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Vesicles under shear flow exhibit various dynamics: tank treading �TT�, tumbling �TB�, and vacillating
breathing �VB�. The VB mode consists in a motion where the long axis of the vesicle oscillates about the flow
direction, while the shape undergoes a breathing dynamics. We extend here the original small deformation
theory �C. Misbah, Phys. Rev. Lett. 96, 028104 �2006�� to the next order in a consistent manner. The consistent
higher order theory reveals a direct bifurcation from TT to TB if Ca���̇ is small enough—typically below 0.5,
but this value is sensitive to the available excess area from a sphere ��=vesicle relaxation time towards
equilibrium shape, �̇=shear rate�. At larger Ca the TB is preceded by the VB mode. For Ca�1 we recover the
leading order original calculation, where the VB mode coexists with TB. The consistent calculation reveals
several quantitative discrepancies with recent works, and points to new features. We briefly analyze rheology
and find that the effective viscosity exhibits a minimum in the vicinity of the TT-TB and TT-VB bifurcation
points. At small Ca the minimum corresponds to a cusp singularity and is at the TT-TB threshold, while at high
enough Ca the cusp is smeared out, and is located in the vicinity of the VB mode but in the TT regime.
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I. INTRODUCTION

Vesicles are closed membranes suspended in an aqueous
medium. They constitute an interesting viscoelastic model
mimicking more complex entities, and they continue to re-
ceive an increasing interest both theoretically and experi-
mentally.

Under a linear shear flow, a vesicle �where the membrane
is in its fluid state� is known to exhibit a tank-treading �TT�
motion, while its long axis makes an angle ��� /4 with the
flow direction �1,2�. In the presence of a viscosity contrast
�=�1 /�0 ��1 and �0 are the internal and external viscosities,
respectively�, � decreases until it vanishes at a critical value
of �=�c. For a small enough Ca���̇ �� is the relaxation time
towards the equilibrium shape in the absence of flow, �̇ is the
shear rate� the TT exhibits a saddle-node bifurcation towards
tumbling �TB� �3�.

Recently, a new type of motion has been predicted �4�,
namely, a vacillating breathing �VB� mode: the vesicle’s long
axis undergoes an oscillation �or vacillation� around the flow
direction, while the shape executes a breathing motion. The
three types of motion �TT, TB, and VB� are shown in Fig. 1.

Shortly after this theoretical prediction, an experimental
report on this type of mode has been presented �5� �referred
to as trembling by the authors; actually trembling may evoke
some kind of noisy dynamics, and seems to us an inappro-
priate denomination, since the VB mode is periodic in time�
and in Ref. �6� a qualitatively similar motion called “transi-
tion motion” in the vicinity of the TT-TB transition has been
observed. Nevertheless, a detailed experimental study of this
VB mode would be interesting but has not been reported yet.
Since then, works providing further understanding �7� or at-
tempting �8,9� to extend the original theory �4� to higher
order deformation �with the aim to account for the experi-

mental observation �5�� have been presented. Interesting fea-
tures have emerged �8,9� regarding the behavior of the VB
mode as a function of Ca.

The first aim of this paper is to present the result of the
consistent theory regarding the higher order calculation. We
find significant differences with recent works �8,9� regarding
the form of the evolution equation. This implies, in particu-
lar, that the location of the boundaries separating the various
three regimes in parameter space is significantly affected.
Furthermore, by accounting properly for higher order terms,
it is shown that contrary to the belief in Ref. �8� the so-called
self-similarity �in that only two independent parameters sur-
vive in the final evolution equations� does not hold.

A second important report is to investigate how the effec-
tive viscosity derived recently in Refs. �4,10� is affected by
the higher order deformation. In the TT regime the effective
viscosity derived in Ref. �4� is still a decreasing function of �
and is only slightly shifted by the higher order terms. It is
found that for a small enough Ca the effective viscosity of
the suspension �as a function of �� still exhibits a cusp sin-
gularity at the TT-TB bifurcation as reported in Ref. �10�,
while the cusp becomes a smooth minimum when Ca is high
enough, namely, when the TT-VB bifurcation occurs.
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FIG. 1. �Color online� The three types of motion are shown. The
arrows for the TT regime refer to the tank-treading motion of the
membrane. Note that for the TB the vesicle long axis makes a full
rotation by an angle �, while in the VB the long axis oscillates
about the horizontal axis. The parameters are 	=0.5 and �=2 �TT�,
�=9 �VB�, and �=10 �TB�.
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The scheme of the paper is as follows. In Sec. II we
present in detail how a consistent calculation should be
made, and develop the various necessary steps, including
geometry, the calculation of the velocity field, and the treat-
ment of the boundary conditions. Section III deals with the
derivation of the leading order solution, whereas Sec. IV
presents the outcome of the next order solution. The final
evolution equation is presented in Sec. V, and a comparison
with previous works is given in Sec. VI. Section VII is de-
voted to the main results of dynamics, and a brief discussion
is devoted to rheology in Sec. VIII. Section IX is dedicated
to a discussion and conclusion.

II. ASYMPTOTIC EXPANSION

A. Vesicle geometry

The various geometrical quantities are shown on Fig. 2.
The time-dependent vesicle surface is described by R
=R�
 ,� , t�er, where

R�
,�,t� = r0�1 + 	f�
,�,t�� . �1�

Here r0 is the radius of the equivalent sphere of the vesicle
and 	 is a small parameter, which can be related to the excess
area � via �=	2 �with a proper expansion and normalization
of f�. This parameter serves formally as an expansion param-
eter �	=0 is a sphere� �7�. For the following it is convenient
to rescale spatial variables by r0, so that we are left with

R�
,�,t� = 1 + 	f�
,�,t� . �2�

Several notations and the spirit of some of the calculation
used below are close to those developed for droplets and
capsules in the small deformation theory �11–13�. The func-
tion f is expanded in powers of 	 and decomposed on the
basis of spherical harmonics. In principle, it can be decom-
posed on an infinite series of spherical harmonics as

f = �
n=0

+


fn �3�

with fn=�m=−n
+n anm�t�Ynm�
 ,��, where Ynm are the usual

spherical harmonics and anm are time-dependent amplitudes

which are undetermined for the moment. We can alterna-
tively write fn= �Fp1,p2,. . .,pn

� �nr−1

�xp1
,�xp2

,…,�xpn
�rn+1�r=1 �where re-

peated indices are to be summed over�. Most of our calcula-
tion is made with the second formulation. If only the leading
order harmonics �second order, f2, where we shall omit be-
low the subscript since there is no source of confusion� are
retained, as adopted here, we can write up to order 	2 �where
the superscript represents the order of the expansion in 	�

f = f �0� + 	f �1� = Fij
�0�Yij + 	�−

6

5
Fij

�0�Fij
�0� + Fij

�1�Yij	 �4�

with the zeroth and first order amplitudes Fij
�0� and Fij

�1�, re-
spectively, and the abbreviation

Yij = � �2r−1

�xi�xj
	

r=1
, r = �x1

2 + x2
2 + x3

2�1/2. �5�

The O�	� term −6/5Fij
�0�Fij

�0� ensures constant volume.
As Yij is a second-order spherical harmonic, the tensors

Fij
�0� and Fij

�1� have only five independent elements. We can
thus demand that Fij

�0� and Fij
�1� are symmetric and traceless.

In this case Eq. �4� can also be written as

f = 
3Fij
�0�xixj + 	�−

6

5
Fij

�0�Fij
�0� + 3Fij

�1�xixj	�
r=1

. �6�

In order to ensure that the excess area of the surface param-
etrized by Eq. �2� is 	2, the five remaining coefficients Fij

�0�

are not independent but coupled by the constraint

�F11
�0��2 + �F22

�0��2 + F11
�0�F22

�0� + �F12
�0��2 + �F13

�0��2 + �F23
�0��2 =

5

96�
.

�7�

Equations �4� and �7� guarantee that the vesicle volume is
V= 4

3�+O�	3� and the vesicle surface area is A=4�+�

+O�	3�. We shall see later that including the Fij
�1� guarantees

the constraint of excess area up to 	4.
Our ansatz includes spherical harmonics of order 2 only.

It is justified by the fact that the external flow only contains
harmonics of order 2. At next-to-leading order, modes of
order 4 are excited, however, they do not couple back to the
modes of second order. It is thus possible to derive a closed
description that contains second-order spherical harmonics
only. It is only at higher orders �not included here� that
higher order harmonics may affect dynamics.

Next we compute, up to O�	2�, the two tangential vectors

t
 = �
R, t� = ��R , �8�

and the unit normal vector

n =
t
 � t�

�t
 � t��
. �9�

From the tangential vectors follows the metrics

gij = Ri · R j �10�

with its inverse gij. Following Seifert �2�, we evaluate the
curvature tensor

x1

ψ

x2

(θ, φ)R

FIG. 2. Various geometrical quantities.
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hij = ��i� jR� · n , �11�

which yields the mean curvature

H =
1

2
gikhki �12�

and the Gaussian curvature

K = det�gikhkj� . �13�

In terms of the amplitudes of the shape function we have,
for example,

H = − 1 − 2	Fij
�0�Yij − 	2
6

5
Fij

�0�Fij
�0� + 2Fij

�1�Yij

− 5Fij
�0�Flm

�0�YijYlm� + O�	3� . �14�

B. Velocity field

In common experiments, the Reynolds number of the flow
is much smaller than unity. The dynamics of the flow is thus
adequately described by the Stokes equations for the velocity
field u and the pressure p,

���2v = �p , �15�

where �0 is the viscosity of the suspending fluid and �1 is the
viscosity of the fluid inside. We define, as usual, the ratio
���1 /�0. We can safely assume that the fluids are incom-
pressible, and thus

� · v = 0. �16�

The total velocity field outside the vesicle can then be
written as v=v0+u, where u is the perturbation of the field
due to the presence of the vesicle, and the imposed shear
flow v0 is taken in the form v0= �̇x2e1, where �̇ is the shear
rate. Likewise, we write for the velocity field within the
vesicle v̄=��r /2+ ū, where � is the vorticity. Following
Lamb �14�, we write an ansatz for the unknown perturbation
of the velocity field outside the vesicle in the form

u = �
n=0




� �−n−1 � r + ��−n−1 −
n − 2

2n�2n − 1�
r2 � p−n−1

+
n + 1

n�2n − 1�
rp−n−1 �17�

and, inside the vesicle,

ū = �
n=0




� �̄n � r + ��̄n +
n + 3

2�n + 1��2n + 3�
r2 � p̄n

−
n

�n + 1��2n + 3�
rp̄n. �18�

The first term expresses vortex motion in a uniform pressure
field. The second term represents an irrotational motion
which can exist in a uniform pressure field. The last two
terms are connected with the pressure distribution.

The functions p̄n, �̄n, and �̄n in the Lamb solution are
solid spherical harmonics of order n and p−n−1, �−n−1, �−n−1
are solid spherical harmonics of order −n−1 �11�. Splitting
off their r dependence, we write �−n−1=r−n−1Qn, �−n−1
=r−n−1Sn, and p−n−1=r−n−1Tn. Likewise for the quantities

within the vesicle: �̄n=rnQ̄n, �̄n=rnS̄n, and p̄n=rnT̄n. The
precise values of the functions Qn ,Sn , . . . �which are surface
spherical harmonics and thus depend only on the angles� are
determined from the boundary conditions at the membrane,
as will be seen later.

Since a shear flow induces a shape deformation from a
sphere which involves only second order harmonics �i.e., n
=2�, only Y2m is active �2,4�. The other modes are damped
�7,11� to leading order. So we can write the Lamb solution
for the full velocity field v as

v̄ = ��̄ +
5

42
r2 � p̄ −

2

21
rp̄ + �̇/2�x2e1 − x1e2� , �19�

v = �� +
1

2
rp + �̇x2ex, �20�

where we explicitly write the external shear flow for the
outer field and its rotational component for the inner field.
Since there is only the second harmonic, we have dropped
the subscripts �as in the terms p−n−1 , pn, which would pro-
duce p−3 and p2� in order to simplify the notations. The an-
satz functions are expanded in powers of 	:

�̄ = �S̄ij
�0�Yij + 	S̄ij

�1�Yij�r2, �21�

� = �Sij
�0�Yij + 	Sij

�1�Yij�r−3 �22�

and

p̄ = �T̄ij
�0�Yij + 	T̄ij

�1�Yij�r2 + p̄0, �23�

p = �Tij
�0�Yij + 	Tij

�1�Yij�r−3. �24�

C. Stress balance

We now formulate the stress balance at the membrane. To
this end we have to evaluate the stresses exerted by the mem-
brane as well as the hydrodynamical stresses from the fluids
on both sides of the membrane.

The normal force exerted by the membrane is given by
the Helfrich force �2�

Fn = ��2H�2H2 − 2K� + 2�SH� − 2ZH . �25�

H and K are the mean and the Gaussian curvature, respec-
tively, and �S is the Laplace-Beltrami operator. Here Z is a
Lagrange multiplier which enforces local membrane area
conservation. At zeroth order, the bracketed term in Eq. �25�
vanishes since H2=K2=1 and �SH=0. It follows that, at
leading order, the bending rigidity of the membrane is not
involved. This is just a consequence of the formal expansion
we have adopted. In order to arrive at a nontrivial solution at
zeroth order, we formally require � �and �t f� to scale as 	−1.
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In order to make all 	 dependencies explicit, we introduce
�̄=	� and write

Fn = 	−1�̄�2H�2H2 − 2K� + 2�SH� − 2ZH . �26�

By the same token, the isotropic part of Z must scale as 	−1.
The angular part, however, turns out to be O�1�. Hence we
decompose the Lagrange multiplier Z in the following way:

Z = 	−1�Z0
�0� + 	Z0

�1�� + Zij
�0�Yij + 	Zij

�1�Yij . �27�

The tangential force exerted by the membrane �due to its
incompressibility� is

Ft = �g11t
 + g21t���
Z + �g12t
 + g22t����Z . �28�

The fluid stresses are given by the hydrodynamical stress
tensor

�ij = − p�ij + �0��iv j + � jvi� , �29�

�̄ij = − p̄�ij + �1��iv̄ j + � jv̄i� . �30�

The full stress balance at the membrane thus reads

���ij − �̄ij�nj + Fnni�ei + Ft = 0, �31�

which has to be evaluated at r=R�
 ,� , t�=1+	f .

D. Membrane incompressibility and kinematic condition

Membrane local incompressibility entails that the pro-
jected divergence of the velocity field must vanish on the
membrane

��ij − ninj��iv j = 0. �32�

We have in addition to require continuity of the fluid veloci-
ties across the membrane

vi = v̄i �33�

as well as equality with the velocity of the membrane �if we
do not account for any permeation across the membrane�.
The latter condition reads

	�t f = nivi, �34�

if we neglect O�	2� terms �17� �the full kinematic relation
should involve ���r− f�� in the denominator of the left-hand
side term�.

III. SOLUTION AT ZEROTH ORDER

In this section we shall deal with the leading order solu-
tion as originally derived by one of us �4�. By leading order
we mean to keep only the terms having �0� in their super-
script �e.g., Fij

�0��. We shall present in the next section the
solution to the next order. Following Frankel and Acrivos
�12�, we determine the ansatz coefficients from the boundary
conditions by performing surface integrals over the �spheri-
cal� vesicle. For example, the equation

� �vi
�0� − v̄i

�0��xjd� = 0, �35�

which is an integral version of the continuity condition at
zeroth order �actually a projection of the ith vector compo-

nent on the subspace of first-order spherical harmonics�,
yields the five relations

T̄ij
�0� − Tij

�0� + 10S̄ij
�0� =

5

3
eij . �36�

Similarly, the integral

� �vp
�0� − v̄p

�0��xpxixjd� = 0 �37�

�which is just the projection of the radial velocity balance on
the subspace of second-order spherical harmonics, but can
also be understood as a projection of the ith component of
the radial velocity on the subspace of first-order spherical
harmonics� gives the equations

2

7
T̄ij

�0� − Tij
�0� + 4S̄ij

�0� + 6Sij
�0� =

2

3
eij . �38�

From the stress balance �Eq. �31�� we have, upon projection
on the appropriate subspace,

� ���iq
�0� − �̄iq

�0��nq
�0� + �Fn

�0� − 2Z0
�0��ni

�0� + Ft
�0� · ei�xjd� = 0,

�39�

which gives rise to

�T̄ij
�0� +

3

2
Tij

�0� + 10�S̄ij
�0� =

5

3
eij + Zij

�0� − 4�Z0
�0� + 6�̄�Fij

�0�

�40�

and at the same time fixes

p0 =
2

	
�Z0

�0� + 	Z0
�1�� . �41�

Finally, evaluating the integral

� ���pq
�0� − �̄pq

�0��nq
�0� + �Fn

�0� − 2Z0
�0��np

�0� + Ft
�0� · ep�xpxixjd�

= 0, �42�

we find

3Tij
�0� −

1

7
�T̄ij

�0� + 4�S̄ij
�0� − 24Sij

�0�

=
2

3
eij − 2Zij

�0� − 4�Z0
�0� + 6�̄�Fij

�0�. �43�

Equations �36�, �38�, �40�, and �43� determine the values of

Tij
�0�, T̄ij

�0�, Sij
�0�, and S̄ij

�0� as a function of eij, Z0
�0�, Zij

�0�, and Fij
�0�.

Likewise, the angular components Zij
�0� of the membrane

tension are found from the surface integral over the projected
divergence �Eq. �32��

� ��pq − np
�0�nq

�0���pvq
�0�xixjd� = 0 �44�

which yields
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3

7
T̄ij

�0� + 2S̄ij
�0� = 0. �45�

Having obtained the velocity field as a function of the
shape amplitudes Fij

�0� �and eij, Z0
�0��, we employ the same

strategy to fulfill the kinematic condition �34�:

� �	�t f
�0� − np

�0�vp
�0��xixjd� = 0. �46�

The result is a set of five equations that describe the dynam-
ics of the amplitudes

	�tFij
�0� =

20eij

23� + 32
−

24�Z0
�0� + 6�̄�

23� + 32
Fij

�0�. �47�

For the time being we leave the isotropic part Z0
�0� of the

membrane tension undetermined, and it will be dealt with
later in this paper.

IV. SOLUTION AT FIRST ORDER

The solution at first order is obtained in the same way as
the solution at zeroth order, this is why we shall not dwell
upon this issue. However, we must now apply the boundary
conditions at r=R instead of r=1 �in order to incorporate
consistently the desired order in 	�. To this end, we employ a
Taylor series expansion around r=1. For example, the veloc-
ity field becomes

�vi�r=1+	f = 
vi
�0� + 	f �0�xj

�vi
�0�

�xj
+ 	vi

�1��
r=1

+ O�	2� .

�48�

For the continuity condition we have to evaluate the inte-
grals

� �vi
�1� − v̄i

�1� + f �0�xq

��vi
�0� − v̄i

�0��
�xq

	xid� = 0, �49�

� �vp
�1� − v̄p

�1� + f �0�xq

��vp
�0� − v̄p

�0��
�xq

	xpxixjd� = 0. �50�

Similar integrals are constructed for the first-order stress bal-
ance. The resulting equations allow for the determination of

Tij
�1�, T̄ij

�1�, Sij
�1�, and S̄ij

�1�.
Membrane incompressibility �32� provides us with the ex-

pression of Zij
�1�, and from the kinematic condition �34� we

find at first order the following evolution equations for the
amplitudes:

	�tFij
�1� = −

�s

2
�	psiFpj

�0� + 	psjFpi
�0�� −

24

23� + 32
�Z0

�1�Fij
�0� + �Z0

�0�

+ 6�̄�Fij
�1�� +

4800

7

� − 2

�23� + 32�2Sd�Fip
�0�epj�

+
288

7

1

�23� + 32�2Sd�Fip
�0�Fpj

�0����138� + 192��̄

+ �49� + 136��Z0
�0� + 6�̄�� , �51�

where we have introduced the notation Sd�bij�= 1
2
�bij +bji

− 2
3�ijbll� and �s is the s-component of the vorticity vector.

Note that this equation still contains the undetermined func-
tions Z0

�0��t� and Z0
�1��t�, which must be chosen such that the

dynamics of the amplitudes comply with the available excess
area relative to the sphere.

V. COMBINING ZEROTH AND FIRST ORDER
SOLUTIONS

We now proceed by casting the solutions at zeroth order,
Eq. �47�, and at first order, Eq. �51�, into a single equation.
To this end, we set Fij =Fij

�0�+	Fij
�1� and Z0=Z0

�0�+	Z0
�1�. Thus

we obtain a single evolution equation for the amplitudes Fij:

	
DFij

Dt̄
=

20ēij

23� + 32
−

24�Z0 + 6	Ca
−1�

23� + 32
Fij + 	
4800

7

� − 2

�23� + 32�2Sd�Fipēpj�

+
288

7

�49� + 136�Z0 + �432� + 1008�	Ca
−1

�23� + 32�2 Sd�FipFpj�� . �52�

The quantity

DFij

Dt̄
� �t̄Fij +

1

2
�	psiFpj + 	psjFpi� , �53�

entering this equation, is the Jaumann derivative �note that
we consider all the calculation in the advected frame of the
vesicle, so that we have partial derivative instead of material
derivative as is usually written in the Jaumann derivative�.

	psj is the Levi-Civita tensor. The Jaumann derivative can
also be rewritten as

DM

Dt̄
= �t̄M +

1

2
�� · M − M · �� , �54�

where � is the vorticity tensor. In Eq. �52� time is adimen-
sionalized by �̇−1, and ēij by �̇. The capillary number Ca is
defined as
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Ca =
�0�̇r0

3

�
� ��̇ , �55�

where � is a typical time scale for the relaxation of the
vesicle towards its equilibrium when the flow is set to zero.
In some sense Ca can also be viewed as a measure of how far
from mechanical equilibrium the vesicle is in the course of
its shear induced motion.

We shall now determine the Lagrange multiplier Z0 by
imposing that the shape functions Fij must comply with the
available excess area. In terms of Fij, the surface of the
vesicle is given by

A = 4� + � + O�	4�

= 4� + 	296�

5
�F11

2 + F22
2 + F11F22 + F12

2 + F13
2 + F23

2 �

+ O�	4� . �56�

Note that after recasting the zeroth- and first-order ampli-
tudes into one amplitude, the surface area is conserved up to
O�	4�. This is a very important point, since problems with
constraints always trigger higher order nonlinearities than
those initially present in the physical problem �15�.

Evaluating �tA=0 and substituting Eq. �52� for �tFij, we
find the expression for Z0, which reads

Z0 =
�8�F12 − 6Ca

−1	� + 	A0

1 + 	B0
�57�

with the abbreviations

A0 =
8��1200�� − 2�C0 − 31104�3� + 7�	Ca

−1D0�
35�23� + 32�

,

B0 =
1728��49� + 136�D0

35�23� + 32�
,

which contain the following combinations of the amplitudes:

C0 = F11F12 + F22F12 + F13F23,

D0 = F11F22
2 − F11F12

2 + F22F13
2 + F11F23

2 + F11
2 F22

− 2F23F12F13 − F12
2 F22.

VI. GENERAL COMMENTS AND COMPARISON WITH
OTHER WORKS

Let us make some general comments. If we set formally
	=0 on the right-hand side of Eq. �52� and in Eq. �57�, we
obtain the following equation:

	
DFij

Dt̄
=

20ēij

23� + 32
−

192�

23� + 32

F12Fij

�
. �58�

This is the evolution equation derived in Ref. �4� �where time
is rescaled by �̇−1�, which we call “leading order theory.”
Note that even to this leading order the evolution equation is
nonlinear. This nonlinearity is triggered by local membrane

incompressibility. Note that this markedly differs from drop-
let �11,12� and capsule �13� theories where the leading order
equations are linear. The nonlinearities induce bifurcations
and lead to the three dynamical modes TT, TB, and VB.

In the leading order theory the membrane rigidity �or Ca�
scales out from the evolution equation. Following Ref. �4�,
two groups �8,9� recently attempted to include higher order
contributions beyond Eq. �58�. The calculations presented by
Lebedev et al. �8� and Noguchi and Gompper �8,9� do not
seem to conform to our theory. Lebedev et al. �8� add in the
Helfrich force the next order term, but they ignored the cor-
responding hydrodynamical response. As shown below the
ignored terms are stronger than those retained. This not only
induces quantitative differences, but it is also shown below
that the so-called self-similarity �8� �in that the equations
contain only two independent parameters� does not hold.

Noguchi and Gompper �9� retain the full Helfrich force
�without truncation�, but as Lebedev et al. �8� they did not
take into account the corresponding hydrodynamic response.
In addition, the authors combine, without justification, vari-
ous ingredients: �i� leading order theory �4� for the amplitude
of vesicle deformation in order to compute the hydrodynami-
cal response, �ii� the full Helfrich force �without including
the corresponding velocity field�, �iii� the semiphenomeno-
logical Keller-Skalak �16� theory for the orientation angle of
the vesicle; this last point will become more clear in the next
section. It is not clear why the authors consider it worthwhile
to use a leading order theory for the amplitude of deforma-
tion, but a semiphenomenological theory for the orientation
angle.

It should be stressed that a consistent theory �Eq. �52��, as
presented here, induces higher and higher nonlinearities due
the constraint of a given available excess area. In Sec. VII
we shall present the main results which follow from the full
equation �52�.

In order to compare more precisely with previous analy-
ses, it is convenient to expand the evolution equation �52� in
powers of Fij. For that purpose, we admit that Fij is small
enough, albeit it is formally of order unity. This is a priori
justified by the fact that due to the available excess area
constraint �7� the sum of the amplitudes is 5 /96��1. The
idea is to express Fij in terms of the orientation angle and the
amplitude of deformation. For that purpose we make use of
the following identity:

�
i,k=1,2,3

3xixkFik�t� = �
m=−2

2

a2m�t�Y2m�
,�� �59�

�note that a2m was called F2m in Ref. �4��.
Then using a22=Re−2i� as in Ref. �4�, � coincides with

the orientation angle of the vesicles �Fig. 2� and R is the
amplitude of deformation of the vesicle. Instead of using R,
and for the sake of comparison with �8� we use the variable
� defined by R /2	=cos �. We expand the full equation �52�
in powers of Fij and retain terms up to the higher �fifth� order
in Fij in a consistent manner. We then perform a straightfor-
ward conversion of variables in terms of � and �. We find
for � and � the following equations �where now we use
physical time instead of t̄�:
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T�t� = − S sin � sin 2� + cos 3� + 	�1S sin 2��cos 4�

+ cos 2�� + 	�2S sin 2� cos 2� + ¯ , �60�

T�t� =
S

2

 cos 2�

cos �
�1 + 	�2 sin �� − �� + ¯ , �61�

where we define

S =
7Ca

9

�3�

	2 , �62�

T =
7Ca

720
�10�

23� + 32

�̇
, �63�

� =
1

240
�30

�
�23� + 32�	 , �64�

�1 =
1

28
�10

�

49� + 136

23� + 32
, �65�

�2 =
10

7
�10

�

� − 2

23� + 32
, �66�

and the ellipsis stands for higher other terms of the series.
The first term on the right-hand side of Eq. �60� corresponds
to the leading order theory presented in Ref. �4�. The first
and second terms correspond to the situation treated in Ref.
�8�, where only the higher order contribution in the mem-
brane bending force is included �8,9�. Taking the correspond-
ing hydrodynamical response to the same order into account
�as done here� induces significant changes. A new term, for
example, is the third term on the right-hand side of Eq. �60�
�proportional to �1�. This term is at least of the same order
as cos 3�. Indeed, the term proportional to �1S is of the
order of �1Ca /	. If one has in mind a formal spirit �or a
mathematical spirit, in that Ca is taken of order unity�, then 	
should be regarded as being small. In that case the neglected
terms are of order 1 /	, and are much higher than the retained
term in the Helfrich energy, namely, cos 3� �which is of
order 1�. As a natural consequence of this, the so-called simi-
larity equations �put forward in Ref. �8�, in that the evolution
equations contain only two independent parameters S and �;
while T can be absorbed in a redefinition of time� does not
hold. Indeed, we have three parameters, which are Ca, �, and
�, the excess area �or, equivalently, 	�.

Note that even if we consider 	 not too small �the situa-
tion is worse otherwise�, we have a term proportional to Ca.
If one has in mind a physical situation, then it is known that
most experimental observations operate at Ca significantly
larger than 1 �5,6�, and that the neglected terms are therefore
higher than those retained.

VII. RESULTS

Equation �52� constitutes our basic result that we shall
analyze now. We first analyze the TT regime. Figure 3 pre-
sents the orientation angle as a function of � and compares

the results with previous studies. Instead of a square root
singularity found for the leading order theory �and in the
Keller-Skalak regime �16��, the angle crosses zero quasilin-
early. A point which is worth mentioning is that the TT angle
becomes negative before the solution ceases to exist �signa-
ture of the TB regime�. Before the solution ceases to exist the
VB mode takes place, as discussed below.

In Ref. �4� it was predicted that in the tumbling regime a
VB mode should take place. This was found to occur as an
oscillator �as in a conservative system�, since the frequency
of oscillation about the fixed point �=0 was found to be
purely imaginary. By including higher order terms the fre-
quency acquires a nonzero real part �8�, and the VB mode
becomes a limit cycle �in that all initial conditions in its
domain of existence tend towards a closed trajectory in phase
space �� ,���. As expected from the original theory �4� the
VB mode still occurs in the vicinity of the tumbling thresh-
old. This happens provided that the shape dynamics evolve
with time �breathing of the shape�. Ca is a direct measure for
the comparison between the shape evolution time scale and
the shearing time. The original theory �4� corresponds for-
mally to Ca→
, as can be seen from Eq. �60� and the defi-
nition of T and S. Including higher order terms leads to the
appearance of Ca in the equation.

In Fig. 4 we report on the phase diagram and compare it
to previous theories �4,8�. For small Ca we find, by increas-
ing �, a direct �saddle-node� bifurcation from TT to TB, in
agreement with Ref. �3�. At Ca→
 we recover the results of
Ref. �4� �in that the VB mode coexists with TB and whether

FIG. 3. The angle �0 in the TT regime. Dashed line: the leading
order theory �4�, dotted line: the theory of Ref. �8�, full line: the
present theory.

FIG. 4. The dotted line: theory in Ref. �8�, full line: the present
theory. The same order of discrepancy is found with Ref. �9�.
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one prevails over the other depends on initial conditions; this
is not shown in Fig. 2�. At intermediate values of Ca we find
a belt �or a domain� of the VB mode preceding the TB bifur-
cation, in qualitative agreement with Refs. �8,9�, as shown in
Fig. 4. For a given Ca and by increasing � there is a bifur-
cation from the TT to VB which is of Hopf type �the imagi-
nary part of the stability eigenvalue of the TT mode is imagi-
nary�. Once the VB appears, the TT still exists �but is
unstable against VB�. By further increasing � one encounter
the TB regime. This second transition corresponds to the fact
that the TT mode ceases to exist.

The higher order calculation provided here shows signifi-
cant differences with Refs. �8,9�, as shown in Fig. 4. The
results presented in Refs. �8,9� may be viewed as semiquali-
tative given the disregard of other terms of the same order, as
commented in the previous section. Actually, a simplistic
phenomenological model �17� captures the main essential
qualitative features of Fig. 4.

Figure 5 shows a snapshot of the VB mode. Note that a
pure swinging �a terminology usually used for oscillation of
rigid objects, and adopted in Ref. �9�� would be impossible
within the Stokes limit, since this is forbidden by the sym-
metry of the Stokes equation upon time reversal. The breath-
ing is a necessary condition for the present mode. In the
upper half plane �i.e., when ��0� the shape in the VB re-
gime �dashed line in the figure� is different from the one in
the lower plane �dotted line, rounded shape�. This asymmetry
makes this dynamics possible owing to the fact that the two
shapes �i.e., for ��0 and ��0� can not be deduced from
each other by a simple mirror symmetry with respect to the
horizontal axis.

The basic understanding of the VB mode is as follows.
First we recall that a shear flow is a sum of a elongational
part along ±� /4 �which elongates the vesicle for ��0 and
compresses it for ��0� and a rotational part, tending to
make a clockwise TB. Due to the membrane fluidity the
torque associated with the shear is partially transferred to TT
of the membrane, so that �due to torque balance� the equilib-
rium angle for TT is 0��0�� /4. Furthermore, an elongated
vesicle tumbles more easily than a compressed one �3�. Sup-

pose we are in the TT regime ��0�0�, but in the vicinity of
TB, so �0�0. For small Ca the vesicle’s response is fast as
compared to shear, so that its shape is adiabatically slaved to
shear �a quasishape-preserving dynamics�: a direct bifurca-
tion from TT to TB occurs �3�. When Ca�1, the shape does
not adiabatically follow the shear anymore. When tumbling
starts to occur � becomes slightly negative. There the flow
compresses the vesicle. Due to this, the applied torque is less
efficient. The vesicle feels, so to speak, that its actual elon-
gation corresponds to the TT regime and not to TB. The
vesicle returns back to its TT position, where ��0, and it
now feels an elongation �which manifests itself on a time
scale of the order of 1 / �̇�. Due to elongation in this position,
tumbling becomes again favorable, and the vesicle returns to
��0, and so on. We may say that the vesicle hesitates or
vacillates between TB and TT. The compromise is the VB
mode.

Finally it must be noted that experimentally it has not
been possible to extract a phase diagram for the VB mode. In
Ref. �6� it is stated �in Sec. 3.3� a small number of points
correspond to an observed complex motion, denoted “transi-
tion motion….” In Ref. �5� the authors state shortly before
the conclusion that at large Ca �� in their notation� �10, and
particularly in the close vicinity of the �TB� transition, a new
type of motion was discovered. In both papers it has not been
possible to be more precise. For example, when saying “in
the close vicinity to the transition,” it is not clear how close
it must be. Referring to our Fig. 4, the distance �in the �
direction� between the TT-VB and TB-VB boundaries can be
significant enough �for Ca�2.5, the two values of � are of
about 3.2 and 4.5, respectively�. This is quite a significant
difference. In addition, experimentally the shear rate �or Ca�
was changed. So, if � is chosen in the appropriate interval,
then one could in principle observe the VB mode for a long
period, and in a reproducible manner. We are aware, how-
ever, of the experimental difficulty �such as preparing an
adequate desired viscosity ratio, together with the excess
area� that this system presents. We hope that these questions
will deserve more systematic attention in the future.

VIII. A BRIEF DISCUSSION OF RHEOLOGY

We briefly discuss the implication of the higher order
theory on rheology. A complete discussion on this topic, and
the comparison between droplets and capsules theory will be
presented in the future.

Recently a link between the different modes and rheology
has been presented �10�. It is thus natural to ask how higher
order terms would modify the reported picture. Equation �52�
constitutes a basis for the derivation of the constitutive law,
as in Ref. �10�. Here we focus only on the effective viscosity
as a function of �. In the TB and VB regimes we make an
average of the effective viscosity over a period of oscillation.
The results are reported on Fig. 6.

We see that at small enough Ca, the cusp singularity �inset
of Fig. 6� �10� persists as in the leading order theory, while at
larger Ca the cusp is smeared out by the fact that the transi-
tion towards the VB mode does not show a singularity as
does a saddle-node bifurcation.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

FIG. 5. A snapshot of the VB mode. Solid line: �=0. Dotted
line: ��−0.5. Dashed line ��0.5. Parameters are 	=0.5 and �
=9.

DANKER et al. PHYSICAL REVIEW E 76, 041905 �2007�

041905-8



IX. DISCUSSION AND CONCLUSION

We have extended in a consistent manner the original
theory �4� to higher order, and have analyzed the far reaching
consequences. We have found that three parameters �i.e., the
full set of dimensionless parameters that we can construct
from the original model� survive to the next consistent lead-
ing order, thus ruling out some suspicions on self-similarity
solutions, as announced in Ref. �8�. We have then analyzed
the phase diagram of the evolution equation, and briefly dis-
cussed the behavior of the effective viscosity in the dilute
regime. A particular point is that the next order terms wash
out the cusp singularity of the effective viscosity �10� at the
bifurcation point, provided that Ca is large enough. At low
enough Ca the cusp singularity persists.

We have checked that for high enough Ca�100 �a quite
accessible value in the experiments �6�� the full evolution
equation produces a pseudocoexistence of the VB and TB
solution. By “pseudo” we mean the following: if we start
with an adequate initial condition �say � small�, but the
physical parameters are such that the TB mode should be
expected from the phase diagram �Fig. 4�, then the system
can spend a long time in the VB regime �say about 50 cycles,
or more; typically the number of cycles is of order 1 /Ca�,
before it falls onto the attracting mode, namely, the TB one.
If, on the contrary, the VB mode is expected from the phase
diagram, but the initial condition is such that � is large
enough to enforce TB, then the system spends a long period
of time in the TB regime before it exhibits VB. Since, to date,
no systematic experimental study of the VB mode has been
reported �the only reports show about two temporal periods
�5,6��, our analysis shows that it may prove very difficult to
locate experimentally the boundaries of the various modes,
unless very clean and steady experimental conditions are
produced.

Finally, this model has focused on vesicles. In order to
make a step forward towards red blood cells, it is necessary
to include the cytoskeleton structure, which is known to ex-
hibit nonlinear viscoelasticity. Red cells exhibit some inter-
esting dynamical behaviors �18�. We hope to tackle these
questions along the present line of research in the future.
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