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Mean-field treatment of polymer chains trapped between surfaces and penetrable interfaces
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We study the exact solutions for the problem of adsorption of polymers in a system containing two interfaces
within the mean-field ground-state dominance approximation both for penetrable and nonpenetrable interfaces.
We discuss the case of saturation of the polymer double layer for the limiting case of zero bulk concentration.
Here, the exact solution is controlled by a single scaling variable which describes the coupling between the
interfaces due to the polymer chains. For the case of penetrable interfaces we obtain a nonmonotonous
behavior of the amount of adsorbed polymers as a function of the distance between the interfaces. This leads
to a high- and a low-energy phase for the double layer with respect to the amount of polymers localized. At the
saturation point, the force acting between the interfaces is strictly attractive and monotonously decaying toward
zero for increasing interface distance for both types of interfaces. The exact solution for the chemical equilib-
rium state of the polymer double layer with a semidilute bulk state is governed by two scaling variables and
explicit concentration dependence can be removed. The scaling variables describe the ratio between the inter-
face distance and the bulk correlation length and the ratio between the localization length of the interfaces and
the bulk correlation length, respectively. Using the exact solution on intervals of constant potentials opens the
possibility to treat various localization problems for polymer chains using the appropriate boundary conditions.
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I. INTRODUCTION

Polymer chains can be adsorbed at surfaces or at pen-
etrable interfaces. Penetrable interfaces emerge on structured
surfaces or in layered environments. The latter can be formed
in microphase separated block copolymers, liquid crystalline
or lipid systems. Here, interfaces between two media can act
as attractive and penetrable interfaces for both alternating
and random copolymers as has been shown previously [1].
Structured surfaces carrying a striped pattern of alternating
polymer affinity represent an interface system in two dimen-
sions [2]. The understanding of polymers in environments of
multiple interfaces can lead to applications for selection and
recognition of polymer properties [3,4]. An exact solution for
ideal chains in a layered structure has been recently pre-
sented by Chervanyov and Heinrich [5]. The adsorption of
ideal chains on a periodically patterned surface has been
studied by Stepanow and Fedorenko [6].

In the adsorbed state, conformations of localized chains
are the result of the interplay between adsorption energy,
entropy reduction because of confinement in the adsorbed
state, and the excluded volume repulsion between the mono-
mers [7]. The latter is responsible for the formation of large
loops and tails and thus for an extended adsorption layer [8].
Only excluded volume of monomers leads to saturation ef-
fects at surfaces or interfaces. Thus, taking into account ex-
cluded volume effects is most important to understand the
physics of real polymers close to surfaces or interfaces.

Unfortunately, it is virtually impossible to solve the many
chain problem for a polymer adsorption including all effects
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of conformation statistics and excluded volume. On the other
hand, the effects of excluded volume interactions can be un-
derstood using mean-field concepts, see [7], thus neglecting
fluctuation effects around the most probable polymer state
function (ground-state dominance) within a given geometry
and external potentials. This approach has been applied al-
ready to the formation of adsorption layers onto solid sur-
faces, see [7], and the interaction between two solid surfaces
propagated by adsorbed polymer layers [9,10]. Using mean-
field arguments it has been shown by de Gennes that forces
between impenetrable interfaces mediated by adsorbing
polymers in thermal equilibrium are always attractive [11].
Using a renormalized free-energy functional, de Gennes has
also extended the mean-field approach to incorporate corre-
lation effects in good solvent conditions. Moreover, as has
been shown by Semenov et al., the ground-state dominance
approach of the mean-field model can be improved, for in-
stance, by explicitly including the effect of chain ends [12].
Generally, the mean-field model can be considered as a ver-
satile tool to understand the essential effects of excluded vol-
ume interactions in many chain systems under geometric
constraints, boundary conditions, and external potentials
[7,13]. One of the merits of the mean-field model in the
ground-state dominance approach is to provide exact solu-
tions of the corresponding stationary nonlinear Schrodinger
equation (SNLSE) for piecewise constant potentials, so that
even complex potential environments can be treated analyti-
cally using the appropriate boundary conditions. Moreover,
solutions of the SNLSE are important in many directions of
modern nonlinear physics such as, for example, nonlinear
periodic structures in optics [14] or Bose-Einstein condensa-
tion [15].

In this work we will demonstrate the formalism for the
exact solution of the mean-field polymer adsorption problem
for an array of two potential traps within the ground-state
dominance approximation (GSDA). We will consider the
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case of penetrable as well as impenetrable traps. In particular
we investigate the saturation behavior of polymers in such
environments and we show that there exists a general and
exact scaling at the saturation point. Furthermore, we inves-
tigate the problem of finite bulk density for both penetrable
and solid interfaces.

The rest of the work is organized as follows: In Sec. II we
introduce the model for the well-known case of a single in-
terface. In Sec. III we present the exact solution for the case
of two penetrable interfaces and we discuss the scaling at the
saturation point. The case of two hard walls is solved in Sec.
IV. We consider the case of finite bulk concentration in Sec.
V.

II. LOCALIZATION OF POLYMER CHAINS AT AN
ADSORBING INTERFACE

It is well known that polymer chain statistics is dominated
by the ground-state solution of the Edwards equation [16]
given by

2 52
cdv) Ly .

2.1
6 dx2 kBT ( )

Ajx) = -

Here, ¢/(x) is the part of the state function of the polymer
chain associated with the eigenvalue A, a is the length of a
statistical (Kuhn) segment, U,,(x) denotes the potential en-
ergy of a segment at the position x, and k3T denotes the usual
product of Boltzmann’s constant and absolute temperature.
For simplicity, we have used only one spatial coordinate re-
lated with the symmetry of the potential. We will study plane
surfaces and interfaces where the localization takes place in
the direction perpendicular to the surface and/or interface
only. The ground-state dominance argument can be easily
seen from the formal solution of the partition function (under
the constraints of fixed end points) for the chain given by

Z(x,x") = 2 exp(— NN) () ¢ (x), (2.2)
k

where the index k counts the various solutions of Eq. (2.1).
Now, for large values of N the lowest value for A, the
ground-state solution, dominates the partition function. In the
following we will only consider the ground-state solution, so
we drop the index k for simplicity.

In the presence of an interface (trap) and in the absence of
excluded volume effects, the external potential U, (x) can be
written as

Uext(-x) == kBTK(S(x)’ (23)

where the interface is characterized by the positive value of
the parameter k>0 in the case of attraction of monomers by
the interface and by the negative value of k<0 in the oppo-
site case, the repulsion of monomers from the interface. Note
that « has the dimension of a length scale which might be
considered as the (microscopic) extension of the trap.

Then, the Edwards equation (2.1), which formally corre-
sponds to the time-independent Schrédinger equation for the
function ¢, takes the form
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@ L y)
6 dx*

Nif(x) = — k8(x)h(x), (2.4)

where the x axis is directed perpendicular to the interface. In
such a linear system a localized polymer state can exist only
in the case of an attractive interface (k>0).

The solution of Eq. (2.4) reduces to the solution of the
homogeneous equation

a* d*yx)
6 dx’

AP0 =0 (2.5)

in the regions x>0 and x<<0 with the following boundary
conditions at x=0:

Wlio= Yoo, (2.6)
Jd Jd 6
a—f 0— &—l)f OZ—EK l/i|0 2.7)

Generally, there are two scenarios which can be considered.
First, there exists solutions of Eq. (2.5) with zero density
|/(x)|? at infinity. They correspond to truly localized state
functions. We note already at this point that this type of
solution also describes nonequilibrium (under-saturated) sur-
face states in the case of excluded volume interaction. The
second type of solution is obtained for finite density for x
— o0 of the form |¢(x — )|?=c. The latter solution does not
exist for the linear problem (without excluded volume), as a
ground-state solution, as can be directly seen from Eq. (2.5).

The localized (ground-) state solution of Eq. (2.5) satisfy-
ing the boundary conditions (2.6) and (2.7) reads

—
V3k

Yo = = I (2.8)

and the eigenvalue N\ corresponding to this localized state is
equal to

N =-3k%(24%). (2.9)
The region of the localization of solution is characterized by
the localization length L~ a?/(3«).

If we describe the chain with excluded volume interac-
tions in a self-consistent field, we suppose the interactions
between monomers are repulsive and local. The presence of
other segments provides repulsive potential proportional to
the density ¢(x) [7,17,18]: U,,(x)=kzTvac(x), where v is the
(dimensionless) excluded volume parameter. Consequently,
one can describe each chain as an ideal chain subjected to an
external potential U,,(x). The density c¢(x) is proportional to
c(x) ~ |(x)|? for ground-state dominance (GSD) [7]. In this
approximation the solvent should be considered as marginal
[19]. Tt serves as the simplest approximation which reflects
the interplay between excluded volume effects and confor-
mational entropy as pointed out in the Introduction. Using
these arguments, Eq. (2.1) can be rewritten as follows:
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242 1
Ly, val i+ kB—TUm(x)zﬂ. (2.10)

Nfp=——
v 6 dx?

In the presence of an interface, the external potential U,,,(x)
takes the form (2.3) and the nonlinear equation for a polymer
chain takes the following final form:

2 2
A¢=—%%+Ua|lﬁ|2lﬂ— KS() . (2.11)
Rescaling the variables according to
)\—>£)\ K—>£K x—>)—c l= -
[ ald I V3l
(2.12)

where [ is the excluded volume (EV) length as well as intro-
ducing the dimensionless state function according to ¢
—Jay, we can rewrite the SNLSE (2.11) in the following
standard form:
&y )

A¢=—ﬁ+20|¢| - k8x) i, (2.13)
where the sign function o==+1 (excluded volume v>0 and
v<0, respectively) stands for repulsion and attraction be-
tween monomers, respectively. In order to return to the initial
parameters of the system the transformations (2.12) must be
applied once.

The solution of Eq. (2.13) reduces to the solution of the
corresponding homogeneous equation in the regions x>0
and x <0 supplemented with the following boundary condi-
tions at x=0 (see Ref. [20]):

o= ¥l (2.14)
[ I
i il x Wo. (2.15)

These boundary conditions are obtained by integration of the
eigenvalue equation around the ¢ singularities. However, we
note that this type of boundary conditions has been intro-
duced by de Gennes, see Ref. [7], using the argument that the
adsorptive region of the potential is much smaller as com-
pared to the relevant length scales of the adsorption profile.
Following de Gennes’ approach our results are applicable to
any class of short-ranged potentials (taking into account that
then the boundary conditions replace a more complicated
exact solution). Using this argument, the formal singularities
imposed by the ¢ functions can be avoided.

As the ground state is dominant, we can omit the modulus
and rewrite Eq. (2.13) in the regions outside the interface in
the form

2
Y +Ay—20¢°=0.

5 (2.16)

Our physical system corresponds to the case of the repulsion
between monomers o=+1 (excluded volume v>0) and the
attraction of monomers by the interface («>0). In this case
we have the following expression for the solution satisfying
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the boundary conditions and having zero density at infinity
[A(x) — 0 for |x| —]:

€
=, 2.17
Y= oLl )] 217

where the parameter ¢ is equal to
€=\—-A\. (2.18)

The parameter x,, can only be negative. The solution (2.17) is
completely characterized by the value of the parameter € (or
N\). The parameter x, is expressed in terms of € due to the
boundary condition (2.15) which for our solution (2.17) can
be rewritten as

2€ coth(exy) = - k. (2.19)

It can be seen from this relation, that, as a consequence of
Xx0<0, k can only be positive in the case of v>0, i.e., the
localized state exists only in the case of attracting interface.

Equation (2.13) requires the condition of normalization
which defines, in fact, the total number of monomers per
(dimensionless) unit area,

N= f v [yr(x)|Pdx. (2.20)

—o0

We note that in the standard framework of the GDSA all
monomers in the system are considered to belong to a single
chain and particular effects of the chain ends are ignored. A
generalization of the mean-field equations beyond the
ground-state dominance has been developed by Semenov
and co-workers, see Ref. [12]. For simplicity, we denote N as
the total number of monomers in the system. Note that in
contrast to the case of a linear system [see Eq. (2.4)], in the
nonlinear case the normalization leads to the relation be-
tween the parameters € and N (or N and N). Substituting our
solution (2.17) into the integral (2.20) and taking into ac-
count the relation (2.19) between x, and &, we can finally
obtain the dependence N=N(e€) or, vice versa, e=€(N) [or
A=\(N)]. For our system (v>0;x>0) we arrive at the fol-
lowing result:

N=k-2-e. (2.21)

It is shown in Ref. [20] that three different types of nonlinear
localized states can exist for Eq. (2.13) depending on the
relations between the parameters v and k. In the first case
(v<0; k>0) (1) the interface is attractive, and the maxi-
mum of the amplitude of the localized state is at the point of
the interface (trap). The localized state in the case
(v<0; k<0) (2) has the amplitude maxima located sym-
metrically on both sides of the interface. The last (third) case
(v>0;k>0) (3) coincides with the case under consider-
ation. The dependence A=\ (N) for all possible nonlinear lo-
calized states are shown in Fig. 1.

The maximum value of parameter N in our case (curve 3)
is equal to Ny, = k. This point corresponds to the limit case of
N—0 (or e—0). No more monomers can be added to the
interface in this case. Thus, this point corresponds to the
saturated state of the interface. We note that an eigenvalue of
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2] N

FIG. 1. Dependence N=\(N) for three possible types of local-
ized states: (v<<0;x>0) (curve 1), (v<0;x<0) (curve 2), and
(v>0;k>0) (curve 3). Dependence 3 corresponds to our physical
situation.

the linear system \; is given in rescaled units by

N =— K24, (2.22)

Equation (2.13) can be alternatively derived from a varia-
tional principle using the energy functional E[¢/] (see Ref.

J<+oo (‘ (9‘//
0 07)6

Substituting in Eq. (2.23) our solution (2.17) and using ex-
pression (2.21), we find the following relation between the
total energy E and the total number of monomers in the chain
N (see [20]):

2
+ ol - Ka(x)|¢|2>dx. (2.23)

(2.24)

The first term in this relation describes the energy of N non-
interacting monomers in the chain and corresponds to the
description of the system in the linear approximation; the
second term describes the energy of interaction of monomers
in a pure soliton (as if the interface were absent); and the
third term describes the interaction of bound monomers
through an interface. Note that the sign of the trap (sign of k)
determines only the last term, for x>0 the presence of at-
tractive interface increases the energy of the localized state
(the interface attracts the monomers which repel each other).

Differentiating expression (2.24) with respect to N and
using relation (2.21) for N(e€), we can easily verify the valid-
ity of the relation JE/dN=N\. So the eigenvalue A plays the
role of chemical potential for monomers bound in the local-
ized state.

III. LOCALIZATION OF POLYMER CHAINS AT TWO
INTERFACES

Let us describe a polymer chain in the system of two
penetrable interfaces. In the presence of two interfaces, the
external potential U, (x) in the initial variables (2.12) has
the following form [compare with (2.3)]:

Uyo(x) = — ks Ti[ 8(x + d) + 8(x = d)], (3.1)

where the interfaces are characterized by the value of the
parameter «. As before, in the case of attraction of monomers
by interfaces the parameter « is positive, x>0, the x axis is

PHYSICAL REVIEW E 76, 041803 (2007)

AY

FIG. 2. Profile of all possible solutions localized near two at-
tractive interfaces in the case of a positive excluded volume. Profile
(IS) represents the in-phase symmetric state, (AS) is the antisym-
metric state, and (AA) is the antiphase asymmetric state.

directed perpendicular to the interfaces, and 2d is the dis-
tance between interfaces.

Using the transformations (2.12) by means of which Eq.
(2.13) had been obtained, we obtain the rescaled SNLSE as
follows:

d2
Np=— £+ 20|yfPy— k[ 8(x+d) + Sx —d) ], (3.2)

where the sign function o==+1 for repulsion and attraction
between monomers, respectively, and, as before, we use the
initial symbols of variables A, x, d, and «.

Equation (3.2) reduces to the corresponding homogeneous
equation of the form (2.16) in the regions outside the inter-
faces with the following boundary conditions:

Wearo= Wsaos (3.3)
diy di
= - = =kl (3.4)
dx |egro  AX | 1a0

Again, we consider positive excluded volume (o=+1) and
the attraction of monomers by interfaces (x>0).

We shall discuss in this section the spatially localized
states having zero density far from the interfaces [¢(x) —0
for |x| —0]. The “bulk” states with nonzero density at infin-
ity shall be considered in Sec. V.

Let us study the states of the first kind (“localized” states).
For a positive excluded volume, three different types of sta-
tionary localized states can exist [21]: in-phase symmetric
state (IS), antisymmetric state (AS), and antiphase asymmet-
ric and/or inhomogeneous state (AA). All these dependencies
are shown in Fig. 2. The state with the asymmetric distribu-
tion of the density near two interfaces splits off in a bifurca-
tion way from the antisymmetric solution (as against the sys-
tem with a negative excluded volume). AS and AA states
must be excluded from our consideration because for the
ground state <0 is not possible.

As the ground state is dominant, we are only interested in
the in-phase symmetric solution which in the regions x<
-d(1), x>d(2), and |x| <d(3) has the following form:
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€ !

ox) =+ Us(x) =

sinh[ e(x — xl,z)]’ en(x,q)”

(3.5)

with x, <d and x,;=-x,. Here cn(#x,q) is the Jacobi elliptic
function with modulus g. Also, we introduce

g’ =V1-¢*> and p=€e\2¢*-1, (3.6)

where ¢ is defined in (2.18). The elliptic modulus ¢ varies in
the range from 1/v2 to 1.

The advantage of our method to compare with other ap-
proaches is that we deal with the exact solution. This makes
it possible to consider all piecewise constant potential forms
in a straightforward manner. The solution (3.5) is one param-
eter and is completely characterized by the value of the pa-
rameter € (or N\). The other two parameters ¢ and x; (or x,)
are expressed in terms of e from the boundary conditions
(3.3) and (3.4).

Because two interfaces attract the monomers, a conve-
nient characteristic of a localized state is represented by the
amplitudes A, =¢(x=—d) and A,=¢(x=d) at these interfaces
[2,4,21]. Using the symmetry of the localized state, we can
denote A;=A,=A. Then, the boundary conditions (A1) and
(A2) in terms of the amplitude A can be rewritten as follows:

_ 47
sinh[e(d - x,)]  cn(7d,q)

A=i(-d)=yld) = (3.7)

and

VAT + - +AVA + e =KA. .
A+ A€ — 2" + AVA? + €= KA (3.8)

For details, see the Appendix.

The relations (3.7) and (3.8) determine the parameters A,
Xp, and ¢ as functions of the parameters € and d. In the
general case it can be exactly resolved numerically.

However, a solution can be obtained analytically for the
limiting cases xkd>1 and €—0 (or A—0). In the limit
kd>1 (weak coupling between interfaces) the problem re-
duces to the study of an effective system of two coupled
anharmonic oscillators with a “hard” nonlinearity when the
eigenvalue N increases with the amplitude of the solution.
This problem is described analytically in more detail in Ref.
[21].

After the substitution of three different types of solutions
for the in-phase symmetric state (IS), antisymmetric state
(AS), and antiphase asymmetric state (AA) into the integral
(2.20) defining the total number of monomers in the chain,
we can finally obtain the dependencies N=N(¢€) and the in-
verse dependencies e=e€(N) [or N=\(N)] which are pre-
sented in Fig. 3.

Far from the bifurcation point (A — 0) the analysis within
the simplified model of two coupled anharmonic oscillators
does not hold, but it can be shown that the dependencies for
IS, AS, and AA states terminate at the edge of the spectrum
of linear waves (A=0), and the profiles of these spatially
localized states near the interfaces have the form of algebraic
solitons with power-law asymptotic behavior at large dis-
tances [22]. This case corresponds to the situation when the
total number of monomers tends to its maximum value. A
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*u NG

N

FIG. 3. The dependencies \(N) for the in-phase symmetric (IS)
state, antisymmetric (AS) state, and antiphase asymmetric (AA)
state in the system with a positive excluded volume.

total number of monomers greater than the maximum values
Ni;?), Nggts), and Ni/:tA), corresponding to the boundary of the
band of linear bulk waves N=0, cannot be localized in the
system.

In the following, we focus on the IS state which is real-
ized for the polymer profile. Taking into account the symme-
try of the (IS) solution (3.5) and calculating the total number

of monomers, we come to the following exact result:

oo 400 d
we | lopa=a[ P e JusPas
0

—0 d

sn(7d,q)dn(nd,q)

=2efcothleld x| = 1p+ 27— "

—2qElam(7d,q),q] +2q'*7d,

where E(¢,q) is the elliptic integral of the second type and
am(¢,q)=arcsin[sn(¢,q)] is the elliptic amplitude. Two pa-
rameters x,=x,(€,d) and g=q(€,d) are determined from the
boundary conditions (3.7)(A3) [or (3.8)].

Using relation (A1), we can eliminate parameter x, and
then rewrite Eq. (3.9) in the form

2.2
d,q)dn( nd,
N=2( / CA/ - _6)+2,/sn(71 q)dn(7d,q)
cn“(nd,q) en(nd,q)

- 2nElam(7d,q).q]+2q"*7d. (3.10)

This is still the exact result.
Let us study the behavior of the system at the saturation
point defined by

(3.9)

AN—0 and €— 0. (3.11)

As shown in the Appendix, in this case the amplitude can
be written as
1 1 i

A= == [AN °
d-x; ~2cen(nd,1/42)

(3.12)

The dependence of the parameter g=¢(€,d) [or, equivalently,
1= 1(€,d)], which is necessary in order to obtain N in (3.10),
in this case should be found after the substitution A from
(3.12) into the boundary condition (3.8). In this general case,
as a result of this substitution, we come to the following
transcendental equation for the variable #:
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FIG. 4. The dependence ng,(y) at the saturation threshold. The
plot is obtained by numerically solving Egs. (3.15) and (3.16).

7% en’(9d, 1/\6) + 2k en(7d, 1/\6) - 2\EK7]= 0.
(3.13)

It is now possible to reduce one variable by introducing
the scaling variables

=n/k and y=kd. (3.14)

We note that y gives the overlap of the interface profiles in
terms of the linear solution. Here, y<<1 corresponds to
strongly overlapping interfaces, and y>>1 corresponds to a
weak overlap. Using Eq. (3.14), we obtain

gi Cn3(g,7y, l/\E) +2cn(g,y, 1/\5) - Z\Egnz 0
(3.15)

with the formal solution g,(y). Further we shall use this
function for the calculation of the physical characteristics of
the system, such as the number of monomers trapped be-
tween interfaces and/or surfaces, energy of the system, and
the force acting between two penetrable traps and two solid
walls.

Now let us introduce the reduced monomers number 7,
=Ng/«. Then in the saturation limit €—0 [N(e,d)
—N,,(d)] we have g—1/42, and expression (3.10) trans-
forms into

-

Noa _ V2g, sn(g .,y 1/N’E)dn(g7]y, 1/\6)

en(g,y.1/\2)
[~ [~ 2
—2g,Elam(g,y,1/V2), 1/N2] + g3y.

Here the function g,(y) is the solution of Eq. (3.15). Thus,
the solution of Eq. (3.16) has the universal (scaling) form
N =ng(y) for different values of the parameters « and d.
The numerical solution for ng(y) is presented in Fig. 4.
Starting from a large distance, d, between interfaces (weak
overlap, y>> 1), the saturation parameter ng, decreases with
d as the “bridge” (formed by the overlapping tails of the
profile) between interfaces becomes more powerful, and

tends to its minimum value ng,"~1.63 at a characteristic

Ngat 8y

K cn(g,y, I/VE)
(3.16)
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distance given by the unique value y*=1.11. It increases
again for d— 0 when monomers start to escape outside the
region confined by two penetrable interfaces into the tails on
both sides of the interfaces, and reaches its maximum value
nger=2 for d=0 (strong overlap, y < 1).
In the limiting case y<1 (strong overlap), we have g,
~12-242y and from Eq. (3.16), we obtain the following

result for the function ng,:

Ny =2 =2y, (3.17)

where we take into account the correction to the expression
(A6) for the parameter ¢,

é

, 1
q == 1+—2 +2y.

3.18
2 2K ( )

In the opposite limiting case y>> 1 the interaction (overlap-
ping) between two traps is small only in the small-amplitude
limit when the description of the system can be reduced to a
model of coupled “hard” anharmonic oscillators [21]. Such a
I, where

the eigenvalue \,=—«*/4 (e=«/2).

A few words are necessary about the range of validity of
the obtained solution. Physically, the distance d between two
interfaces cannot be arbitrarily large. In previous work about
ideal chains in an array of traps [2] we have shown that for
large distances between the interfaces the GSDA fails and a
combination of ground states and excited states dominates
the statistics, see also [5]. In this case the chain is localized
around one trap only. This can be interpreted as a crossover
from “bridging” to “nonbridging.” In accordance with this
intuitive result the obtained ground-state solution should not
be valid for very large distances. An obvious limitation
would be given by a distance larger than the stretching length
of a chain, viz., by the total number of monomers multiplied
by the statistical segment length of the chain,
dpax=(N=1)a. On the other hand, a minimal distance d,
for the interpretation of our results is defined by the param-
eter a.

The total energy (per unit area) of the system E is defined
by the integral

e[ (]
(3.19)

Substituting the ground-state solution (3.5) into Eq. (3.19)
and taking into account the boundary condition (3.7), we can
find the following exact expression for the total energy of the
system. Again, we can introduce the scaling variables y and
g,and deﬁne the appropriately reduced energy of the system
€4=Eq/ k. Then, we obtain in the limit case £ —0,

2
+ o]t = k[8x + d) + 8(x - d)]|1//|2)dx.

2g . .
£ —77—[1 +\2 sn(g,y,1/v2)dn(g,y,1/72)]
" 3 end(g,y,11\2) o o

& gy

= . (3.20)
en*(g,y,142) 6

Using the solution of g,(y) given by Eq. (3.15) we obtain a
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0,1 _

FIG. 5. The dependence &4(y) at the saturation threshold.

single variate function &g, (y). The minimum value of ey, as
it follows from (3.20), is equal to e™"=-2/3. The universal
dependence ey, =€, (y) is presented in Fig. 5. The energy of
the saturated two-trap system is thus a monotonously in-
creasing function of the distance between the traps. Note that
the condition of saturation, however, implies an exchange of
chains by changing the distance according to the result given
in Fig. 4. Thus, the system is considered in equilibrium with
free chains in a highly dilute solution (¢—0), which are
populating the interfaces until saturation is reached. Note
that there is no contradiction between the requirement of
saturation and a highly diluted bulk solution for an adsorp-
tion strength per monomer (related by «) of the order of a
few kT [23]. In particular, for changes of the distance be-
tween the interfaces, where the saturation value ng, is de-
creased, chains must be released because of over-saturation
(positive free energy excess).

In Fig. 6 we display the dependence of the function g
from ng. This clearly indicates two different values
(branches) of the total excess energy of the two-interface
system for the same value of the total number of monomers
N localized at the interfaces. These branches corresponding
to the same value of the parameter N are related to two
different distances between interfaces d; and d, that can be

0 T

0.1 _

021

03—

8sat

04

05

061

FIG. 6. The dependence ey,(ng,) at the saturation limit.
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FIG. 7. The dependence f,,(y) at the saturation threshold.

easily seen from the dependence for the total number of
monomers depicted in Fig. 4. Thus, there exist a high-energy
phase (large separation) and a low-energy phase (close inter-
faces).

From the total excess energy we can also calculate the
force (per unit area) acting between the interfaces which is
an important characteristic for practical measurements. In the
general case F=—dE(d,\)/dd. If we introduce the new func-
tion g,/(y)=7'/«* and the reduced force fy,=F/«*, then
we obtain in the saturation limit

-
2y

en’(g,y,1/\2)
X[1+12 sn(g,y, 1/\s’5)dn(g,7y, 12)]

sat =

= = ~
\'Zgi(g”,y +g,)sn(g,y,1/V2)dn(g .y, 1/y2)
cen(g,y, 112)
~ ~. .
X[1++2 sn(g,y,1/v2)dn(g,y,1/v2)]

[~ I~

. 282(8,y +8,)sn(g,y. 1/V2)dn(g v, 1/2)
en’(g,,1/\2)

2g77g,”r g_‘:z

+ = ——. 3.21
en*(g,y.1\2) 2 (3:21)

For different values of the parameter x we have the universal
dependence f,,=f.(y) which is presented in Fig. 7. In the
limit y—0 we have g, ~-2\2, and the minimum value of
fsat from Eq. (3.21) is equal to f5,"=—2. This behavior is in

agreement with that predicted by de Gennes in Ref. [9].

IV. ADSORPTION OF POLYMER CHAINS BETWEEN
TWO HARD WALLS

In this section we describe the adsorption of a polymer
chain confined by two hard but attractive walls and compare
the results with those obtained in the preceding section for
the system of two penetrable interfaces. This situation has
been extensively studied before, see Refs. [11,12]. Our first
aim is to provide the exact solution of the mean-field equa-
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FIG. 8. The dependencies ng,(y) for two penetrable interfaces
and ng,(y) for the confined system of two hard walls.

tion in the GSDA and to discuss it at the saturation point.
Second, we compare the solution with that of the geometri-
cally unconstrained system. In fact, the problem of hard
walls can be considered as part of the solution for the system
of penetrable interfaces.

The nonlinear equation (SNLSE) describing such a sys-
tem has the form of the eigenvalue equation (2.16) with the
boundary conditions (3.3) and (3.4). Now, monomers con-
fined between the surfaces cannot penetrate through them.
Consequently, the density in the region outside the slit be-
tween the surfaces is equal to zero. The solution between the
interfaces ¢ has the form presented in (3.5).

The total number of monomers (reduced value ng,) con-
fined in the system in the saturation limit is represented by
the following expression [compare with (3.16)]:

sn(g,y, 1/72)dn(g,y, 1/72)
.
cn(g,y, 1/72)

- 2g,Elam(g y, 12),142] + g%y.

The function g,(y) is the solution of Eq. (3.15).

In Fig. 8 we compare the solutions ng, =N,/ for the
confined system and ng =N,/ for the system of two pen-
etrable interfaces as functions of the scaling variable y. For
penetrable traps, n(y) decreases with the distance d be-
tween interfaces tending to its minimum value for some dis-
tance and increases again for d— 0. In contrast to the previ-
ous case, for solid walls the dependence ng, =n,(y)
monotonically decreases and vanishes for d— 0, because in
this case, monomers cannot penetrate to the tails outside the
space confined by the interfaces.

At the saturation limit (¢ — 0) the total energy of the con-
fined system has the following form [compare with (3.20)]:

= =
2 sn(gy. 1N2)dn(g,y, 1N2) g
3 cn3(g77y, 1/\6) cnz(g,?y, 1/\6)

ne, =~ 2g

sat 7

(4.1)

c
sat

4
_&
6 (4.2)

; - 3
We can compare the dependencies eg,=F, /> for the sys-
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FIG. 9. The dependencies e¢,(y) for two penetrable interfaces
and eg,(y) for the confined system of two solid walls.

tem of solid walls and ey =E,/«> for the system of two
penetrable interfaces in Fig. 9. It can be seen from the figure
that over all of the ranges of the allowed distances d we have
€t < €su- However, it should be also noted that the number
of monomers (chains) localized in the slit between the hard
walls at the saturation threshold is much smaller as compared
to the case of two penetrable interfaces, see Fig. 8.

In Fig. 10 we compare the forces fi,=F /K" and f5,
=F¢,/k* acting between two penetrable interfaces and be-
tween two hard walls, respectively. We can see from the
figure that both functions tend to zero for large distances d
(see Ref. [9]) and |fS,]| > |f.l over all the ranges of distances
d.

V. FINITE BULK CONCENTRATION

So far, we have described localized states with zero con-
centration at infinity [¢(x) — 0 for |x| — ] having “dynami-
cal” equilibrium at the saturation limit (N,). This can be
approximately realized for highly diluted bulk solutions and
strongly attracting interfaces as discussed above. Another

100

o—o Penetrable
~—a Hard walls

T

L

fsat

0,

0,01

0,001
0,0001 0,001 0,01 0,1 1 10

y

FIG. 10. Comparison of f,,(y) between two penetrable inter-

faces and f5,(v) between two hard walls.
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sort of equilibrium takes place in the system with nonzero
density far from the interface [7,17]. In this case our system
is in chemical equilibrium with the bulk, different from that
given by the solution (2.17) at the saturation point.

Let us start again by reconsidering the case of a single
trap. Finite concentration in the bulk is defined by

lp(x))> — ¢ for |x| — .

(5.1)

The eigenvalue equation has the form of Eq. (2.16) [or
(2.13)]. The solution in this case has the following form [7]:

(x) = ECOth< - ¢ XO),

where the parameter é=12/\. The parameter x, can only be
negative and it is expressed in terms of & due to the boundary
condition at x=0 as follows:

( 2x0) 4
sinh =——.
& %3

It can be easily seen from this relation, that, because x(<<0,
parameter « is positive. With the fixed concentration in the
bulk [|(x— )| — Vc], we have the following relation for
the solution (5.2):

(5.2)

(5.3)

A =2c, (5.4)
and the (mean-field) correlation length takes the form
2 1
£= \ﬁ = (5.5)
N e

Let us now return to the system of two attractive interfaces.
We also note the existence of the “bulk” states with the finite
concentration at infinity according to Eq. (5.1). As before
(see Sec. III) there is a repulsion between monomers, and the
eigenvalue equation has the form of Eq. (3.2). The solution
in this case in the regions x<-d(1), x>d(2), and |x|
<d(3) has the following form:

Yrax)=F Ecoth(x ;1 2), (5.6)
() = — X (5.7)
cn(xx,q)

where x,<d and x;
rameter

=-X,. Also, we have introduced the pa-

1
g\’m. (5.8)
The elliptic modulus ¢ varies in the range from 0O to 1/ V2.
Using Eq. (5.1) we again obtain the relations (5.4) and (5.5).
As before, we introduce the amplitudes at the interfaces
A;=A,=A and rewrite the boundary conditions (3.3) and
(3.4) for the solutions (5.6) and (5.7) as follows:

A= \e"; coth[ \r’;(d - x)]

1-¢° 2
qzcn_l(\/—czd,q>, (5.9)
1-2¢q 1-2¢q

—
=+\2¢c
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7’q"

Al—c+ \/A4—2CA2—4C2—22 =kA. (5.10)
(1-2¢%)

Relations (5.9) and (5.10) determine the parameters A, x,,

and ¢ as functions of the characteristics ¢ and d.

At this point we can again eliminate one of the three
parameters c, d, and « by introducing the scaling variables as
follows:

s=A& k=k&  o=dIE, (5.11)

thus eliminating the explicit concentration dependency from
the solution. Using (5.11) we can rewrite Egs. (5.9) and

(5.10) as
1-¢*> 2
1-28" l( V12 25‘1)

(5.12)

s=coth(6-X,) = V2

with fzzxz/f and

s2—1+\/s4—2s2— ﬁ=ks. (5.13)

If we use Eq. (5.13) to obtain g(s,k), the amplitude can be
formally obtained from Eq. (5.12) as

s=fy(k,0).

Then, we obtain from the first equation (5.12) the formal
solution for the constants X} ;=X 5(k, §). Thus, the exact so-
lution for the amplitudes as well as for the profile can be
expressed as a function of the scaled distance between the
interfaces, &, and the scaled interface attraction, k.

For large values of d=d/¢, i.e., when the distance be-
tween the interfaces is much bigger than the correlation
length, the coupling effects between the interfaces should
become irrelevant (screened by the semidilute solution be-
tween the interfaces). Then, the individual interfaces are in
equilibrium with the solution and Eq. (5.2) holds for each
interface with a respective shift of the x axes. On the other
hand, if the distance between the interfaces is much smaller
than the correlation length and amplitude is much higher
than ¢ (s>>1) the inner solution should be only weakly
perturbed by the finite concentration and the results of the
preceding section hold approximately.

As an example we compare the dependencies for the
scaled amplitude s=s(k) for the fixed values of the parameter
J1in Fig. 11. Thus, if the interface distance is smaller than the
bulk correlation length the amplitude grows approximately
linear with increasing interface attraction.

Other combinations of the three relevant length scales can
be used to express the role of the interface overlap or the role
of the concentration based on the exact relations given by
Egs. (5.6)—(5.10).

(5.14)

VI. CONCLUSIONS

We have obtained exact solutions for the problem of ad-
sorption of polymer chains with excluded volume interac-
tions in systems containing two adsorbing interfaces using
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FIG. 11. The dependencies for the scaled amplitude s=s(k) for
the various values of the parameter 6=0.001, 0.01, 0.1.

the ground-state approximation. An example for such a sce-
nario could be interfaces onto nanostructured surfaces. Using
the exact solution for the SNLSE on intervals of constant
potentials opens the possibility to treat various problems of
localization for polymer chains using the appropriate bound-
ary conditions. The analysis of the special functions relevant
for the actual problem is worked out very well and both
analytical and numerical solutions can be obtained.

For the case of zero bulk concentration we have consid-
ered the polymer layer at the saturation limit. This scenario is
realized if adsorption takes place from a highly diluted poly-
mer solution. Because of the huge gain of free energy per
chain in polymer adsorption, highly diluted polymer solu-
tions lead to saturated surface states, see [7]. For the satura-
tion limit we have derived an exact scaling solution, where
the only relevant control parameter is the measure of the
overlap between the interfaces given by the scaling variable
y=kd which can be considered as the coupling parameter of
the interface-polymer system.

In a marked difference to a polymer localized between
two hard walls, for the case of penetrable interfaces, the satu-
ration density of monomers behaves nonmonotone as a func-
tion of the distance between the interfaces. When the dis-
tance becomes small, the polymer double layer can relax
excluded volume constraints by forming larger loops and
tails in the outside region of the interfaces. Thus, the capacity
of the double interface to localized polymers displays a mini-
mum value ng,"~1.63 at a characteristic value of the cou-
pling parameter y*~1.11, see Fig. 4. Furthermore, we found
the exact expressions for the energy of the double layer and
for the force which is acting between both interfaces due to
the polymer-interface coupling. Both the penetrable and non-
penetrable interfaces of the energy are strictly negative and
the corresponding forces are attractive and monotonously ap-
proaching zero with increasing the distance between the in-
terfaces. We note that the system is taken at the dynamical
equilibrium of the saturation point; changing the distance
between the interfaces also changes the number of chains
adsorbed.

The nonmonotonous behavior of the saturation density of
polymers as a function of the distance between two pen-

PHYSICAL REVIEW E 76, 041803 (2007)

etrable interfaces yields to a “two-phase” behavior of the free
energy as a function of the amount of adsorbed polymers, see
Fig. 6. A low-energy phase corresponds to small distances
between the interfaces, and a high-energy phase corresponds
to large distances between the interfaces.

We have also solved the case of finite bulk concentration
where the polymer double layer is in chemical equilibrium
with the surrounding solution. Here, we have shown that two
scaling variables (corresponding to three relevant length
scales) control the exact solution and the explicit concentra-
tion dependence can be removed. One variable can be chosen
as the ratio between the interface distance and the (mean-
field) correlation length of the solution and the second vari-
able gives the ratio of the interface length (inverse value of
k) and the correlation length of the solution.

In this work we have used a ¢ potential approximation for
the traps which can be considered of the (standard) limiting
case of a steplike potential where the high-affinity part is
much more narrow compared to the low affinity part, thus
simplifying the structure of the interfaces. In forthcoming
works our method will be applied to real interface, where the
attraction depends on the concentration inside the interface
(surface), a problem noted already by de Gennes, as well as
to the adsorption of a polymer chain in a periodic array of
interfaces [2,4,24].

The authors are grateful to Professor A. S. Kovalev for
useful discussions.

APPENDIX: BOUNDARY CONDITIONS AND SOLUTIONS
FOR THE TWO PENETRABLE INTERFACES

As noted in Sec. III the solution (3.5) is one parameter
and is completely characterized by the value of the parameter
e (or N\). Here, we derive the equation to fix the other two
parameters, ¢ and x; (or x,) are expressed in terms of e,
using the boundary conditions (3.3) and (3.4). For our solu-
tion (3.5) the boundary conditions can be rewritten as

€ q'n

sinh[ e(d — x,)] - en(nd,q)’ (ab)
q' 7’sn(nd,q)dn(nd,q) € cosh[e(d - x,)]
cn?(7nd,q) sinh’[e(d - x,)]
K€ (A2)

- sinh[e(d — x,)]’

Using the amplitudes at the interfaces (see Sec. III), we
obtain Eq. (3.7). For the second boundary condition, we ob-
tain

VA2 — g 2P A  + PP+ AVAZ + €= KA. (A3)

Equation (A3) can be reduced to the form given by Eq. (3.8).
At the saturation point defined by Eq. (3.11), we can re-
write the solution (3.5) for ¢ 5(x) in the form
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€

1
1 o(x) =+ + ,

sinh[e(x — x ,)] B X=X,

(A4)

and, as it follows from (3.7), the amplitude at the interface is
equal to

A=~ . (A5)

If we suppose that nd<1, then from (3.7) we have A
~q'n< 1. Substituting this expression into the boundary
condition (A3) [or (3.8)], we come to the following result for
the parameter g:

PHYSICAL REVIEW E 76, 041803 (2007)

1 e )
2
=—|1+—]. A6
q 2( Y (A6)
However, this means that the parameter 7, which is equal to
€ ~
= —— =2, (A7)
g% -1

is not small in the limiting case 7d < 1 because the param-
eter « has an arbitrary value. This means that the parameter g
is close to 1/v2. Thus, the inequality e§<l leads to the limit
case for the parameter ¢, viz., g— 1/+2.

Now, we suppose that distance, d, is not small. The am-
plitude A is also not small, and the boundary condition (3.7)
can be rewritten as given by Eq. (3.12).
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