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The dynamics of two spatially discrete one-dimensional single-step model interfaces with a noncrossing
constraint is studied in both nonsymmetric propagating and symmetric relaxing cases. We consider possible
scaling scenarios and study a few special cases by using continuous-time Monte Carlo simulations. The
roughness of the interfaces is observed to be nonmonotonic as a function of time, and in the stationary state it
is nonmonotonic also as a function of the strength of the effective force driving the interfaces against each
other. This is related on the one hand to the reduction of the available configuration space and on the other hand
to the ability of the interfaces to conform to each other.
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I. INTRODUCTION

Discrete stochastic lattice models have been studied ex-
tensively in statistical physics to gain insight into the dynam-
ics of physical interfaces between different phases. Usually
those models are much easier to solve numerically or ana-
lytically than the related stochastic partial differential equa-
tions that describe the physics at hydrodynamic scales �1,2�.
Often this description is valid already at relatively small
length scales corresponding to just a few lattice units, while
sometimes long crossover scales are involved.

In Ref. �3�, Barabasi introduced a model of two interfaces,
where the direction of the local change of one interface was
in part determined by the shape of the other, but not affected
by their distance. The steady states of general systems of
interfaces coupled via differential operators in their effective
equations of motion have been studied in Ref. �4�. Also ran-
domly coupled interfaces have been considered �5�. In these
models, the interfaces are allowed to intersect.

In adsorption systems more than two phases can coexist
and different types of nonintersecting domain walls interact
with each other �6–8�. In paper combustion �9,10� smolder-
ing, burning, and fading fronts always are in a specified or-
der. Balankin et al. �11� recently presented experimental re-
sults for the wetting of paper and described the process as the
dynamics of two coupled interfaces: the precursor and main
fronts. Models where two or more interfaces cannot cross
each other could also describe the internal structure of a
phase boundary.

There has also been considerable theoretical interest in
noncrossing line ensembles �12� and the related problem of a
single Kardar-Parisi-Zhang �KPZ� type interface in the pres-
ence of a constraining wall �13–15�. Theoretically, stationary
properties of nonintersecting one-dimensional interfaces,
such as adjacent steps on a vicinal surface, can also be ex-
amined via a mapping onto a one-dimensional fermion or
boson system �16�.

In Sec. II of this paper we propose a model consisting of
two nonintersecting discrete interfaces obeying the body-

centered solid-on-solid �BCSOS� restriction. The parameters
of the two processes are chosen in such way that the inter-
faces will interact with each other. We shall consider inter-
faces propagating as a pair and interfaces driven symmetri-
cally toward each other. After outlining the scaling behavior
of the combined system phenomenologically in Sec. III, we
use continuous-time Monte Carlo simulations �see Sec. IV�
to study the dynamics of two interfaces in contact with each
other in Sec. V and their steady-state properties in Sec. VI.

II. MODEL

In the BCSOS model of a single one-dimensional inter-
face �1�, the location or the height of the interface is de-
scribed by a function h�x , t� such that, for every lattice site
x=1, . . . ,L and t�0,

h�x + 1,t� − h�x,t� = ± 1. �1�

Due to these restrictions on local configurations, only two
kinds of processes, adsorption and desorption, are available
and the growth of the interface follows simple rules. In dis-
crete time, if at some time step a randomly chosen lattice
point x is a local minimum, then h�x , t� increases �adsorp-
tion� by 2 with probability p, and if the chosen point is a
local maximum, then it decreases �desorption� by 2 with
probability q. For p=q the BCSOS model describes an equi-
librium system in the Edwards-Wilkinson �EW� universality
class, and for p�q it is known to be in the KPZ universality
class �1,17�. In our continuous-time simulations �see Sec.
IV�, the parameters p and q correspond to respective transi-
tion rates per unit time.

We study the behavior of two coupled BCSOS interfaces
h1 and h2. The coupling between them is produced by de-
manding that the interfaces cannot intersect:

h1�x,t� � h2�x,t� for all x,t . �2�

In all cases considered here, we impose the periodic bound-
ary conditions hk�x , t��hk�x+L , t� for k=1,2. We shall call
the model of two BCSOS interfaces coupled in this way the
BCSOS2 model.

In our model, there are four parameters �p1 ,q1 , p2 ,q2� de-
fining the transition rates for the interfaces h1 and h2, respec-
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tively. To characterize the different regions of the parameter
space, we found it convenient to use the following param-
eters:

r � �p2 − q2�/�p1 − q1�, d2 � p2/q2. �3�

It is of interest to consider also the sum and difference
processes defined via

�h+ = h1 + h2

h− = h1 − h2
� ⇔ �h1 = 1

2 �h+ + h−� ,

h2 = 1
2 �h+ − h−� .

� �4�

The interfaces h+ and h− are of the restricted solid-on-solid
�RSOS� type �1�, obeying

h±�x + 1,t� − h±�x,t� = − 2,0, + 2. �5�

The noncrossing condition of Eq. �2� is equivalent to

h−�x,t� � 0. �6�

An example of these interfaces is shown in Fig. 1.
Consider then the configuration-dependent adsorption and

desorption rates

p̃k�x,t� = pk�„hk�x,t� − hk�x + 1,t� + 1…�„hk�x,t�

− hk�x − 1,t� + 1… ,

q̃k�x,t� = qk�„hk�x,t� − hk�x + 1,t� − 1…�„hk�x,t�

− hk�x − 1,t� − 1… ,

for k=1,2. When the interfaces h1 and h2 are locally away
from each other, the corresponding rates for the evolution of
the sum and difference process are �p̃+ , q̃+�= (�p̃1+ p̃2� , �q̃1

+ q̃2�) and �p̃− , q̃−�= (�p̃1+ q̃2� , �q̃1+ p̃2�). However, when the
original interfaces are close to each other, then h+ and h− get
coupled and the local transition rates are modified. If
h−�x , t�=0 at time t in x and its neighboring lattice sites, then
at x the corresponding rates for the sum and the difference
processes become �p̃+ , q̃+ , p̃− , q̃−�= �p̃1 , q̃2 , p̃1+ q̃2 ,0�. The dy-

namical rules for the interfaces h+ and h− produced by the
BCSOS dynamics of h1 and h2 with the noncrossing condi-
tion are thus not those of the conventional RSOS model.
Qualitatively, the process h− resembles an RSOS interface in
the presence of a solid wall, which has be used to model
one-dimensional wetting in �18–20� and out of �21,22� equi-
librium.

To characterize the statistical properties of the interfaces
h1 and h2, and the sum and difference processes h+ and h−,
we use their roughness or width �1� defined as

Wk�t� = �	
hk�x,t� − h̄k�t�
2� . �7�

Here k=1,2 , + ,− and h̄k�t� is the spatially averaged height
of the interface configuration at time t; the angular brackets
denote ensemble average—i.e., an average over independent
simulations.

III. OVERALL BEHAVIOR

At the mean-field level, the independent BCSOS inter-
faces are described by the continuum equation �17�

�thk�x,t� � �pk + qk��x
2hk�x,t� + �pk − qk�
�1 + �xhk�x,t��2� ,

�8�

where the first term on the right-hand side describes the in-
terface tension �k� pk+qk and the second term including the
nonlinear KPZ term is responsible for the propagation of the
interface such that the velocity 	vk�free of a free interface is
proportional to the coefficient of the nonlinear term �k� pk
−qk. The case pk=qk results in scaling in the EW universality
class �1�. In both the KPZ and EW cases, the stationary state
of a free BCSOS interface is fully disordered �17�. We note
that when the interfaces come in contact, this mean-field
picture is not valid, but can nevertheless guide our under-
standing of some observations. In the stationary state of the
BCSOS2 model, the final velocities of the interfaces, 	vk�stat,
depend on their mutual interaction.

The parameter space of the BCSOS2 model can be di-
vided into a few sections and its dynamics, depending on the
initial state, into a few stages. We shall concentrate on the
case where the two BCSOS interfaces h1 and h2 initially are
apart from each other and propagate at such average veloci-
ties that they eventually meet and begin to interact—i.e., by
choosing the parameters �p1 ,q1 , p2 ,q2� such that 	v2�free

� 	v1�free. Two particular realizations of interest are the to-
tally asymmetric case p2� p1�0 with q1=q2=0, resulting in
	v2�free� 	v1�free�0 and 	v2�stat= 	v1�stat�0, and the symmet-
ric case p2=q1� p1=q2, resulting in 	v2�free=−	v1�free�0
and 	v2�stat= 	v1�stat=0. In the symmetric case the interfaces
are simply relaxing toward each other, after which their dis-
tance exhibits equilibrium fluctuations in the steady state.
The asymmetric case retains its propagating, nonequilibrium
characteristics also in the steady state.

The behavior of the interface roughness of the BCSOS2
model can be divided into a few stages. Consider first inter-
faces starting from a flat configuration. There are obviously
three scenarios.

0 20 40 60 80 100
Lattice site

0

5

10

15

20

25

30

35
L

oc
at

io
n

of
th

e
in

te
rf

ac
e

h1

h2

h+

h-

FIG. 1. Typical BCSOS interfaces h1 and h2 and the correspond-
ing RSOS interfaces h− and h+. The symbol � denotes the size of a
“bubble” or “pore.”
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�A1� The interfaces first fully roughen independent of
each other to their asymptotic roughnesses dependent on the
system size, then start to interact, which initially will reduce
their roughness by restricting the available configuration
space, and finally reach together a steady state with indi-
vidual roughnesses determined by their mutual interaction.
The first stage proceeds according to the KPZ dynamics.
Interface roughness can thus be a nonmonotonic function of
time.

�A2� The interfaces meet each other essentially flat and
then roughen together.

�A3� In the intermediate case the interfaces first have time
to roughen independently only up to some length scales less
than the system size L, then interact, and finally roughen
again together to the stationary state.

Scenarios �A1�–�A3� can be realized by controlling the
effective force F—e.g., the relative velocity
	v2�free− 	v1�free—driving the interfaces against each other
such that in case �A1� F is the largest and in case �A2� it is
the weakest.

In the case where the two interfaces both are initially
rough—i.e., completely disordered—we find two scenarios.

�B1� For large F, the interaction of the two interfaces first
reduces their roughness �or at least of one of them depending
on the interaction parameters�, after which they roughen to-
gether toward the stationary state. For very large F their
dynamics is locked and their roughnesses become the same.

�B2� Also for small F, first a decrease in roughness is
observed, but after that the roughness of an individual inter-
face does not need to increase.

Another possibility, a reversed process—i.e., two inter-
faces escaping from each other and healing from mutual
interaction—is not considered here.

Consider next the symmetric case and model the mutual
repulsion between h1 and h2 by an exponential potential term
in the equations of motion. The coupled KPZ equations for
the symmetric case then read

�th1 = ��x
2h1 − ���xh1�2 − � + e��h2−h1� + 	1,

�th2 = ��x
2h2 + ���xh2�2 + � − e��h2−h1� + 	2,

where 	k denotes the noise and ��0. For the sum process
the potential terms cancel out,

�th+ = ��x
2h+ − ���xh+���xh−� + 	+, �9�

but for the difference process, we obtain

�th− = ��x
2h− − 2� −

�

2
���xh+�2 + ��xh−�2� + 2e−�h− + 	−. �10�

Apart from the coupling term, this corresponds to the KPZ
equation in the presence of a repulsive wall with a short-
range potential �14,23�. Since the coefficients of the nonlin-
ear term and the drift term are equal �see Eq. �8��, the wetting
transition occurs at �=0.

IV. NUMERICAL METHODS

In our Monte Carlo simulations, we used the continuous-
time N-fold algorithm described by Bortz et al. �24�. In this

algorithm, the possible transitions are divided into N classes
according to their probabilities. After that one finds all lattice
sites which belong to a certain class j. The next step is to
calculate the time-dependent variables Qi=�k

i njk
Pjk

for i
=1, . . . ,N, where njk

is the number of those lattice points
belonging to class jk and Pjk

is the probability associated
with that class. The class j of the event which will next occur
is determined by finding j such that Qj−1
��Qj, where � is
a random number with a uniform distribution in the interval
�0,QN�. After finding the class, one randomly chooses a lo-
cation �which can be on h1 or h2 in our model� from this
class and executes the transition. The time taken by this tran-
sition is then �t=−ln��� /QN, where �� �0,1� is another ran-
dom number from the uniform distribution.

In the numerical results shown for the BCSOS-type inter-
faces h1 and h2, we first computed separately the widths for
even and odd lattice sites, Wk,even and Wk,odd, respectively,
and then calculated Wk

2=Wk,even
2 +Wk,odd

2 . This makes some
phenomena more visible, because then a “flat” BCSOS con-
figuration corresponds to Wk=0, while Eq. �7� used directly
with all sites would give a finite roughness for it. For
“rough” configurations this does not make a big difference.
For the RSOS-type functions h+ and h−, the widths have been
computed via simple variances over all sites. We use below
the notation Wk

s for the stationary roughness of interface k.
All simulations were started from configurations drawn

from the stationary distribution of two independent free
BCSOS interfaces—i.e., from completely disordered states
�17�. To obtain initial configurations obeying the noncrossing
condition, the distance of the two interfaces was set to

h̄1�t=0�− h̄2�t=0�=L /2. To sample the widths, we used 1000
independent Monte Carlo runs for the transient dynamics
discussed in Sec. V, because in this case there was no par-
ticular need to smooth out the fluctuations. To obtain the
stationary-state results shown in Sec. VI, we produced at
least 10 000 independent configurations for each data point.
Note that our choice of an apparently complicated rejection-
free algorithm is essential for interfaces driven strongly
against each other, because for those cases almost all moves
would get rejected within standard Monte Carlo schemes.

V. SIMULATIONS OF TRANSIENT DYNAMICS

To demonstrate the generic behavior outlined above, we
next show results of Monte Carlo simulations started from
completely disordered BCSOS configurations of the two in-
terfaces initially apart from each other.

We first consider the case p2� p1�0 and q1=q2=0. With
this choice the dynamics of the interface h1 is not affected by
h2 and the average velocities of the interfaces satisfy 	v2�
� 	v1��0, with 	v2�= 	v1� only in the stationary state.

Starting from this case, where both interfaces propagate in
the same �positive� direction and the second one eventually
reaches the first one, we indeed see that the dynamics before
the steady state can be divided into several stages. In Fig. 2,
the effective force driving the interface h2 against h1, de-
scribed here by the ratio r= p2 / p1, decreases from top to
bottom. First, the interfaces are independent of each other
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and evolve as free BCSOS interfaces. With these initial con-
ditions both interfaces are fully disordered until they meet. In
the second stage the interaction starts, which first reduces the
roughness W2 by restricting the configuration space available
for the interface h2. After that it can increase again when the
shape of the interface h2 conforms with that of h1, almost
completely for strong driving—i.e., for large r as in Fig. 2�a�.

The time evolution of the roughness of the corresponding
sum and difference processes h+ and h− is shown in Fig. 3.
As expected, the roughness of the sum process, W+, can only
increase, because in time the shape of the interface h2 more
and more closely follows that of h1. For the same reason, the
process h− decreases on average and therefore W− decreases.

In Fig. 4, we show the behavior of the roughness of in-
terfaces driven symmetrically toward each other: p1=q2 and
p2=q1. The parameters have been chosen to correspond to
those of the asymmetric process of Figs. 2 and 3 from the
point of view of the effective force driving the interfaces
against each other. Now the interfaces equally influence each
other, while in the first case their interaction was in one
direction only. The roughness of both interfaces first de-
creases. In the symmetric case, the time scale required for
reaching the stationary state appears to be longer than in the

propagating case. Again, the widths W± are monotonic in
time �data not shown�.

VI. SIMULATIONS OF THE STATIONARY STATE

We shall now inspect the dependence of the roughness on
the system size and other parameters in the stationary state.

A. Propagating pair of interfaces

Again, we first consider the case p2� p1�0 and q1=q2
=0. This section of parameter space contains also the cases
for which transient dynamics was shown in Figs. 2 and 3.

As expected and seen in Fig. 5, in the case where the two
BCSOS interfaces are asymptotically independent �r=1�, the
stationary widths scale as a function of the system size like
W1,2,−

s �L
 with 
=1/2. The behavior of the sum process
�not shown� is, of course, similar. For r�1, when the inter-
faces are not independent, the size dependence of the rough-
ness of the difference process, W−

s , follows the same power
law for small L, up to some scale determined by the effective
force driving the interfaces toward each other, after which it
saturates to a finite value.

From Fig. 6 one can observe that the stationary width W1
s

of the interface h1 is independent of the value of the driving
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parameter r, as it should since the interface h2 does not con-
strain the behavior of the interface h1. However, the station-
ary width W2

s is nonmonotonic as a function of the parameter
r: First, as the interaction of the interfaces is increased, W2

s

decreases, because the interface h1 constrains the interface
h2. For r→� the interfaces become strongly coupled and
therefore it follows that W2

s →W1
s .

Since h2 does not behave like a free BCSOS interface,
also the properties of h− are changed. In Fig. 7 we look at the
behavior of W−

s as a function of r−1. For large r, it becomes
independent of L. For small r, there is a crossover to a dif-
ferent behavior and, finally, for r→0 we see W− converging
to a size-dependent value which is twice the stationary
roughness of an isolated completely disordered BCSOS in-
terface due to the cancellation of the cross-terms from 	�h1

−h2− �h̄1− h̄2��2� in this limit.
The behavior of W−

s as a function of r for r�1, as seen in
the inset, is easy to explain. In this limit, the “excitations” in
h−=h1−h2 become small isolated pores �see Fig. 1�, each of
which gives independent “counts” in the sampling of �W−

s �2.
The probability for the existence of the smallest possible
pore is proportional to r. Therefore one expects W−

s ��r, as
seen in the simulation data.

B. Interfaces driven symmetrically toward each other

In the symmetric case p1=q2 and p2=q1, we describe the
strength of the interaction between the interfaces by the pa-
rameter d2= p2 /q2. In this case, W1

s =W2
s . As seen in Fig. 8,

they both qualitatively behave like W2
s for the propagating

case in Fig. 6. The stationary roughness is a nonmonotonic
function of the driving parameter d2, and there is a pro-
nounced minimum in it. Also, W1

s�d2
1�=W1
s�d2→��. For

increasing L the location of the minimum moves to the left—
i.e., toward d2=1—which corresponds to the case of nonin-
teracting interfaces. In the inset we show our best data col-
lapse for the dip bottom with a finite-size scaling described
by the scaling exponent value 1/3. In the scaling limit L
→�, the roughness becomes discontinuous at d2=1.

The dip prevails for large system sizes due to correlations
generated by the interaction between the interfaces. One
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measure of these correlations is the pore size distribution,
which contains more information than the scaling of the in-
terface width alone �1,25,26�. An example of a pore-size dis-
tribution for a small value of d2 �leading to large bubbles� is
shown in Fig. 9. A power law is observed before the expo-
nential cutoff by finite-size effects at large pore sizes. The

value of the exponent, 1/2, is consistent with the return time
exponent for a single random walker run against a smooth
fixed wall �27�.

To obtain the numerical results discussed above, we used
continuous-time Monte Carlo simulations in discrete space
with discrete height increments. In addition, we checked that
the results for the dip region do not considerably change with
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standard discrete-time Monte Carlo dynamics. To further
check the possible effects of discreteness of the height vari-
able, we also performed direct numerical integration of two
coupled KPZ equations with a continuous height variable
and observed the nonmonotonic behavior of the width for
this case also.

VII. CONCLUSIONS

To summarize, we have proposed a model consisting of
two interacting nonintersecting BCSOS interfaces and stud-
ied the behavior of the interface roughness in it. Different
scaling scenarios depending on the initial conditions and the

values of the parameters were identified and numerically
analyzed. We decomposed the combined process into sum
and difference processes, the widths of which evolve in time
and as functions of the interaction strength at different rates.
This results in a nonmonotonic behavior of the roughness of
the original interfaces, which prevails up to large system
sizes and is related to correlations carried by the pores be-
tween the points of contact of the interfaces.
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