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We discuss mechanical buckling instabilities of a rigid film under compression interacting repulsively with
a substrate through a thin fluid layer. The buckling occurs at a characteristic wavelength that increases as the
one-fourth power of the bending stiffness, such as the gravitational instability studied previously by Milner et
al. However, the potential can affect the characteristic buckling wavelength strongly, as predicted by Huang
and Suo. If the potential changes sufficiently sharply with thickness, this instability is continuous, with an
amplitude varying as the square root of overpressure. We discuss three forms of interaction important for the
case of Langmuir monolayers transferred to a substrate: Casimir–van der Waals interaction, screened charged
double-layer interaction, and the Sharma potential. We verify these predictions numerically in the van der
Waals case.
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I. INTRODUCTION

The advent of controlled molecular scale films and depo-
sition methods has revealed a number of fine-scale wrinkling
instabilities �1–3�. At the same time, several new and general
features in the buckling of macroscopic films have been
identified �4–6�. Some of these are elaborations of the simple
Euler buckling of a compressed rod or sheet �7,8�. Recently,
Cerda and Pocivavsek �9� have considered rigid, compressed
sheets on the surface of a liquid in the presence of gravity.
This extends an earlier treatment of Milner, Joanny, and Pin-
cus �10� adapted to lipid monolayers at an air-water inter-
face. Under these conditions the Euler buckling occurs not at
zero wave vector but at a finite wave vector determined by
the bending modulus and liquid density. We call this mode of
buckling gravity-bending buckling.

Folding structure of laterally compressed surfactant
monolayers at the air-water interface is a well-known phe-
nomenon �11,12�. The initial instability leading to these folds
may be related to the gravity-bending buckling noted above.
The observed folding length scale resembles the predicted
wavelength of gravity-bending buckling �9�. Analogous fold-
ing has recently been observed in solid nanocrystal monolay-
ers �13�.

Additional topographic structure is observed when com-
pressed lipid monolayers are transferred to a solid substrate
via the inverted Langmuir-Schaeffer method �14�. These sup-
ported monolayers and bilayers are increasingly common in
the study of biological membranes �15–19�. The layer thus
transferred is positioned for easier study. Initially these trans-
ferred layers are separated from the substrate by a cushion of
the carrier liquid. Any topographic patterning of these trans-
ferred layers can readily be observed �16,20�. Such pattern-
ing is likely affected by interaction with the substrate. Like-
wise, any buckling of a supported monolayer must be
affected by the substrate. To study transferred monolayers
under the high compressions where buckling is expected

seems feasible, though to our knowledge no such studies
have been performed.

In this paper we investigate a class of wrinkling instabili-
ties that are generalizations of gravity-bending buckling.
These instabilities occur when a deformable surface such as
a lipid monolayer lies above a solid substrate on a cushion of
fluid. The interaction of the surface with the substrate can
then play the role of gravity. This interaction alters the
gravity-bending instability in several ways. It makes the un-
stable wavelengths depend on depth d. These wavelengths
generally are much smaller than those predicted by the
gravity-bending instability.

In order to investigate the effect of the substrate in its
simplest form, our treatment neglects several effects that
may be important in practice �21�. In practice, some external
forcing on the film is required in order to create the lateral
pressure to induce buckling. For example, regions outside
the region under study may be bonded to the substrate. In
practice the time dependence of the buckling may be impor-
tant in determining its wavelength. This is especially true in
cases where the equilibrium buckling transition is discon-
tinuous. These effects have been extensively explored in the
semiconductor film literature �22–24�. Below we shall
merely assume that a uniform unixial stress is imposed on
the region in question and will only investigate the initial
buckling instability as influenced by the substrate interaction.
Further, we shall suppose that the buckling film is inexten-
sible. In the Appendix we show that the inextensible approxi-
mation is appropriate for the lipid monolayers such as those
of Refs. �11,12�.

Moreover, the interaction alters the qualitative nature of
the instability. The gravity-bending instability is a runaway
or subcritical instability at constant surface pressure. Here
the amplitude of the wrinkles jumps from zero to a large
value determined by other aspects of the system. However,
substrate interactions can change this behavior, making the
amplitude a continuous function of surface pressure. The cri-
terion for a continuous transition can be stated generally in
terms of the second and fourth derivatives of the interaction
potential with separation.

In the following sections we discuss the substrate-bending
instability in terms of a general interaction potential ��d�.
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We determine the unstable wavelength and the condition for
a continuous transition. In the following section we consider
three specific potentials commonly encountered in liquid
films. The first is the Casimir–van der Waals interaction,
��d�=A / �12�d2�. The second is the screened charged
double-layer interaction common in aqueous films with
charged interfaces. The third is the Sharma potential used to
describe molecularly thin water films. All of these potentials
produce continuous wrinkling for sufficiently thick films. We
conclude that this substrate-bending buckling should be
readily observable.

II. THEORY OF WRINKLING INSTABILITY

A. Wavelength of microscopic wrinkles

In the analysis below, we will consider a simplified model
of a Langmuir monolayer. Suppose an insoluble surfactant
layer is sitting at the interface between air and a liquid sub-
phase. The elastic property of a layer, with finite thickness t,
is characterized by the bending modulus B �25�,

B =
Et3

12�1 − �2�
, �1�

where E is Young’s modulus and � is the Poisson ratio in the
continuum theory. A solid substrate is placed under the sub-
phase, as shown in Fig. 1. Interaction between the solid sub-
strate and liquid subphase takes the form of a substrate po-
tential ��d� �26�. For different interactions, the functional
forms of ��d� are different �27�. For example, if the interac-
tion is of pure van der Waals type, we have

��d� =
A

12�d2 , �2�

where A is the Hamaker constant �26�. It can take positive or
negative values depending on properties of substrate and
subphase. Possible retardation effects are not considered in

this paper. In a Langmuir trough, one can compress the sur-
factant layer with external pressure �ex. Elastic strain energy
is stored in the elastic layer upon compression. It is expected
that if �ex exceeds some critical value �c, the elastic layer
will enter a buckled state and relax the strain energy in a
third dimension, similar to the Euler buckling of a rod. We
recall that the critical pressure �c is independent of the com-
pressibility of the layer, although the corresponding strain
depends on the compressibility �7�. In the following analysis
a constant external pressure �ex is exerted on the Langmuir
monolayer. A buckling transition is induced by displacing the
boundary. In the wrinkled state, total area S of the surfactant
layer is

S = �
S0

�1 + ����2�1/2ds . �3�

The above integral is taken over the projected area S0 on the
horizontal x-y plane and ds is a surface element in S0. The
quantity ��x ,y� is the vertical displacement of interface from
a flat state. The height profile of the interface is d�x ,y�=d0

+��x ,y�, where d0 is the height of a flat state with no surface
deformation. We assume that no subphase fluid enters or
leaves, so that the volume of subphase under the initial flat
surface is fixed during deformation,

�
S0

��x,y�ds = 0. �4�

Another parameter needed is the surface density of surfac-
tant, �=N /S, where N is the total number of surfactant mol-
ecules. For constant external pressure �ex, the Gibbs free
energy is written as �10,28�

G = �0�S − S0� + Fl + Fb + Fi + �exS0, �5�

where �0 is the surface tension of a free interface without
any compression. The first term denotes the change in inter-
facial energy. Fl is the surfactant free energy. It is related to
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FIG. 1. One-dimensional model used in the theory. The y axis is pointing out of the figure. �a� Initial flat state with no compression. �b�
Buckled state with large enough compression.
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� via the relation Fl=Sfl���. The last term is an analogy of
the pressure P times volume V term in the Gibbs free energy
of a conventional gas. Fb and Fi are bending energy and
substrate potential energy, respectively. For small surface de-
formation ��� /d0�	1�, the bending energy Fb is given by the
Helfrich energy �29,30�,

Fb =
B

2
�

material surface
�C − C0�2

=
B

2
�

S0

�C − C0�2�1 + ����2�1/2ds , �6�

where C�x ,y� is the mean curvature of the interface and C0 is
the spontaneous curvature of surfactant layer. Again we have
expressed the integral in terms of the projected area as in Eq.
�3�. C0 has no effect on the following analysis and we shall
neglect it henceforth �28�. The substrate potential energy is

Fi = �
S0

��d��1 + ����2�1/2ds − ��d0�S , �7�

where the initial flat state is chosen as a reference state for
the potential energy. Our treatment can be simplified by sup-
posing that the film is inextensible, as justified in the Appen-
dix. In that case, the molecular density � is fixed and the
energy Fl is a mere constant. Then for different values of
external pressure �ex, the equilibrium configuration of the
system is obtained by minimizing the Gibbs free energy with
the inextensibility constraint of the surfactant layer, S
=const. Introducing a Lagrange multiplier 
 to incorporate
this constraint, the functional that we need to minimize is

G� = G − 
�S − �
S0

�1 + ����2�1/2ds� . �8�

In the rest of this paper, we assume that relaxation of strain
energy only occurs in the x direction, as shown in Fig. 1. In
the y direction, the system has translational invariance. As a
result, we may minimize the Gibbs free energy per unit
length in the y direction, which we denote as g�,

g� = g − 
�L − �
L0

�1 + ��̇�2�1/2dx�
= �0�L − L0� + Lfl��� + fb + f i + �exL0

− 
�L − �
L0

�1 + ��̇�2�1/2dx� , �9�

where L is the total length of surfactant layer and L0 is the
projected length in the x direction, as shown in Fig. 1. In the

above expression, �̇ denotes the derivative of � with respect
to the x coordinate. In the one-dimensional model, the mean
curvature C is given by

C = �̈�1 + �̇2�−3/2. �10�

Using this expression, the bending free energy �per unit
length in the y direction� fb and its expansion in small defor-
mation approximation take the form

fb =
B

2
�

L0

��̈�2�1 + �̇2�−5/2dx

	
B

2
�

L0

��̈�2�1 −
5

2
�̇2 +

35

8
�̇4 − ¯�dx . �11�

Similarly, the substrate potential energy f i and its expansion
take the form

f i = �
L0

��d��1 + �̇2�1/2dx − ��d0�L

	 �
L0

dx���d0� + ���d0�� +
��2��d0�

2
�2 +

��d0�
2

�̇2

+
��3��d0�

6
�3 +

���d0�
2

��̇2 +
��4��d0�

24
�4

+
��2��d0�

4
�2�̇2 −

��d0�
8

�̇4 + ¯� − ��d0�L . �12�

Here ���d0� ,��2��d0� , . . . denote the derivatives of � with
respect to the z coordinate and are evaluated in the flat state.
Integration of the first-order term in � vanishes because of
volume conservation, Eq. �4�. Furthermore, we will choose
the origin of the x coordinate such that integration ranges
from −L0 /2 to L0 /2. Different coordinate systems differ only
in small boundary terms, which are negligible if the system
is large enough. In the following discussion it will be clear in
what sense we mean by large enough. Minimizing g� with
respect to L0, L and surface undulation ��x� and keeping only
the lowest order terms in �, we obtain the following equilib-
rium equations of state �10�:

�ex − �0 + ��d0� + 
 = 0, �13�

�0 − ��d0� + 
 +
��Lfl����

��L�
= 0, �14�

B
d4�

dx4 − �
 + ��d0���̈ + ��2��d0�� = 0. �15�

The Lagrange multiplier 
 is related to the external pressure
�ex, 
=�0−�ex−��d0�. Moreover, the equilibrium shape of
the interface ��x� must satisfy the above differential equa-
tion. Using an Ansatz of sinusoidal deformation, ��x�
=h sin�qx�, where h is the amplitude and q is the wave num-
ber, we obtain

Bq4 + ��0 − �ex�q2 + ��2��d0� = 0, �16�

where 
=�0−�ex−��d0� has been used �by Eq. �13��. We
have the following relation between external pressure �ex
and wave number q:

�ex − �0 = Bq2 +
��2��d0�

q2 . �17�

An equivalent equation was obtained by Huang et al. �31�.
Minimizing the right-hand side of Eq. �17� with respect to q,
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we obtain the smallest external pressure �c for buckling in-
stability and critical wave number qc,

qc = ���2��d0�
B

�1/4

,

�c = 2��B/��2��d0��1/4,

�c = �0 + 2�B��2��d0��1/2. �18�

If the gravitational energy of a liquid subphase �in air� is
considered, we may choose the flat state as reference and
take ��d�=�g�2 /2. The threshold external pressure �c and
critical wave number qc in this particular case are

�c = �0 + 2�B�g�1/2,

qc = ��g

B
�1/4

. �19�

The results in Eq. �19� were obtained by Milner et al. in Ref.
�10�. Gravitational energy is important in macroscopic scale
with relatively thick liquid subphase. However, in micro-
scopic scale �d
100 nm�, different types of substrate inter-
action between solid substrate and liquid subphase, e.g., van
der Waals interaction, become dominant, while gravity is
negligible. The buckling transition now leads to microscopic
wrinkles. Our result in Eq. �18� is a generalization to this
microscopic range. The effect of different types of interac-
tion will be discussed in a later section.

B. Second-order buckling transition

In the preceding section, we used the small deformation
approximation and expanded the Gibbs free energy to the
lowest order in surface displacement ��x�. A relation between
external pressure �ex and wave number q of wrinkles is ob-
tained in Eq. �17�. In order to study the undulation amplitude
h and possible order of the buckling transition, higher order
terms in the expansion should be included in the analysis. We
are particularly interested in finding out the existence condi-
tions for a continuous, second-order transition. From Lan-
dau’s classical theory of phase transition �32�, a first-order
�discontinuous� transition will occur if the coefficient of the
fourth-order term of free-energy expansion with respect to
the order parameter ���x� in our case� is negative. In this
section, we will include terms up to the fourth order of �.
The inextensibility constraint of the surfactant layer yields

L = �
L0

�1 + �̇2�1/2dx = const. �20�

Under the inextensibility constraint �20�, we can drop con-
stant terms in expression �9� and minimize with respect to
the following functional of L0 and ��x�:

g1 = ��ex − �0�L0 + fb + f i + ��d0�L . �21�

The projected length L0 in the x direction and the surface
deformation ��x� are not independent variables. They are re-
lated through the constraint �20�. Assuming sinusoidal defor-

mation, ��x�=h sin�qx�, it leads to an expression of L0 in
terms of L, h, and q. We will revisit the assumption of in-
compressibility in Sec. V. Inserting this expression for L0
into Eq. �21�, we see that the functional g1 has the form of
Landau free-energy expansion �32�. First, we compute the
expression for L0. Expanded to the fourth order in ��x�, i.e.,
h sin�qx�, the constraint �20� is

L = �
−L0/2

L0/2

dx�1 + �̇2�1/2 	 �
−L0/2

L0/2

dx�1 +
1

2
�̇2 −

1

8
�̇4�

	 L0�1 +
1

4
h2q2 −

3

64
h4q4� . �22�

In the last step, we keep only extensive terms, proportional
to the size of the system L0, and neglect boundary terms. The
boundary terms are of the order of a wavelength of wrinkles
2� /q. The approximation made in Eq. �22� is thus essentially
that the wavelength of wrinkles is much smaller than the
dimension of Langmuir system in the x direction, �qL��1. If
this condition is satisfied, the approximation �22� is valid and
we obtain the following expression for the projected length
L0:

L0 = L�1 +
1

4
h̃2 −

3

64
h̃4� 	 L�1 −

1

4
h̃2 +

7

64
h̃4� , �23�

where the slope amplitude h̃=hq is a dimensionless param-

eter and �h̃�	1 in the small deformation approximation.
Similarly, expanding the functional g1 in Eq. �21� to the
fourth order in � and neglecting boundary terms, we obtain

g1 	 L0
− 
 +
h̃2

4
�Bq2 + ��d0� +

��2��d0�
q2 �

+
h̃4

64
�− 10Bq2 − 3��d0� +

2��2��d0�
q2 +

��4��d0�
q4 �� ,

�24�

where 
=�0−�ex−��d0� is the Lagrange multiplier defined
in the preceding section. g1 depends on the dimensionless

variable h̃ and wave number q. Using the expression of L0 in
Eq. �23�,

g2 � g1/L 	 − 
 +
h̃2

4
�Bq2 + 
 + ��d0� +

��2��d0�
q2 �

+
h̃4

64
���4��d0�

q4 −
2��2��d0�

q2 − 7
 − 7��d0� − 14Bq2� .

�25�

The equilibrium configuration minimizes the value of g2. In
the above expression g2→−� as q→�. It seems that the
minimum value of g2 does not exist. This paradox is solved
by noticing that the value of wave number q cannot vary
arbitrarily. In the small deformation approximation, we have

assumed that h̃=hq is a small quantity. As a result, q cannot
be arbitrarily large. Furthermore, q should be close to its
critical value qc near transition,
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q = qc�1 + �� , �26�

where � is a small dimensionless parameter and ��0 if
wave number q is a continuous function of compression.
Using the expression �26� for q and keeping the terms up to
the second order in �, we obtain

g2 	 − 
 + A1h̃2 + A2h̃4, �27�

where the coefficients A1 and A2 are quadratic functions of �,

A1 =
1

4
��c − �ex� + �2� , �28�

A2 =
1

64
�a − 16b − 7
 − 7��d0��

+
�

16
�− a − 6b� +

�2

32
�5a − 10b� , �29�

where the two parameters b and a are defined as

a � �B��4��d0��/��2��d0� ,

b � �B��2��d0��1/2. �30�

The minimum value of g2 exists for some positive x and �,
only if the coefficients A1 and A2 satisfy the inequalities

A1 
 0, A2 � 0. �31�

Furthermore, if inequalities �31� are true, g2 can achieve its

minimum at h̃min and �min,

h̃min = Dh̃��ex − �c�1/2,

�min = D���ex − �c� , �32�

where Dh̃ and D� are some positive coefficients. Obviously,

h̃min and �min are positive when �ex��c and approach zero,
as the external pressure �ex approaches its threshold value

�c from above. In other words, the values of h̃min and �min
can be made arbitrarily small by approaching the transition
point. As a result, the terms involving � in A1 and A2 are of
higher order and can be neglected in comparison with the
finite constant term. The inequalities �31� are reduced to

�c − �ex 
 0, �33�

a − 16b − 7
 − 7��d0� � 0. �34�

The first inequality will be true if �ex��c. Using the ex-
pression of �, a, and b, we can rewrite the second inequality
as

�B��4��d0��/��2��d0� − 2�B��2��d0��1/2 � 7��c − �ex� .

�35�

Since the right-hand side approaches zero from below as �ex
decreases to �c, we get the condition

��4��d0� � 2���2��d0�3

B
�1/2

, �36�

where we have used the expression �18� for qc. In order to
have a second-order buckling transition, the inequality �36�
is the condition that must be satisfied by the substrate poten-
tial ��d�. The above criterion for the order of buckling tran-
sition does not change after including the second harmonic
term �h sin�2qx�. Because � does not affect A1 and enters A2

as �2h̃2, the second harmonic term affects g2 only at order h̃6

or higher. As a result, it does not change the criterion in
inequality �36�. In the case of gravitational potential energy
of liquid subphase, ��d�=�g�2 /2, we have ��2��d0�=�g�0
and ��4��d0�=0. The relation �36� cannot be satisfied. There-
fore, we will have a first-order buckling transition in this
case �10�. However, the relation �36� may be satisfied for
some types of substrate potentials. We will discuss its ex-
plicit forms in the next section and consider the possibility of
a second-order buckling transition for different types of in-
teraction. Although our conditions are necessary for a con-
tinuous transition, they are not completely sufficient. To
show that no discontinuous transition occurs, we would have
to show that no displacement ��x� has a �min
�c. We con-
sidered only small and harmonic ��x�.

III. EXAMPLE POTENTIALS

In this section, we will consider some examples of sub-
strate potentials and find out the corresponding existence
conditions for the second-order buckling transition.

A. Nonretarded van der Waals interaction

Nonretarded van der Waals interaction between liquid
subphase and solid substrate takes the form �26�

��d� =
A

12�d2 . �37�

Here A is the Hamaker constant and has the dimension of
energy. It can be positive or negative depending on the prop-
erties of liquid subphase and solid substrate. If A is positive,
van der Waals interaction leads to an effective repulsion be-
tween liquid-air and liquid-substrate interfaces and favors a
thicker liquid film, i.e., larger d. On the other hand, if A

0, the liquid film can be unstable. Spontaneous fluctuations
may rupture the liquid film via spinodal dewetting �33�. The
value of A is typically in the range of 10−20 J to 10−19 J
�26�. From Eq. �18�, we have the critical wave number qc
and wavelength �c,

qc =
1

d0
� A

2�B
�1/4

,

�c = 2�d0�2�B

A
�1/4

. �38�

Thus qc and �c exist only in the case A�0, i.e., for stable
liquid subphase. The second-order buckling transition re-
quirement �36� reduces to
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A 
 200�B , �39�

which does not depend on the thickness of the liquid sub-
phase d0. This independence of thickness can be understood
by noticing that as we increase the thickness of liquid sub-
phase d0, van der Waals potential energy density decreases as
A /d0

2. Meanwhile, the local curvature of surfactant layer C is
of the order of 1 /d0, so bending free energy density varies as
B /d0

2, which has the same functional form as van der Waals
interaction. As a result, we expect the criterion does not de-
pend on the thickness of the liquid subphase d0 and is a
relation between the Hamaker constant A and bending modu-
lus B. As long as A and B satisfy condition �39�, microscopic
wrinkles can be formed through a second-order buckling
transition. For a lipid monolayer B�10kT �34�, which is 4
�10−20 J at 25 centigrade. The smallest �c compatible with
Eq. �39� is

�c min = 2�d0/
10 � 2.0d0. �40�

The wavelength �c increases only gradually from the mini-
mum because of the weak dependence on B /A in Eq. �38�.
For practical purposes, the buckling wavelength is confined
to scales of order d0. In the microscopic range that we are
discussing, d0
100 nm. Typically, the dimension of the
Langmuir system L in the horizontal direction is about 1 mm,
so the condition of a large enough system �qcL��1 is satis-
fied.

B. Charged double-layer interaction

The charged double-layer interaction has the form �27�

��d� = �0 exp�− �d� , �41�

where 1/� is the Debye screening length. The coefficient �0
is a constant depending on zeta potentials of two surfaces
and electrolyte concentration in between. For a 1:1 electro-
lyte, �0 can be written as

�0 =
64kT�1�2Cs

�
. �42�

In Eq. �42�, T is the temperature and Cs is the concentration
of electrolyte in the bulk. Moreover �i �i=1,2� is related to
zeta potentials �0i of the two surfaces �27�,

�i = tanh�e�0i/4kT� . �43�

The potential �0 is positive if two electrical surfaces have
charges of the same sign and repel each other. In the case �0
is negative, two electrical surfaces attract each other; this
may rupture the liquid film via unstable modes of undulation.
The above equation is valid in the weak overlap approxima-
tion, in which the overlap between electrical double layers is
small �35�,

�d � 1. �44�

From Eq. �18�, we have the critical wave number qc and
wavelength �c,

qc = ��2�0

B
exp�− �d0��1/4

,

�c = 2�� B

�2�0
exp��d0��1/4

. �45�

Thus �c and qc exist only in the case �0�0, i.e., for stable
liquid subphase. The second-order buckling transition condi-
tion �36� takes the form

d0 �
1

�
ln�4�0

�2B
� . �46�

The smallest �c compatible with condition �46� is

�c min = 2
2��−1. �47�

It is on the order of the Debye screening length �−1. The
wavelength �c is an increasing function of d0. For example,
we consider a negatively charged mica substrate and a nega-
tively charged conventional liposome �lecithin/cholesterol
6:4 molar ratio�. As an electrolyte, we consider NaCl at con-
centration Cs=0.001 mol/ l. In this case, the Debye screen-
ing length is �−1�10 nm �27�. At pH 5.8, the zeta potentials
of mica surface �36� and conventional liposomes are �37�

�0mic = − 104mV and �0 lip = − 20mV. �48�

The value of �0 is calculated as

�0 � 2.2 � 10−4 �J/m2� . �49�

By the estimation of the bending modulus B�10kT �34�, the
condition �46� reduces to

d0 � 8.1 nm. �50�

C. Sharma potential

The Sharma potential is used widely in studies of wetting
phenomena between different liquid thin films and solid sub-
strates �38–40�, e.g., water on mica. It includes both the
apolar �Lifshitz–van der Waals� and polar interactions and
has the form

��d� = SAP�dc
2

d2� + SP exp�dc − d

l
� , �51�

where SAP and SP are apolar and polar contributions to the
spreading coefficient. l is the correlation length for polar liq-
uid, and dc is the Born repulsion cutoff length �38�. In this
case, the critical wave number qc and wavelength �c have the
form

qc =
1

d0B1/4�6SAPdc
2 +

SPd0
4

l2 exp��dc − d0�/l��1/4

,

�c = 2�d0B1/4�6SAPdc
2 +

SPd0
4

l2 exp��dc − d0�/l��−1/4

.

�52�

The existence requirement of the second-order buckling
transition yields
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120SAPdc
2l4 � − SPd0

6 exp�dc − d0

l
�

+ 2l/
B
6SAPdc
2l2 + d0

4SP exp�dc − d0

l
��3/2

.

�53�

For example, we consider a lipid monolayer, with bending
modulus B�10kT, sitting on top of water with a mica sub-
strate below. The numerical values of coefficients are SAP

=20 mN/m, SP=48 mN/m, l=0.6 nm, and dc=0.158 nm
�39�. The wavelength �c is an increasing function of d0. In
the microscopic range, where the thickness of water sub-
phase d0
100 nm, we obtain an upper bound for �c,

�c � 1.2 �m. �54�

Obviously, the condition �qcL��1 is guaranteed. Further-
more, the inequality �53� is true for any positive value of d0.
In other words, the buckling transition will always be second
order if the Sharma potential correctly describes the interac-
tion between water subphase and a mica substrate. The fol-
lowing dimensionless quantity changes very slowly with the
value of d0:

� � B1/4�6SAPdc
2 +

SPd0
4

l2 exp��dc − d0�/l��−1/4

. �55�

In the range of d0 between 1 nm and 100 nm, �� �0.8,1.9�.
Thus, the critical wavelength �c can be written as

�c = 2�d0� � 5.0d0. �56�

For the estimation in the last step, � takes the smallest value
0.8 in this range.

IV. NUMERICAL RESULTS

In order to verify our results and explore the predicted
wrinkling phenomena concretely, we have done a discrete
numerical implementation of the system. The numerical

simulation was carried out using the MATHEMATICA program.
We modeled the surfactant layer by a one-dimensional chain
of nodes connected by springs with unstretched length a and
spring constant k. The unstretched length a is set to be 1 in
the simulation for convenience. In order to impose the inex-
tensibility constraint, we set the spring constant k to be a
very large value. A bending energy of B
i,�i+1�

2 /2 is assigned
to every pair of adjacent springs, where 
i,�i+1� is the angle
between these two springs along the chain direction. The
total bending energy fb is a sum of all pairs along the chain.
In the numerical simulation we set the free liquid-air surface
tension in our theory �0=0. The substrate potential is dis-
cretized correspondingly by replacing the integral with a
summation along the chain. With no compression the chain
adopts a flat configuration lying on the x axis. In the simu-
lation, the first node is fixed at the origin. In order to reduce
the influence of boundary effects in a finite system used in
the simulation, we fix the z coordinate of the last node to be
zero, while its x coordinate was determined by the amount of
compression �, as shown in Fig. 2. All the other nodes are
movable both in x and z directions in the process of minimi-
zation. The total free energy g� of this discrete model takes
the form

g� = �exL0 + fb + f i + fk = �exL0 + g1
�, �57�

where fb, f i, and fk are bending energy, substrate potential
energy, and elastic energy stored in the springs. The quantity
g1

� is the sum of these. For the flat reference state, the above
three energy terms are zero. So the total free energy for the
flat state is

g� = �exL , �58�

where L is the total length of the chain. The compression is
�=L−L0. At each fixed amount of compression �, we mini-
mized the value of g1

���� and computed the smallest external
pressure �min��� needed to reach this compression via the
following equation:

x

z

x

z

(a). flat chain of springs. (b). compressed chain of springs.

∆∆∆∆

L
L0

FIG. 2. �Color online� Discrete model of one-dimensional chain of springs used in the simulation. �a� Flat state with no compression. �b�
Buckled state with large enough compression.
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�min��� =
g1 min

� ���
�

. �59�

We chose a value of d0 such that the predicted �c was com-
mensurate with the system, namely �c=10. Then starting
from a finite amount of compression, e.g., �=1%, we gradu-
ally lowered the value of �. If our theory is correct, the chain
will approach a sinusoidal shape with wavelength �c. More-
over �min��� should approach �c as � goes to zero. The
order of buckling transition can be deduced from the func-
tional shape of �min���. For a second-order or continuous
transition, �min��� is a monotonic increasing function of �.
There is no jump when crossing the transition point. In the
case of a first-order transition, �min��� is not monotonic. It
has a minimal value �min

� at a nonzero compression ��. As a
result, as soon as �ex exceeds �min

� , the configuration will
jump to this finite amount of compression showing the prop-
erty of a first-order buckling.

A typical sequence of chain configurations with 41 nodes
as we changed the amount of compression is shown in Figs.
3 and 4. Figure 5 shows the agreement between predicted
values of �c and �min from the simulation for several cases.
It is noticed that �c is a constant function of A, if the buck-
ling wavelength �c is fixed.

Verifying the predicted transition from continuous to dis-
continuous wrinkling proved to be more subtle. Even though
the ratio A /B is nearly a factor of 2 above the predicted
threshold, we did not see any evidence of discontinuous
buckling using the discrete model. To understand this re-
quired a second numerical method. As we discuss below, it
reveals that the discontinuity is too weak to have been seen
in the discrete model.

The second numerical method is based on a continuous
model. To simplify the calculation, we took a single sinu-

soidal mode as Ansatz, h sin�qx�. For convenience, only one
period of wrinkling is included in the continuous model,
while a real system is composed of many copies of it. The
wavelength � changes as we change the amount of compres-
sion �, �=�c−�. Using a similar approach as the discrete
model described above, we can compute �min��� for each
amount of compression. The order of transition is still deter-
mined by the functional shape of �min���. This time not only
the values of �c but also the order of buckling are in good
agreement with our theoretical prediction. The paradox with
the discrete model is also explained. As it is shown in Fig. 6,
the first-order transition is very weak in the case of van der
Waals interaction. With A /B=1000, �min has a minimal
value at 1% compression with a 0.6% change in �min. Thus
the buckling transition is first order. However, such a small
change in �min cannot be detected in the above discrete
model. Based on the above numerical results, our theory
makes good prediction for the substrate-induced buckling
transition.

0 10 20 30 40

-0.4

-0.2

0

0.2

0.4

0.6

0.8

■ 0.1%

1%

0 10 20 30 40
X

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Z

FIG. 3. Configurations with 41 nodes as compression �
changes. The box in the graph shows the amount of compression.
van der Waals interaction is used in this simulation. Parameter val-
ues, A=200, B=1, d0=3.780 36, k=1011. The predicted wavelength
of wrinkling, �c=10. The nonuniformity of the amplitude with 1%
compression is due to nonlinear effects approaching a possible
wrinkle-to-fold transition �9�. The position of a fold could change
for different initial conditions of minimization.
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-0.06
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-0.02

0
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0.04

0.06

0.08

FIG. 4. Configurations with 41 nodes as compression �
changes. The box in the graph shows the amount of compression.
Parameter values are the same as in Fig. 3.

0 200 400 600 800 1000
0.6

0.7

0.8

0.9

1.0

Πmin &Πc

A / B

FIG. 5. �Color online� Theoretically predicted �c and �min from
simulation as functions of ratio A /B. B is fixed at 1. Solid line
represents prediction from theory. Discrete points are values of
�min from the simulation.
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V. DISCUSSION

In the preceding sections, a substrate-bending model was
constructed. Here we discuss the implications of this model.
Using our model, we have made a prediction about wrinkling
wavelength �c with large enough compression �ex��c and
the order of buckling transition. In order for our mechanism
to account for wavelengths of hundreds of nanometers, the
trapped fluid layer itself would have to be many nanometers
thick. During the transfer of a monolayer to substrate, such
thick fluid layers usually exist. The compressive stress re-
quired to buckle the surfactant layer could be developed dur-
ing this transfer and rapid drying after deposition.

The wrinkling mechanism predicted here is expected in
any supported monolayer or bilayer system with sufficient
compression. A well-defined wrinkling wavelength �c is
given in terms of the thickness of the subphase d0, the bend-
ing modulus of the surfactant layer B, and functional form of
the substrate potential ��d�. Information about these micro-
scopic variables is embedded in the experimentally observed
wavelength. It is especially useful if one can control the ex-
ternal pressure �ex. The properties of gravitational wrinkles
have been experimentally studied �9�. Gravitational buckling
appears to give rise to a strongly first-order wrinkling-to-
folding transition, which contrasts with our very weak first-
order transition in the case of van der Waals interaction.
Some other forms of substrate potential ��d� may give rise
to a stronger first-order transition.

These surfactant layers are potentially subject to another
kind of instability different from the extensive wrinkling in-
vestigated here. The boundary conditions may be such that
the boundary region buckles while the bulk of the layer is
still in a stable state. These boundary induced deformations
of surfactant layers have been studied �41,42�. Such bound-
ary buckling was an important factor in our discrete simula-
tion. It prevented us from studying arbitrary wavelengths.
Also our methods only allowed us to study the region of
incipient instability. There may be interesting phenomena
analogous to the gravitational wrinkling-to-folding transition
that we have missed.

Inextensibility of the surfactant layer is an important as-
sumption in our theory. If this constraint were released, the
system would have a compression mode as an extra degree
of freedom to store elastic energy besides the bending mode
studied above. As shown in the Appendix, in the limit of
small deformation approximation, finite compressibility in-
fluences only fourth order and higher terms in the free en-
ergy, so it does not change the expressions of the threshold
external pressure �c and the critical wavelength �c. More-
over, if the system were not too far away from the transition
threshold between first-order buckling and second-order
buckling, the inextensibility would be a good approximation
in the experiments of interest here.

VI. CONCLUSION

As supported monolayers and bilayers become more com-
monly studied, we expect that the type of wrinkling pre-
dicted here will be observed and used to infer local proper-
ties, such as substrate depth, bending modulus of surfactant
layer, etc. It will be of interest to see how such buckling
occurs in time, and what counterparts of the wrinkling-to-
folding transition might exist.
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APPENDIX

To estimate the influence of compressibility, we assume
that t is the thickness of the surfactant layer. The bending
modulus B varies as t3, while the compressibility modulus K
is proportional to t �43�: B /K� t2. The fourth-order term of
bending free energy takes the form

b4 =
5B

4
�

L0

�̇2�̈2dx . �A1�

In the limit of small deformation approximation, derivatives
of � can be approximated as

�̇ 	 h/�c,

�̈ 	 h/�c
2. �A2�

Inserting Eq. �A2� into the expression of b4, we obtain

b4 	
5Bh4L0

4�c
6 . �A3�

The compression free energy takes the form
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0.792
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0.794

0.795Πmin

Log(∆)
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FIG. 6. �Color online� �min versus ln��� for very weak first-
order transition in the case of van der Waals interaction, A=1000,
B=1, d0=5.652 95. The critical wavelength is �c=10.
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Ek =
K

2
�

L0

�2�1 + �̇2�1/2dx , �A4�

where K is the compressibility modulus. � is the percentage
change of the length of surfactant layer. Choosing the con-
figuration of the surfactant layer just before buckling as a
reference state, we have

� = 1 −

��
L0

�1 + �̇2�1/2dx�
Lc

�
�ex − �c

K
, �A5�

where Lc is the length of the surfactant layer just before the
buckling transition. If buckling is not allowed, the compres-
sive strain � is evidently given by the fractional decrease in
L, viz. �Lc−L0� /Lc. However, if buckling occurs, this strain
can only decrease. As a result, the following relation holds:

� 

Lc − L0

Lc
	 h̃2, �A6�

where h̃ is the slope amplitude. Thus, the expansion of com-

pression free energy in terms of h̃, being quadratic in �, has
only a fourth-order term or higher. As a result, it does not
affect the expressions of �c and �c. To the lowest order
approximation, Ek can be written as

Ek 	 c4 =
K�2L0

2
. �A7�

Comparing b4 and c4, we obtain a criterion of inextensibility,

� 	
t

�c
h̃2, �A8�

where we have used the relation B /K� t2. By Eq. �A5�, we
have

� �
�ex − �c

K
=

�ex − �c

A2

A2

K
	 h̃2A2/K , �A9�

where the expression of A2 was given in Eq. �29�. Inserting
into the above criterion of inextensibility, we have

A2

K
	

t

�c
. �A10�

As �ex approaches �c from above, A2 can be approximated
as

A2 �
1

64
�B��4��d0�/��2��d0� − 2�B��2��d0��1/2�

=
1

64
�B��4��d0�/��2��d0� − 8�2B/�c

2� , �A11�

where we have used the expression of �c in the last step. We
require A2�0 in order for the transition to be second order.
Thus, the first term in Eq. �A11� must dominate the second.
However, if the system were not too far away from the tran-
sition threshold between first-order buckling and second-
order buckling, two terms in Eq. �A11� would have compa-
rable order of magnitude. In such a case, we can simplify the
criterion �A10� as

A2

K
	

B

�c
2K

	
t

�c
, i.e.,

t

�c
	 1. �A12�

The above criterion is always satisfied in the experimental
systems that we are interested in. For example, suppose the
monolayer thickness t is about 2 nm and the wrinkling wave-
length �c is more than 100 nm. In such a case the approxi-
mation of inextensibility is valid. In cases of very anhar-
monic potentials where ��4��d0����2��d0� /�c

2, the two terms
in A2 would not be comparable. Then the effects of com-
pressibility could become significant.
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