantum mechanics, but this is
not universally true in our case as g will be related to topo-
logical noise later in the paper. For p.,;(z) to be specified
completely, the density operator of the intrinsic system in the
absence of perturbation, p! (f), needs to be defined. This is
done by assuming that the intrinsic system is in thermal equi-
librium with a temperature 7. Thus p!. (7) is given by

pine = exp(— BH)IZ(B), (23)

where B:=1/T and Z(B):= Tr;,(exp(—BH;,)). Once the re-
duced density operator p.(¢) is known, the equations of
motion for the first and second cumulants of the collective
variables can be derived. The first cumulants are the expec-
tation values of the collective position and the collective
momentum,

X = (x),,

P=(p), (24)

whereas the second cumulants are the collective pair corre-
lation functions given by

Oy = <x2>z - Xz’

(xp + px),— XP,

N | =

Oy

o, = (p?), - P (25)

Cumulants higher than the second are identically zero for a
one-dimensional Gaussian distribution.
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The dynamics of the collective system, induced by the
intrinsic system, has been investigated by means of the meth-
ods known as the linear response theory, as in Ref. [80], the
first order time dependent perturbation theory, as in Ref.
[71], and the Caldeira-Leggett master equation [78]. The sets
of equations of motion, for both the first and the second
cumulants, obtained through these methods are compatible
with each other. The spirit of the linear response method
(as it was used by Hofmann and Siemens [80]), however, is
more appealing to our study, in which following the deriva-
tion of the equation for the reduced density operator, the
commutators, by means of the correspondence principle, are
replaced with the Poisson brackets and, consequently, a mas-
ter equation for the classical probability density is obtained
[80]. If the potential function U(x) includes only polynomial
terms of the order at most quadratic, then the resulting clas-
sical master equation is linear in x and p in the form of a
typical Fokker-Planck equation. Therefore, the solution to
the master equation is a Gaussian, in terms of the classical x
and p, completely determined by the first and second cumu-
lants. Then, equations of motion for the first cumulants read
as

mX=P, (26a)

. oUu
P=—1P—(1—%><_> +8uX' (26b)
m m ox [

The terms with the coefficients g, and g, are correction
terms which arise from the interaction of the collective sys-
tem with the intrinsic system. The correction coefficients are
subject to the constraint g,,>0, &,>0. In Eq. (26b), the &,
term can be thought of as a correction due to the mass renor-
malization, and the g, term as the curvature of an additional
conservative potential in the form of an inverted parabola
due to the potential renormalization. The second cumulants,
which describe the diffusive behavior of the collective sys-
tem, evolve in accordance with the dynamical equations

2
Oy = ZO'X,,, (27a)
. FU 2
G,,=2| &, - PRy L L/ + 29T, (27b)

. FU 1 0% .
Top=\ a7 3 |0 + O O~ ;T. (27¢)

Note here that the second derivative of U in Egs. (27b) and
(27c¢) is independent of x since U was taken to be at most of
quadratic order. In derivation of these equations, the system
was taken in the high temperature limit, i.e., gw/(27T) <1 for
all relevant frequencies w which contribute to the integrals.
Because of this limit, the parameter g does not appear in the
equations explicitly; normally, instead of the terms 29T in
Eq. (27b) and (&,,/m)T in Eq. (27¢), we would have some
integral terms including g. Calculation of the correction co-
efficients ¢,, and g, requires the knowledge of the eigenval-
ues of the intrinsic system and the matrix elements of F(&)
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over the intrinsic eigenstates, through the equations

g, OGO

, (28)
0

o O

(29)
>0 Qo

where ();y:=E;~E are decided from the eigenvalues of the
unperturbed intrinsic Hamiltonian:

Hiul)) =E|j). (30)

If, as a special case, it is assumed that F(&)=3,«,&, and the
harmonic potential is used, then it can be shown that the
potential renormalization gives the same result as the fre-
quency renormalization obtained by the stochastic quantiza-
tion of the Ullersma model, that is Eq. (29) agrees with Eq.

(15).

IV. PROPERTIES OF THE EXCITABLE
MEMBRANE IN USE

The famous Hodgkin-Huxley model [28] of the neuron is
based on a detailed analysis of ionic transport through the
membrane and has proved to be very successful as the model
of the deterministic neuron. However, reduced phenomeno-
logical models capable of describing the typical features of
neuron dynamics, namely bursting and spiking, are also
widely used. A popular model of this type is the Rose-
Hindmarsh model [49], a three parameter model, where the
three variables describe in dimensionless units the membrane
voltage x, an auxiliary variable y representing the fast ion
dynamics (e.g., potassium and sodium), and a slow variable z
which captures the slower dynamics. The model is formu-
lated in the form of a coupled set of dynamical differential
equations as follows:

mi=y-z—ax’+bx*+1, (31a)
o oy—di e, (31b)
Z:—rZ+rh(x_x_g)s (310)

where a, b, ¢, d, r, h, and x, are some constant parameters. /
denotes the external current injected into the neuron and m,
introduced here for convenience, denotes the membrane ca-
pacitance. The model is capable of exhibiting tonic firing and
bursting, for a proper choice of the parameters, depending on
the value of the current /. The dynamical behavior of the set
of equations (31a)—(31c) has been studied extensively in
connection with bursting, chaos and bifurcations [81,82].

In the present paper, our study of the effects of channel
noise will be based on the Rose-Hindmarsh model as the
underlying deterministic model of the neuron. —ax’+bx? part
of mx in Eq. (31a) can be considered as the match of leakage
currents, analogously with the Hodgkin-Huxley model. This
leakage term includes all the terms in mx that are indepen-
dent of the channel variables or the external current; in the
same way as the leakage term in the Hodgkin-Huxley model
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does, although the leakage there happens to be linear in x.
We will assume that y and z currents are caused by some
biophysically existing set of ion channels, to which, we shall
refer as the y channels and z channels, respectively. All the
open channels will be assumed to have the same conductance
value irrespective of the type of channel. The channel vari-
ables y and z in Egs. (31a)—(31c¢) are essentially measures of
the number of open y channels and z channels, respectively;
which we take to be as

y=ulC"+ 1" (32)
and
7= uC*+ 1%, (33)

where w is a constant proportional to the single channel con-
ductance and C” and C* denote the number of open y chan-
nels and z channels, respectively. 1 and »* are some con-
stants. It is naturally supposed that both y and z channels are
multigate (having more than one gate) channels, with equal
number of gates per channel. The gating particles, binding to
the y gates and the z gates, will be assumed to be identical
and residing in the same pool. The proportion of the sum of
the number of open y and z gates to the total number of y and
z gates will be assumed to stay roughly the same throughout
the dynamics.

Although it is possible, in principle, to conduct our ap-
proach using a membrane of the Hodgkin-Huxley type, the
problem there, however, turns out to be physically a more
difficult one. That is why we have tailored a special mem-
brane as described above; but, still, we expect the results
implied by our analysis, in connection with the effects of ion
channel noise, to extend (in a qualitative sense) into the case
of having a biophysically more realistic membrane.

V. STOCHASTIC MECHANICS
AND THE TOPOLOGICAL NOISE

Let us assume for the time being that the deterministic
membrane dynamics is not given by the set of equations
(31a)—(31c), but instead, it is as follows:

mi=y—-z+I, (34a)
y=—dx*+c, (34b)
Z=rh(x—-x,). (34¢)

In other words, we shall ignore the leakage currents [i.e., let
a=b=0 in Eq. (31a)], and assume that the y channels or the
z channels do not cause any dissipation [i.e., ignore —y and
—rz terms in the right-hand sides of y in Eq. (31b) and Z in
Eq. (31c¢), respectively]. By a change of variables, it easily
follows that this set of equations is equivalent to

mx =0, (35a)

9=—dx2+c—rh(x—xs)+i, (35b)
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0(to) = y(to) — z(t) + I(1y)., (35¢)

where # matches the overall current that the neuron experi-
ences, and 7, denotes the initial time.

Let us now introduce the topological noise to the deter-
ministic system (35a)—(35¢). The topological noise leads to
fluctuations in the number of open channels, caused by the
uncertainty in deciding the appropriate permissible topology
of open gates. Thus, taking the variable 6 in Egs. (35a)—(35c¢)
as representing the overall current in the average sense, a
noise term, with zero expectation value, must be added to the
right-hand side of Eq. (35a). In addition, a potential depen-
dent term, that vanishes when the membrane voltage happens
to be at its deterministic value (i.e., at x={(x)), should be
included. Then, we observe a strong resemblance between
the voltage dynamics, subject to the topological noise, and
the dynamics of the stochastic position variable x(z) as it is
expressed through Egs. (5)—(7) and (8a)—(8c) when the po-
tential is harmonic. The topological noise has an impulsive
effect as a result of the movement through the stochastic
paths, in the membrane voltage space, caused by the stochas-
tic transitions among the permissible topological states. Put-
ting all this together, we reach to the conclusion that the
combined effect of topological noise, emerging from the
fluctuations in the number of open y and z channels, on the
membrane voltage is the same as the effect of a Brownian
environment, with zero friction, on the position of a one-
dimensional particle. This should substantiate the use of sto-
chastic mechanics for modeling neuronal dynamics under the
influence of ion channel noise. It is interesting to note here
that Nelson’s approach postulates the existence of a stochas-
tic force responsible for random movement; the problem,
however, is to explain the physical origin of such nondissi-
pative stochasticity—and this is precisely the weakness of
stochastic mechanics. In our use of stochastic mechanics, on
the other hand, there is no such unexplained source of sto-
chasticity: it is the topological noise.

Since, in our membrane, the sum of the number of open y
and z gates stays roughly the same throughout the dynamics,
the diffusion parameter g is approximately constant and volt-
age independent. Although the exact value of g can be cal-
culated in principle, it is not so easy in reality. In addition to
the conformational details of the membrane, issues such as
the effects of ion-ion repulsion need to be taken into consid-
eration; one gating particle in the channel may slow the entry
(and speed the exit) of another.

Then, following Nelson [47,48], the membrane voltage
obeys the following Schrdédinger-type equation

() g Fix)

- Ul X, 0 x,0), (36
g ol T (. X,0)lx,1),  (36)

where |¢/(x,1)|? is the probability density of finding the mem-
brane voltage at the value of x at time ¢. The potential func-

tion U(x,X,7) follows from Eq. (35b) as
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(x,X)

~ 1 1 .
Ux,X,t) = de3 —cx+ rh(ix2 —xyx) —Ix+Ug,

(37)

in which the explicit time dependence is due to the external

current. Ugg,(x,X) in U(x,X,1) serves the purpose of squeez-
ing the wave packet as it is defined by

Usg,(x,X) = éa(x -X)?, (38)

where « is some positive constant specifying the amount of
squeezing. The concept of squeezing the wave packet by the
inclusion of an additional quadratic term into the potential
function is borrowed from quantum optics [83]. It can be
indeed shown that Ug,(x,X), with its definition in Eq. (38),

squeezes the spatial spread of the wave packet. If U(x,X,1)

were to contain Ugg,(x,X) only, i.e., if ﬁ(x,X,t):USqZ(x,X),
then the equations of motion for the second cumulants would
be

2
Oy = _a-xp’ (393)
m
O,p=—2a0,,, (39b)
. 1
Oyp=— a0, + - (39¢)

This system reaches to the steady state with the resulting
values: o,,=0, mao,=0,, and 6,=0,,=0. Thus the
squeezing potential Uy, (x,X) forces the membrane voltage
variance to attain a smaller value and evades ending up in a
forever increasing variance. The existence of X in the defi-
nition of Uy, (x,X) in Eq. (38) is in order to protect the first
cumulants from the influence of the squeezing potential.
Usq(x,X) has no effect on the first cumulant equations. The
biophysical motivation behind introducing such a squeezing
potential is as follows: movement of the charged particles in
the intracellular and extracellular fluid counteract to a distur-
bance, trying to retain the variables as at their average, or the
equilibrium, values.

The potential function U(x,X,7) given by Eq. (37) con-
tains a third order term in x. But we want to limit it to

quadratic order. So, instead of this potential function, and the
others that will appear later, the function U(x,X,t) obtained

by the following expansion of U(x,X,) around x=X:

_ a0 (x,X,t
Ux,X,)=Ux=X,X,t) + (x = X) L
ox x=X
1 PU(x, X, t
+—(x-X)? # (40)
2 ox =X

will be used. Since the squeezing potential forces a smaller
membrane voltage variance, the presence of it greatly con-
tributes to the validity of the expansion. Then, the solution to
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Eq. (36) is found to satisfy the following first cumulant
equations:

mX:P, (41a)
P=—dX’+c—rh(X-x)+1, (41b)
P(1y) = y(ty) — z(to) + I(to). (41c)

Note, here, that even though X and P used in Egs. (40) and
(41a)—(41c) are defined by Eq. (24), they now have their
meaning in the membrane voltage space, instead of the po-
sition space, as x now denotes the membrane voltage and the
momentum operator p acts on the membrane voltage space.
In the noise free limit, g— 0, Egs. (35a)—(35c¢) is rediscov-
ered if @ is identified with the noise free momentum.

VI. INTRINSIC SYSTEM AND THE CHANNEL
DISSIPATION

Comparing Egs. (41a)—(41c) with Egs. (35a)-(35c), one
might be tempted, as far as the first cumulants are concerned,
to think that the effect of incorporating the intrinsic noise
into the Rose-Hindmarsh model will simply lead to the sub-
stitution of x by X in the set of equations (31a)—(31c¢). This,
however, means nothing but the recognition of a
Schrodinger-Langevin type equation, as in Eq. (9), as the
correct equation of the frictional-diffusive phenomena,
which is not the case as discussed in Sec. III B. On the other
hand, the collective-intrinsic system approach seems to be
the physically right scenario that fits to the nature of the
problem. In this scenario, the collective system behaves in
accordance with Eq. (36), for some potential function such as
the one in Eq. (37), in the absence of interaction with the
intrinsic system. If the deterministic model were described
by Egs. (34a)—(34c), then the collective system would give a
complete specification of the neuron’s behavior.

Due to the presence of the friction term —y in it, y in Eq.
(31b) can not be decided solely by the value of the mem-
brane voltage x, for which, the knowledge of the set (or
number) of open channels is required since the variable y is
a measure of the number of open y channels. The potential
function of the collective system, reflecting the global cou-
pling of all ion channels through the membrane voltage, ar-
ticulates the voltage dependent part of y, whereas the fric-
tional part of y, due to its non-Hamiltonian character, is not
accommodated by the collective system. This is because a
non-Hamiltonian system can not be described by means of a
velocity independent potential. The same argument applies
also for the friction term —rz in z in Eq. (31c).

Ton channels do not know each other’s state and, there-
fore, a channel is not capable of adjusting its state in accor-
dance with the states of the other channels for the fulfillment
of a prescribed macroscopic friction. There must be a system
(the intrinsic system) described by some microscopic dy-
namical variables and coupled to the collective system in
order the friction term in the collective equations of motion
to take place. The intrinsic system is nothing but a set of
dynamical attributes describing the dynamics of the gating
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particles. Then, the frictional parts of y and Z, or the non-
Hamiltonian character of the channel activity, emerges from
the part of coupling, between the collective and the intrinsic
systems, that can not be characterized by a potential func-
tion. In physical terms, the intrinsic variables can be properly
interpreted as the normal modes of the reservoir in the Rubin
model often used as a prototype in nonequilibrium statistical
mechanics [84] and open quantum mechanics [69]. In addi-
tion to the noisy behavior of ion channels led by the topo-
logical noise as stipulated in Sec. V, the intrinsic system, due
to the intrinsic noise, exerts its own separate noisy action,
i.e., both the collective and the intrinsic systems are noisy
systems. Even though we are able to foresee certain types of
random noise for the collective and the intrinsic systems
separately when they are not perturbed by the existence of
each other, some unpredictable effects must be expected to
arise from the mutual interaction of these two noisy systems.
Therefore, the voltage dynamics should be worked out from
the dynamics of the entire (collective plus intrinsic) system
through the use of reduced density operator techniques.
Let the intrinsic system coordinates be denoted by

£=(§) (42)
and the associated intrinsic momentum operator by
. d
Pin=(p), pj=- 'ga_gj’ (43)

where the index j spans all the gating particles in a manner
that some certain index values correspond to a certain gating
particle. Although the diffusion coefficient associated with
the intrinsic momentum operator does not need to be the
same as the coefficient g in the collective momentum opera-
tor, a scaling over the intrinsic mass parameter is assumed
for the avoidance of the discrepancy. We will treat the intrin-
sic system as a set of harmonic oscillators. Then, the intrinsic
Hamiltonian is

2
r; 1
Him=2<—Lz +5m,w,2-§§-). (44)
L

This Hamiltonian can equivalently be expressed in terms of
the annihilation and creation operators, bj and bT, respec-
tively, of the intrinsic phonon modes:

1
Hiy =82, w,(b}bj + 5) (45)
J
by using
¢ |\ .
= bl +b; 46
§ (ijwj) (b +b)) (46)
and
amw; | .

It is natural to assume that the intrinsic system is in ther-
mal equilibrium and, therefore, its density operator in the
absence of perturbation, p?m, is determined by the canonical
distribution, in which the temperaturelike parameter, 7, de-
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cides the average intrinsic energy density at equilibrium:

P = exp(= BH)IZ(B), (48)

where B:=1/T and Z(B) := Tr;,(exp(-BH;,)). The tempera-
ture parameter 7 simply can be thought of as a measure of
how fast the gating particles, after a temporary external per-
turbation, regain the equilibrium distribution between the
inner and the outer faces of the membrane.

VII. COLLECTIVE EQUATIONS OF MOTION FOR THE
NOISY MEMBRANE VOLTAGE DYNAMICS

A. First cumulants

The Rose-Hindmarsh model, Egs. (31a)—(31c), can be
equivalently written as

(49a)

mx=20,

. 3 2b
Gz—(—axz——x+ 1)0—ax3+(b—d)xz—rh(x—xx)+c
m m

+1+1-(1-7r)z, (49b)

Z=—rz+rh(x—x,), (49c¢)

O(to) = y(to) — z(to) — a(x(te))* + b(x(to))* + I(t).
(49d)

The leakage currents have their influence on both the fric-
tional part and the potential part of 6 in Eq. (49b). The in-
fluence on the potential part emerges due the presence of the
variables y and z in Eq. (31a).

We now couple the collective and the intrinsic systems
described in the previous two sections. The resulting formal-
ism should yield

mx =0, (50a)

O=—0-ax’+(b-d)x>—rh(x—x,)+c+I1+1-(1-r)z,
(50b)

i=—rz+rh(x—x,), (50¢)

0(to) = y(to) — z(to) — a(x(te))? + b(x(ty))? + I(ty)
(50d)

in the deterministic limit (i.e., the limit g—0 followed by
T—0). Equations (50a)—(50d) are obtained from Egs.
(49a)—(49d) simply by removing the influence of leakage on
the friction coefficient. This is because the leakage currents
are known at all times as a function of the membrane voltage
and, therefore, leakage is not associated with the intrinsic
system. The potential function, by virtue of Eq. (50b),
follows as
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~ 1 1 1
U (x,t) = —ax* = =(b — d)x* + —rhx?
4 3 2

+[-rhx,—c—I—I1+(1-rz]x. (51)

In Eq. (51), some z currents appear as if they are time de-
pendent external forces embedded into the potential and that
their effect does not come out in the friction coefficient. This
occurs because of the difference between the friction coeffi-
cients of y and z currents. In fact, when the friction coeffi-
cients are the same, i.e., r=1, the z currents do not appear in
the potential. The superscript y in U*(x,1) is used to indicate
that the scheme employed absorbs all the y currents into the

momentum 6. Since U (x,7) contains terms higher than the
quadratic order in x, we use instead the following potential

function obtained from U”(x,7) through the employment of
the expansion (40):

U, X,0) =f,(X,0) +[aX> = (b-d)X*+ rh(X —=x,) —c -1
+(1-rz]x-X)+ %[3@(2 -2(b-d)X + rh]

X (x = X)* + Uy (x.X), (52)

where the function f,(X,7) is irrelevant. Here, the squeezing
potential Ugg,(x,X) is included for the reasons explained in
Sec. V.

Consider the total Hamiltonian

Hy(x,p,X, Z §7pinl) = Hzoll(x’p’x’ t) + Hint(gﬁpinl)
+ [.X - Xeq(l)]F}(g) s (53)
where

2
Hoy(x.p. X, 1) = 21 + U (x,X,1) (54)
m

is the collective Hamiltonian, and [x—X.,(I)]F*(£) describes
the coupling between the collective and the intrinsic systems.
Equation (53) implies that that the renormalization potential
is

1
U, (x,1) =— Eef;[x = Xeo(DT%, (55)

where €, is the correction coefficient of the potential renor-
malization. The function X.,(/) corresponds to the value of
membrane voltage when the entire system is in equilibrium,
or equivalently, when the condition (F»")?:O, analogous to
Eq. (17), is satisfied. Taking the interaction Hamiltonian as
xFY(&) as in Eq. (16) leads to the location of the extremum of
the renormalization potential be at x=0. It can be argued
however that the extremum of the renormalization potential
should coincide with the extremum of the collective poten-
tial. In other words, the extremum should be identified as the
quasistatic or equilibrium state of the entire system. A de-
tailed physical discussion on the issue can be found in Ref.
[85]. We assume that the stationary solution of the set of
equations (31a)-(31c) identifies the equilibrium state of the
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system. Solving Egs. (31a)-(31c) subject to the condition x
=y=2=0, results in that X,(/) must obey

aXy, - (b—d)Xo + h(Xeq—x)—c—=1=0.  (56)

The Rose-Hindmarsh model for a feasible set of commonly
used model parameters gives a unique fixed point in three
dimensions [81], and, therefore, Eq. (56) results in a solution
uniquely defined in such a parameter regime for a given /. In
the first cumulant equations (26a) and (26b), there is no pa-
rameter corresponding to X.4(/) since in that formulation it
was assumed that the equilibrium occurs at X=0. Even
though X, was set to zero in Ref. [46], it is more convincing
to take it as defined by Eq. (56).

Following our discussion in Sec. III B, the first cuamulants
in the membrane voltage phase space are expected to obey
the dynamics given by

mX=P, (57a)

y
P:—P+(l—g—m)[—aX3+(b—d)Xz—rh(X—xs)+c+I+1
m

- (1 - r)Z] + Si[X_ Xeq(I):L (57b)
i=—rz+rh(X-x,) + 7, (57¢)

P(to) = y(to) — z(to) — a(X(ty))? + b(X(1e))* + 1(t)
(57d)

analogously to Egs. (26a) and (26b). The correction terms
with the coefficients €, and & are now due to the renormal-
izations of the membrane capacitance and the voltage depen-
dent potential, respectively. 7 in Eq. (57c) is a Gaussian
white noise with zero mean and mean square given by

(F () (') =2rmT ot~ t'). (58)

Equation (58) is obtained by means of the classical
fluctuation-dissipation theorem using that the friction coeffi-
cient of the z channels is rm. X and P in Egs. (57a)—(57d) do
not actually correspond to the conventional expectation val-
ues of the overall dynamics. But rather they match to the
expectation values for a particular deterministic choice of the
part of z currents that appear as if time dependent external
forces in the potential. This deterministic choice is dictated
by Eq. (57c) for a given time course of 7%(¢). In other words,
X and P are the expectation values of the voltage dynamics
for a specific given time course of 7%(¢), and there is a sepa-
rate (X, P) for each time course.

It is also instructive to give the mean square of the noise
for the proportion of open z channels defined by

R%:= C*/N?, (59)

where C* is the number of open z channels, as before, and N*
denotes the total number of z channels. Then, it follows from
Egs. (33) and (57c¢) that
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rv rh
R*=—-rR*— + — (X =x,) + 7%, 60
r I ,LLNZ( x,) + 7 (60)
where
7
7 = ) 61
7R N (61)
It follows from Eq. (58) that
, 2rmyT ,
() m(t")) = N at—t'), (62)

where m( and d* are the membrane capacitance and the num-
ber of z channels, respectively, per unit membranous area.
Note here that the temperature parameter 7 can be dependent
on myg and d*, therefore, Eq. (62) alone can not specify the
dependence of the mean square onto m, or d°. But the equa-
tion says that the effect of intrinsic noise decreases with the
number of channels, or equivalently, with the size of the
membrane. Unlike the case in the analysis of Fox and Lu
[26], where the Gaussian noise terms for the gating variables
are voltage dependent, Eq. (62) has no voltage dependence.
This is because, contrary to the Hodgkin-Huxley model, the
friction coefficients in the deterministic dynamics of our
membrane are voltage independent.

Adoption of Egs. (28) and (29) for the correction coeffi-
cients &), and € gives

OIF1)HGIF10)

&)= 2ng§0 Q) (63)
and
oo PP o
>0 Qjo
where
Oj:=E;-Ey (65)

are obtained from the eigenvalues of the unperturbed intrin-
sic Hamiltonian in the same way as in Eq. (30). Since the
couplings of the intrinsic modes add up in Egs. (63) and (64),
the weak perturbation of individual intrinsic modes does not
mean that the influence of the intrinsic system on the collec-
tive system is weak as well. As a result, the correction coef-
ficients &), and € need not to be small enough to be ignored;
therefore, the correction terms, in principle, can play a major
role in the dynamics of the noisy neuron. The dependence of
the correction coefficients on g is imposed by the form of
F¥(&). If, as a special case, it is assumed, for some constants
), that

F(@) =2 K8, (66)
n

then it can be shown by virtue of Egs. (63) and (64) that the
correction coefficients €, and &) are independent of the dif-
fusion parameter g. This however does not mean that the
correction terms will emerge also in the deterministic model;
in the classical equations of motion for the central oscillator
in the Ullersma model the appearance of a time dependent
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additive noise term, containing the intrinsic parameters, is
inevitable. This noise term is not zero identically unless «,
=0 for all possible values of n; the presence of the correction
terms implies the presence of an intrinsic noise term, and
vice versa. Besides, when F¥(&) is not restricted to the spe-
cial case given by Eq. (66), the correction coefficients will
depend on g. For example, if F*(&€) consists of a linear com-
bination of the quadratic terms &, then both &/, and & attain
some values proportional to g.

After introducing back the influence of leakage on the
friction coefficient, that was ignored in Eq. (50b), into Eq.
(57b), we obtain the following dynamics of the first cumu-
lants:

mX =P, (67a)

. 3 2b ”
P=- (—axz——x+ 1>P+(1 —%>[—ax3+(b—d)x2
m m m

—rh(X=x)+c+I+1-(1-rz]+ e[ X =X (D],
(67b)
i=—rz+rh(X —x,) + 7%, (67¢)

P(19) = y(to) — z(tg) — a(X(1))* + b(X(1))* + I(t,).
(67d)
The friction coefficient y in Eq. (67b) is 3aX?>—2bX+m. The
presence of 3aX>—2bX term in it is a result of leakage, while
the presence of m comes from the interaction with the intrin-
sic system. Here, it is assumed that the leakage does not

cause an additional noisy action.

Like the dynamical system given by Egs. (49a)—(49d) the

following system is also equivalent to the Rose-Hindmarsh
model described by Egs. (31a)—(31¢):

mx=0, (68a)

. 3 2b
0:_<_ax2——x+r)¢9—rax3+(”b—d)x2_rh(x_xs)+c

m m
+rl+1-(1=r)y, (68b)
y=—y-di’+c, (68¢)
O(to) = y(to) — z(to) — a(x(te))* + b(x(to))* + I(t).
(68d)

The potential function of the dynamical system (68a)—(68d)
is

~ 1 1 1
U(x,X,1) = Zrax4 - g(rb —d)x+ Erhx2 +[=rhx,—c—rl

—I+(1=r)ylx. (69)

In the same manner of going from Eqs. (49a)—(49d) to Egs.
(67a)—(67d), we obtain the following first cumulant equa-
tions
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mX =P, (70a)
. 3 2b
P=—<—aX2——X+r>P+( )[—mx%(rb d)X*
m m
—rh(X=x)+c+rl+1-(1-r)y]+ g, [X =X (D],
(70b)
y=—y—dX*+c+ 7, (70¢)

P(to) = y(to) — z(to) — a(X(ty))* + b(X(te))* + 1(to),
(70d)

where the potential function U(x,X,t), obtained from
U(x, X, 1) by virtue of the expansion (40), is used:

U(x,X,0) = f,(X,0) + [raX® = (rb = d)X* + rh(X = x;) —c — r]

—I+(1=rylx-X) + %[3raX2 -2(rb-d)X

+rh](x—-X)*+ Usq,(x,X) (71)

in which the function f,(X,?) is irrelevant and U, (x,X) is
the squeezing potential as before. On the contrary to the
potential (52), here some y currents, instead of the z currents,
appear as if they are time dependent external forces embed-
ded into the potential. The effect of these embedded currents
does not come out in the friction coefficient. The friction
coefficient y in Eq. (70b) is 3aX?—2bX+rm. The presence of
3aX?—2bX term in it is a result of leakage, while the pres-
ence of rm comes from the interaction with the intrinsic sys-
tem. 7 in Eq. (70c) is a Gaussian white noise with zero
mean and mean square given by

(P ()7 (1)) =2mTSt-1") (72)

through the classical fluctuation-dissipation theorem using
that the friction coefficient of the y channels is m.
The first cumulants of the system having the Hamiltonian

HZ()C,p,X,t, f?pint) = Hﬁoll(x’st’t) + Hinl(fvpint)
+ [X - Xeq(l)]FZ(f) (73)

evolve as given by Egs. (70a)—(70d), where the collective
Hamiltonian is

2
Hey(eup. X.0) = p— + U, X, 1), (74)

However, the contribution to the friction coefficient is two-
fold coming partly from the interaction Hamiltonian
[x=Xq(I)]JF*(§) and partly from the leakage, as mentioned
above. The correction coefficients &, and ¢, induced by the
intrinsic system (&,p), read as

g =282 (O[F)¢j|F?|0)

=) (75)

and
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_s: OFLIF0)

(76)
= Qjo

where (), is the jth eigenvalue of the unperturbed intrinsic
Hamlltoman relative to the ground state eigenvalue, as given
by Eq. (65).

Instead of the two different sets of dynamical equations
(67a)—(67d) and (70a)—(70d), we desire a single formulation.
It can be argued that Egs. (67a)—(67d) give a better descrip-
tion of the neuronal dynamics, in comparison with Egs.
(70a)—(70d). This is because the constant parameter r has a
value close to zero and, therefore, the leakage free part of the
friction coefficient y in Eq. (67b) is greater than the one in
Eq. (70b); that is, Egs. (67a)—(67d) accommodate most of the
frictional effects within the scope of system plus reservoir
strategies. An approximate scheme, better than the simple
preference of Egs. (67a)—(67d) over Egs. (70a)—(70d), how-
ever, can be asserted through some mixing of the two dy-
namical equations. Our assertion is as follows. First, take a
mixing coefficient, denoted by k, with the value

1
1+r

k=

(77)

obtained by taking the ratio of the leakage free part of the
friction coefficient y in Eq. (67b) to the sum of the leakage
free friction coefficients in Egs. (67b) and (70b). Then, add
the right hand sides of Egs. (67b) and (70b) after multiplying
them with k and 1-k%, respectively, in order to obtain the

equation for P in the new scheme. Ultimately, the following
first cumulant equations are obtained:

mX = P, (78a)

. 3a_, 2b 3 )
P=—|—X"=—X+S8,|P—8,aX"+ 85X+ ScX — S3Xeq(l)

+SI+SsI+8;—-(1-7r)
X{k(l—%)z+(l—k)<l—i)y}, (78b)
m m
y=—y—dX’+c+ 7, (78c¢)
Z=—rz+rh(X-x,) + 77, (78d)
P(to) = y(to) — z(to) — a(X(t))* + b(X(10))* + I(to),
(78e)
where
So:=k+(1-k)r, (79)
Sl = SO—|:k%+(l—k)r%:|, (80)
& .
szk( )(b d)+(1—k)<1——'">(rb d),
(81)
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Syi=kel + (1 -k)e, (82)
Ep &

Sy=k—+(1-k—, (83)
m m

S5 =1- S4, (84)

S() = S3—Ssrh, (85)

S5 := (rhx, + ¢)Ss. (86)

Finally, in order to eliminate the appearance of I in Eq.
(78b), we employ the operator 7 defined by

mi=p—Ssl (87)

and substitute P in Egs. (78a), (78b), and (78e) in terms of
the expectation value 11,

IT:= (m),, (88)
with the result
mX =TI + 851, (89a)
- (3a_, 2b
M=- (—axz _Zxs SO)(H 4+ SsI) = §,aX° + S,X° + SX
m m

—S3Xeq(1) +Sll+S7— (1 —r)

X{k(l—g—ﬁ') +(1—k)<l—i)y], (89b)

m m
y=-y-dX*+c+7, (89c)
Z=—rz+rh(X—x,) + 7, (89d)

IL(ty) = y(to) — z(to) — a(X(tp))* + b(X(10))* + (1 = S5)I(1,).
(89¢)

Although Egs. (89a)—(89¢) seem to be describing a four di-
mensional dynamical system, the set of possible initial val-
ues in it describes a three dimensional manifold since T1(z,)
is uniquely specified by X(z,), y(t,), and z(z,). Note that in
the deterministic limit, i.e., when &), =¢)=¢, =¢e.,=7P=7
=0, the solution to X from Egs. (89a)—(89¢) is the same as
the solution to x from Egs. (31a)—(31c), (49a)—(49d), and
(68a)—(68d). That is, the deterministic limit results in the
Rose-Hindmarsh model.

B. Second cumulants

Instead of using the second cumulants as defined by Eq.
(25), it is more appropriate to redefine them through the op-
erator 7 as follows:

Oy = <x2>t - Xz’

a. =

o (xm+ mx), - Xl =0,

N | =
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O = <772>t - H2 =Opp- (90)

The second cumulants tell us the neuron’s diffusive behavior.
Equations of motion for the second cumulants of the system
described by the Hamiltonian H” in Eq. (53) are given, in a
manner analogous with Egs. (27a)—(27¢c), as

2

d-xx =" Oxms (913)
m

Or=2e) —3aX*+2(b—d)X — rh— @]0 = 20 1 + 2T,
(91b)

1
Orn=[8-3aX*+2(b-d)X - rh— @]op+ —0pn— Opr
m

_%T
m

(91¢c)

in the high temperature limit. The value of the friction coef-
ficient, namely m, used in Egs. (91b) and (91c) is taken from
Eq. (57b). Similarly, the second cumulants corresponding to
the system described by the Hamiltonian H* in Eq. (73) are
given by

Oy = —Oyms (92a)
m

O =2[° = 3raX* + 2(rb = d)X — rh— a]0 = 270 1y

+2rmT, (92b)

. . 2 1
Om=le,—3raX" +2(rb - d)X — rh - a]o + O =IOy

e
m

L
m

(92¢)

where the value of the friction coefficient used is rm. Fol-
lowing the discussion in the previous subsection, we remark
here that the second cumulant equations (91a)—(91¢) and
(92a)—(92c) actually give the diffusive behavior for specific
given time courses of 7’(¢) and 7%%(r), rather than the diffu-
sive behavior of the overall dynamics. Therefore, there is a
separate (0,0 ,,,0,,) for each time course of 7’(z) and
7 (1)

Finally, Egs. (91a)—-(91¢) and (92a)—(92¢) are combined
together using the mixing coefficient given by Eq. (77), in
the sense of combining the first cumulant equations
(67a)—(67d) and (70a)—(70d) into Egs. (78a)—(78¢), as fol-
lows:

2
O =0y (93a)
m
G = 2(Sg — 380aX> + SeX) 0oy — 2840 5+ 2mS, T,
(93b)
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1
O = (Sg = 380aX? + SoX) 0 + — O = S0y — SuT
m

(93c¢)
where S is defined by Eq. (79); Sg and Sy are given by
Sg:=S;—a—rh (94)
and
Sg:=2(Sph—d). (95)

VIII. CONCLUDING REMARKS

In this paper, we have advocated a physical approach for
the description of neuronal dynamics under the influence of
ion channel noise, adopting dissipative stochastic mechanics.
In this framework, the membrane voltage took the place of
the position and the momentum operator was defined in the
membrane voltage space. Two noisy systems, namely the
collective and the intrinsic systems, were identified. The col-
lective system had its identity in the membrane voltage phase
space, whereas the intrinsic system was formed by a set of
dynamical attributes associated with the gating particles. Ion
channel noise played a twofold role in the dynamics of the
collective system, or equivalently, in the membrane voltage
dynamics. Due to the presence of multiple number of gates
in the channels, the collective system has taken to be under
the influence of those fluctuations emerging from the uncer-
tainty in accessing the permissible topological states of open
gates. We coined this kind of noise as the topological noise,
and have argued for the use of Nelson’s stochastic mechanics
in modeling neuronal dynamics under the influence of topo-
logical noise. The noisy behavior of the intrinsic system fol-
lowed from the stochasticity in the movement of gating par-
ticles between the inner and the outer faces of the membrane.
The voltage dynamics experienced this kind of noise through
the interaction between the collective and the intrinsic sys-
tems. For the coupling of the collective and the intrinsic
systems we followed a system plus reservoir strategy in the
realm of stochastic mechanics open to dissipative environ-
ments. The coupling between the collective and the intrinsic
states induced renormalizations of the membrane capacitance
and of the voltage dependent potential, as well as the channel
dissipation. In consequence of these renormalizations, some
correction terms appeared in the equations of motion for the
first and the second cumulants of the voltage dynamics. The
formalism developed in the study was based on a special
excitable membrane that gives the Rose-Hindmarsh model in
the deterministic limit. The adoption of dissipative stochastic
mechanics, conducted throughout the paper, seems to be ca-
pable of serving as a theoretical framework for modeling the
effects of channel noise in neurons. The resulting model of-
fers itself as a promising candidate for the use in further
investigation of the computational aspects of internally noisy
neuronal systems and their applications. We note here that
the use of two different kinds of noise in our formalism may
give a misguided impression of the so-called doubly stochas-
tic resonance [86]. In doubly stochastic resonance, two noise
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FIG. 1. Membrane voltage time series of the deterministic Rose-
Hindmarsh model for the parameter values m=1, a=1, b=3, c=1,
d=5, x;=—1.6, r=0.004, and h=4 using various constant input cur-
rent values: (A) 0.8, (B) 1.2, (C) 1.4, (D) 2.2, (E) 3.2, (F) 3.4, (G)
3.6, and (H) 4.4.

terms, one multiplicative and the other additive, are included
into the Langevin equation in the strong damping limit. For
ion channel noise, on the other hand, the topological noise
introduces uncertainty into the overall current that the mem-
brane experiences, whereas the intrinsic noise introduces
Langevin type of fluctuations into the time derivative of the
current. This results in a formulation completely different
than the one of doubly stochastic resonance.

Let us leave a detailed numerical study of the model de-
veloped in this paper to a future article. But still it is worth
mentioning here the following findings obtained from the
numerical solution of Egs. (89a)—(89¢). The noisy neuron
displays bursting in a wider range of input currents in com-
parison with its deterministic counterpart. This leads to the
coexistence of two distinct regions of input current values, in
which, the behavioral states of the deterministic and the
noisy neurons are different. In one region, where input cur-
rent values are low, the deterministic neuron is in the quies-
cent state, but the neuron with channel noise is in the burst-
ing state. In the other region, having higher values of the
input current, the deterministic neuron is in the state of tonic
firing but the noisy neuron is still in the bursting state. These
channel noise-induced transitions among the dynamical be-
havioral states can be seen by comparing Fig. 1 and Fig. 2.
Figure 1 shows membrane voltage time series of our model
in the deterministic limit, i.e., when &) =g)=¢; =¢e.=17"
=7°=0 (or equivalently, of the deterministic Rose-
Hindmarsh model) using various constant input current val-
ues. Figure 2 shows time series of X for the correction coef-
ficients €),=0.3, €,=0.5, &,=0.003, £5=0.005, and the
temperature 7= 1. Comparison of Figs. 1(a) and 1(b) to Figs.
2(a) and 2(b) shows that ion channel noise causes activity (in
the form of bursting) within some range of input currents, for
which, the deterministic model is quiet. When Figs. 1(f) and
1(g) are compared with Figs. 2(f) and 2(g), it is seen that ion
channel noise causes a transition from tonic firing to bursting
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FIG. 2. Time series of X in our noisy neuron model for &,
=0.3, &)=0.5, £,=0.003, £,=0.005, and T=1, and the Rose-
Hindmarsh parameter values the same as in Fig. 1, using various
constant input current values: (A) 0.8, (B) 1.2, (C) 1.4, (D) 2.2, (E)
3.2, (F) 3.4, (G) 3.6, and (H) 4.4.

within some other range of higher input currents. Both the
renormalization effects, i.e., the correction terms, and the
Gaussian white noise, i.e., '(r) and 7%(¢), contribute to the
above behavioral transitions; but in a manner that while the
white noise terms cause irregularity in the time course of the
voltage dynamics, the renormalization corrections force a
regular (or coherent) dynamics just having the local fluctua-
tions. Thus, topological noise, or having multi-gate channels,
makes a profound effect on the behavioral state of the neuron
and yet retaining a regular dynamics. Figure 3 shows time
series of X for vanishing values of the correction coefficients,
i.e., when the topological noise is ignored. Comparison of

PO N DO PDON DON WO PO PON ®O N
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FIG. 3. Time series of X in our noisy neuron model for &,
=g)=¢> =¢e.=0, and T=1, and the Rose-Hindmarsh parameter val-
ues the same as in Fig. 1, using various constant input current
values: (A) 0.8, (B) 1.2, (C) 1.4, (D) 2.2, (E) 3.2, (F) 3.4, (G) 3.6,
and (H) 4.4.
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Fig. 1(b) with Fig. 3(b) shows that the intrinsic noise can
cause firing activity in otherwise quiet deterministic model.
For larger values of the temperature parameter 7, the firing
activity takes place for smaller values of the input current
and results in spontaneous activity. That is, the effect of the
intrinsic noise in our model is essentially the same as the
effect of channel noise reported using the currently available
channel noise models [29,30,32-36] for the Hodgkin-Huxley
membrane. Note that, as it was discussed in Sec. II, the un-
derlying models of these studies make no use of the topo-
logical noise. Comparison of Fig. 2(a) with Fig. 3(a) shows
that the inclusion of topological noise results in firing activ-
ity at even smaller input current values. It follows from the
comparison of Figs. 2(g) and 2(h) with Figs. 3(g) and 3(h)
that the inclusion of topological noise also results in prolon-
gation of bursting for larger input current values. When the
plots in Fig. 2 are compared with the plots in Fig. 3, it is seen
that the topological noise, unlike the intrinsic noise, favors a
coherent dynamics. This effect can be seen more noticeably
using smaller values for the temperature 7. Some early nu-
merical results were reported in Ref. [87], but there the for-
mulation did not include the noise terms 7”(¢) and 7%(¢), and
also that the mixing coefficient was taken as k=1/2 instead
of the one given by Eq. (77).

Our formulation has no explicit dependence onto the con-
formational and microscopic details of the membrane. This
facilitates the investigation of the probable universal effects
of ion channel noise as, some of which, just mentioned
above, and appeals particularly to computational neuro-
sciences. Of course, a possible estimation of the values of the
parameters g, 7, «, and the correction coefficients & , 8;‘4’, €5
> from the membranous details would still be invaluable. In
addition to the value of g and the knowledge of the exact
nature of the intrinsic system, forms of the interaction opera-
tors FY(&) and F*(&) need to be known for the determination
of the correction coefficients. The incidence of correction
terms is a universal phenomenon that is to occur irrespective
of the underlying deterministic model, but of course their
precise impact on the dynamics will depend upon the model.
Even though the regime we have pursued, in principle, per-
tains to the Hodgkin-Huxley type of membrane, the form of
the deterministic differential equations and the more compli-
cated membrane properties there create some additional
complications and, therefore, physically the problem turns
out to be a considerably more difficult one. But, still, the
emergent renormalization corrections should be expected to
play a role not very different than the Rose-Hindmarsh case.
We expect that our theoretical findings will stimulate experi-
mental works to verify the effects of the renormalization cor-
rections in real neurons. As seen in Fig. 2, although the cor-
rection terms alter the neuron’s quantitative behavior, the
repertoire of basic behavior patterns remains the same under
the renormalization effects. Therefore, a direct experimental
verification of these possible effects may not be an easy task.
However, following our above comparative findings from
Figs. 1-3, any prospective experiment that might provide
discrepant data for the input current values of the behavioral
transitions in comparison with the current theoretical predic-
tions, and data showing a voltage dynamics more coherent
than the dynamics predicted by these theories, would authen-
ticate our theory.
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