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We present a theoretical analysis of the phase behavior of colloid-polymer mixtures which applies to all
polymer/colloid size ratios q. It accounts for the crossover from a constant length scale R �radius of gyration�
in the colloid limit �small q� to the concentration-dependent correlation length � in the protein limit �q�1�. We
obtain predictions that fully agree with observations and simulations. In the protein limit the colloid concen-
trations � along the binodals become independent of q and the polymer concentrations � scale as q1/�, where
�=0.77 is the scaling exponent in ���−�: phase diagrams plotted as �q−1/� vs � are then independent of q.
The liquid window in the protein limit is narrow.
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I. INTRODUCTION

In biological and industrial dispersions such as food prod-
ucts �1� or the living cell �2� small colloids �proteins� and
�bio�polymers are often jointly present. The stability of such
mixtures depends on their concentrations and interactions.
For nonadsorbing polymer, the colloid particles are sur-
rounded by depletion layers �3–5�. This depletion arises from
the configurational entropy loss of chains near a surface �6�.
Overlap of depletion layers results in attractive forces �3,4�
between particles in colloidal �7� and biological systems
such as actin networks �8,9� or virus dispersions �10�. Deple-
tion forces induce phase transitions in colloid-polymer mix-
tures �11–13� which depend strongly on the size ratio q
=R /a, where R is the radius of gyration of a polymer coil
and a the radius of a colloid particle.

In the so-called colloid limit �small q�, the binodal poly-
mer concentrations � are below overlap and the polymer
length scale R does not depend on �. For this limit adequate
theory is available �14–19� and the phase behavior is well
understood. It resembles that of atomic fluids �20�: fluid-
solid �FS� and gas-liquid �GL� phase transitions as well as
critical points �cp� and triple points �tp� appear �11,12�.

In the so-called protein limit �q�1� the binodal polymer
concentrations are in the semidilute regime. Here the length
scale is the correlation length �blob size� �, which only de-
pends on �. For this limit the theoretical understanding
�21–23� is much less satisfactory and phase diagrams can
only be obtained numerically �24–26�. Scaling theory �27�
predicts a wide liquid window for small spheres in a sea of
semidilute chains. The underlying assumption that the blobs
are much bigger than the colloids is, however, not supported
by simulations �26� or by the theory proposed in this paper.

The protein limit is of great interest for nanoparticle en-
gineering. Adding nonadsorbing polymers to protein solu-
tions promotes protein crystallization �28–31�. Good-quality
crystals are essential for studying protein structures by x-ray
diffraction. Computer simulations �32� suggest that optimum
protein crystallization conditions are correlated with nucle-
ation from a condensed liquid of protein particles. This is
only possible when GL coexistence is metastable: the stable
liquid window should be narrow so that adding more poly-

mer to proteins can push the system into the metastable GL
regime where the crystalline state is stable.

In this paper we present a unified theory for colloid-
polymer mixtures which includes the crossover in polymer
length scales, from coil size to blob size. The GL region is
much smaller than in existing theory because the blob size
along the protein-limit binodals is smaller than the particle
radius. We derive a scaling law that condenses these binodals
for various size ratios onto a single curve.

II. THEORY

A. Scaling

The relevant parameters �15,16,18,25� for colloid/polymer
phase diagrams are the reduced polymer concentration y
=� /�* in an external reservoir, the colloid volume fraction
�, and the size ratio q=R /a. Here � is the �external� polymer
volume fraction and �* the volume fraction at overlap. The
radius of gyration R scales as N�, where N is the chain length
and ��0.59 is the Flory exponent. We also introduce the
size ratio qs=�s /a, where �s is the depletion thickness
around a colloidal sphere. In our approach qs not only de-
pends on q but also on the polymer concentration: qs
=qs�q ,y�, which captures the crossover in length scales, from
the colloid limit �where qs is independent of y� to the protein
limit �where qs becomes independent of q�.

In the colloid limit the polymer concentrations at GL co-
existence are below overlap �y�1�. In this dilute range the
length scale �s is of order R and independent of y. Then qs
�q, which is the situation described by the free-volume
theory �FVT� of Lekkerkerker et al. �15�. We denote this
theory as FVTL.

In the protein limit y along the binodals exceeds unity and
we have semidilute polymer solutions, with length scale �
��−� �5�. The de Gennes exponent � �=0.77� is directly
coupled to the Flory exponent �: �3�−1��3�−1�=1. The di-
lute length scale R is in the same way related to �*: �*

�N /R3�N1−3��R−1/� or R���*�−�. The ratio � /R is then
only a function of y: � /R�y−�. It is important to note that �
is independent of R, which immediately leads to y�R1/�.

The scaling relation for � /R in semidilute solutions may
be directly translated towards the ratio qs /q in the protein
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limit. In this limit qs�� /a, so qs /q�� /R�y−�. Just as � is
independent of R, qs=� /a is independent of q=R /a:

y � q1/�. �1�

This equation is a key element in our analysis; it applies
generally to colloids in semidilute polymer solutions. We are
particularly interested in ycp �critical point, cp� and ytp �triple
point, tp� since these determine the range over which a col-
loidal liquid is stable. The GL binodal y��� has its minimum
ycp��cp� in the cp and its ends at ytp��tG� �gas side tG of tp�
and at ytp��tL� �liquid side tL of tp�. Clearly, the triple point
has also a solid part, but we concentrate on GL coexistence.
The important implication of Eq. �1� is that phase diagrams
y��� become universal when plotted in terms of yq−1/� vs �.

Not only is qs �hence, qs
cp and qs

tp� independent of q in the
protein limit but this applies also to the colloid concentra-
tions �tG, �cp, and �tL. The tG phase is very dilute in colloids
��tG�0�, and the tL phase is nearly void of polymer so that
�tL is close to 0.49, which is the fluid concentration for hard-
sphere �HS� fluid/solid coexistence in the absence of poly-
mer �33�. Simulations �26� and integral theory �25� show that
also �cp �somewhere between �tG and �tL� becomes constant
in the protein limit.

Equation �1� not only applies to the external �reduced�
concentrations y but also to the internal �reduced� concentra-
tions 	=
y. Here 
 is the fraction of free volume �i.e., the
fraction not occupied by the colloids plus depletion layers�.
It depends only on qs and �, which are independent of q in
the protein limit. Thus, also 
tG, 
cp, 
tL, and the 
’s along
the binodal are then independent of q: binodals 	��� scale
with q just like binodals y���.

As an illustration of Eq. �1� we replot recent data of Bol-
huis et al. �19,26� in Fig. 1. These authors performed large-
scale Monte Carlo �MC� simulations for q=1.05 �19�, 3.86,
5.58, and 7.78 �26� and found that the various GL binodals
	��� differ widely. When their results are replotted as
	q−1/�, as in Fig. 1, we see a nearly universal behavior. The
binodals for the three highest q values collapse onto a single
curve; here we are truly in the protein limit. The binodal for

q=1.05 �open circles� is a borderline case: it coincides ap-
proximately with the universal curve at the liquid side and
deviates downwards at the gas side. For lower q �not shown�
stronger deviations are found since the protein limit is not
yet reached and qs does still depend on q.

B. Free-volume theory

The challenge is to capture these findings in quantitative
theory. For the colloid limit FVTL �15� is a fair approxima-
tion. The grand potential � of a colloid/polymer mixture in
equilibrium with an external reservoir containing only the
polymer solution is separated in an HS part �0 and a polymer
contribution �p. In the original FVTL the solvent is treated
as background and �p is formulated in terms of the polymer
concentration �, the polymer chemical potential �p, and the
free-volume fraction 
 which depends on q and on � but not
on polymer concentration; for the expression 
�q ,��, we re-
fer to the literature �15�. We have shown recently �34� that
the solvent �with reservoir volume fraction 1−�� can be
taken explicitly into account. Through the Gibbs-Duhem rule
�p may be related to the product 
v, which is the osmotic
work to insert a colloid particle �without depletion layer� into
the polymer solution; here, 
 is the external osmotic pres-
sure and v the volume of a colloid particle. The expression
for �p now takes a simple and elegant form

�p = − �
0

y


��
v/�y�dy . �2�

In FVTL 
 does not depend on 
 or y, so Eq. �2� simplifies
to �p=−

v. For the sake of later generalization we keep
the integral form of Eq. �2�.

In dilute polymer solutions 
=� /N and 
v may be sim-
ply expressed in q and y. With �*= �3/4��N /R3 and v
= �4� /3�a3 we obtain 
v=q−3y, which leads to Eq. �3a�. In
the original FVTL curvature effects are ignored: the deple-
tion thickness �s around a sphere is set equal to �p�R next
to a flat plate. Hanke et al. �35� established the relation be-
tween �s and �p or, equivalently, between qs and q. To a very
good approximation this relation may be written as Eq. �3b�:

�
v/�y = q−3, �3a�

qs = 0.865q0.88. �3b�

So now 
 in Eq. �2� is 
�qs ,��. Henceforth we use the ac-
ronym FVTL for the version where curvature effects are ac-
counted for by Eq. �3b�: qs differs from q but is still of the
same order of magnitude and independent of y. Inserting
Eqs. �3� into Eq. �2�, in combination with the standard ex-
pressions for the free energy of an HS fluid or HS solid,
gives the grand potential ��q ,y ,�� for a colloid-polymer
mixture, from which the complete phase diagram may be
calculated. Binodals, triple, and critical GL points follow
from standard thermodynamics and are obtained analytically.
Also the critical end point �cep� �34�, which marks the low-
est q=qcep��0.35� where a colloidal liquid is stable, is found
directly. At the cep the critical �GL� point coincides with the
triple �GLS� point. When q exceeds qcep, both cp and tp

FIG. 1. Monte Carlo simulation data by Bolhuis et al. �19,26�
replotted in the form 	q−1.3 versus the colloid volume fraction �,
for q=1.05 �open circles�, 3.86 �solid circles�, 5.58 �solid triangles�,
and 7.78 �solid squares�.
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change: this defines the critical curve cp�q� and the triple
curves tp�q�. The analysis provides both the critical and
triple curves analytically.

C. Generalized free-volume theory

FVTL breaks down when q exceeds 0.5 because then y
along the binodals exceeds unity, and Eq. �3a� for 
v is
inadequate. Moreover, qs is no longer of order q and depends
on y. We can still use Eq. �2� with 
�qs ,�� but we need new
relations for qs�q ,y� and 
v�q ,y�. We start from the semidi-
lute limit where the length scale is �, substituting � /a for q in
Eq. �3b�. We have shown before �36� that � /�0=0.50y−�; the
prefactor comes from simulations �37� and �0=1.071R �35�
is the dilute limit of �p. Now q in Eq. �3b� is replaced by
0.50qy−�. In combination with Eq. �1� this gives a value of qs
which is independent of q, as expected. For 
v we use a
renormalization-group result �38� 
 /
0=1.62y3�−1, where

0v=q−3y is the dilute limit of Eq. �3a�. This leads to
�
v /�y=3.77q−3y3�−1; 
v�q−3y3� is again independent of
q.

The next step is the crossover between the dilute and se-
midilute limits. We use a linear combination 
=
0+
sd of
the two limits for the osmotic pressure 
 and an inverse-
square combination �p

−2=�0
−2+�−2 for the depletion thickness

�p �39�. These combination rules are in excellent agreement
with simulations and with experiment �36�. Now Eqs. �3� are
generalized to

�
v/�y = q−3�1 + 3.77y3�−1� , �4�

qs = 0.865�q/�1 + 3.95y2��0.88. �5�

For small y, Eqs. �3� are recovered and for high y we reach
the semidilute limits discussed above. Inserting Eqs. �4� and
�5� into Eq. �2� enables the calculation of phase diagrams.
We note that qs is small ��1� even in the protein limit so that
the expression for 
�qs ,��, which agrees with simulations
for qs up to O�1�, remains valid, unlike in FVTL where qs

�q diverges with q.
Figure 2 �solid curves� gives the dependence of qs

cp and
qs

tp on q. The point to the left where the two curves meet

�indicated by the asterisk� is the cep; its coordinates are

qcep = 0.39, qs
cep = 0.27, ycep = 0.43,


cep = 0.38, 	cep = 0.16, �cep = 0.32. �6�

For comparison we show in Fig. 2 also qs�q� for FVTL
�dashed line� according to Eq. �3b�. In this case there is no
difference between qs

cp and qs
tp since the y dependence in Eq.

�5� is neglected. The cep in both models is about the same �in
FVTL qcep�qs

cep=0.33, ycep=0.39� because it is �more or
less� in the dilute regime. Recently, we discussed the impli-
cations of the cep in some detail and made a comparison
with a one-component Yukawa fluid �34,40�.

D. Protein limit

Next we focus on the protein limit. For high q, qs
cp and qs

tp

in Fig. 2 reach a final plateau, as expected. The results for cp
and tp in the protein limit are

qs
cp = 0.47, ycp = 1.03q1/�, 
cp = 0.71,

	cp = 0.73q1/�, �cp = 0.11, �7�

qs
tp = 0.28, ytp = 2.18q1/�, �8�


tG = 1, 	tG = 2.18q1/�, �tG = 0.0022, �9�


tL = 0.14, 	tL = 0.30q1/�, �tL = 0.47. �10�

Except for the internal and external polymer concentrations,
which scale as q1/�, all other characteristics of the critical and
triple points become q independent in the protein limit.
Hence, when the polymer concentrations are rescaled by
multiplying them by q−1/�, universal properties are obtained.
For simulations �26� this was already demonstrated in Fig. 1.
Figure 3 gives our analytical predictions, for q=1 �borderline
case� and q=3,4 ,5 �protein limit�. For the region 	q−1.3 be-
low 1 �the range in Fig. 1�, the overall picture in Figs. 1 and
3 is the same. In Fig. 3 the L branch is somewhat flatter than
in the simulations.

FIG. 2. The dependence of qs
cp �critical point� and qs

tp �triple
point� on the size ratio q �solid curves�. The dashed curve is qs�q� in
FVTL. The asterisks are the critical end points in the two models.

FIG. 3. Analytical binodals in the form 	q−1.3 versus the colloid
volume fraction �, for q=1 �open circles�, 3 �solid circles�, 4 �solid
triangles�, and 5 �solid squares�. The triple and critical points are
indicated.
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So we obtain explicit expressions for the three character-
istic points of a GL binodal �tG, cp, and tL� �Eqs. �7�–�10��.
When we take cp as the reference point, in the protein limit
the external polymer concentrations for a stable colloidal liq-
uid are in the range ycp�y�2ycp, and the colloid concentra-
tions in the range 0���0.11 �gas branch� or 0.11��
�0.47 �liquid branch�. In terms of the internal polymer con-
centrations the gas branch is in the range 3	cp�	�	cp, and
for the liquid branch 	cp�	�0.4	cp. The liquid window is
thus narrow.

We may compare the results for cp in Eqs. �7� with simu-
lations �26� and recent perturbation theory �41�. The colloid
concentration �cp=0.11 agrees nearly quantitatively with
perturbation theory, simulations giving a higher value
��0.25�. The scaling 	cp�q1/� is accurately reproduced in
both simulations and perturbation theory. There is a slight
discrepancy as to the prefactor.

In practice colloids are polydisperse and this suppresses
freezing of a colloidal dispersion, which widens the colloidal
liquid window. Globular proteins are monodisperse and add-
ing long polymer chains to their solutions might therefore
indeed facilitate protein crystallization: it is easy to add so

much polymer that one enters the metastable regime of GL
coexistence where protein crystals are stable �32�.

III. CONCLUSIONS

Analytical theory was presented for the phase behavior of
a dispersion of hard-sphere colloids plus nonadsorbing poly-
mer with excluded-volume interactions, for arbitrary size ra-
tio q=R /a. We find nearly quantitative agreement with com-
puter simulations in the protein limit. In this limit the blob
size along the binodals is smaller than the particle radius.
When the polymer concentrations in critical and triple points
are normalized by multiplying them by q−1.3 universal prop-
erties are found. The liquid window is narrow, which helps in
understanding why adding polymer to small colloids like
proteins promotes crystallization.
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