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The classical XY model describes particles in three-dimensional space that carry magnetic moments or spins
whose motion is restricted to rotations in a plane. Introduction of an external magnetic field lying in the same
plane then generates a system that is anisotropic in the azimuthal angle �. We use numerical simulations and
integral equation techniques to study this system, producing in the latter case a formalism that is identical to
that of the simpler isotropic version having no external field. The basis for this simplification is a generalization
Em��� of the ordinary exponential basis set eim� that restores orthogonality in the presence of the external field.
We display results of sample calculations obtained with two integral equation closures, reference hypernetted-
chain and soft mean-spherical approximation, both coupled to the Lovett-Mou-Buff-Wertheim relation, along
with results from the numerical simulations for comparison. Construction of the Em��� is described in an
Appendix.
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I. INTRODUCTION

The response to internal and external magnetic fields of
molecular magnetic moments in a classical fluid is variously
modeled as occurring along an axis �Ising model�, on a plane
�XY model�, or in space �Heisenberg model�. All of these
instances have long been studied using the basic techniques
of equilibrium statistical mechanics: Mean field theory �1–7�,
integral equations �8–16�, and numerical simulation
�4,7,11,16–19�. In this work, we focus on one of the less
studied cases, the XY spin fluid in an external magnetic field,
with the purpose of extending to it the integral equation tech-
nique based on generalized orthogonal functions that we
have previously used for the Heisenberg model �10,11�. We
are following on the recent work of Omelyan et al. �14,15�,
who have presented the first integral equation studies of this
model. Academic though this model may appear, it turns out
to be useful in the description of superfluid and demixing
transitions in 2He-4He mixtures �20–22�.

The classical XY spin fluid �N particles in volume V at
temperature T� in an external magnetic field B0 is defined by
the canonical partition function

Z =
1

N!�2��3�N � �
j=1

N

�dr jd� j�

�exp���
j

� j · B0 − ��
i�j

u0�rij� − ��
i�j

uss�rij,�i,� j�	 .

�1�

Here �=1/kBT is the inverse Kelvin temperature, with kB
Boltzmann’s constant, � the de Broglie thermal wavelength
�which plays only a dimensional role�, and � the orientation
of a magnetic dipole moment � that is free to rotate in a
plane, denoted the xy plane. The uniform external magnetic
field B0 also lies in that plane and its direction is taken to

define the x axis, so that � is the azimuthal angle and
� ·B0=�B0 cos �, 0	�	2�. The internal energy of the
system is written as pairwise sums of a spherically symmet-
ric potential u0�r� and a spin-spin potential uss�r ,�1 ,�2�. We
follow Omelyan et al. �14,15� in putting

u0�r� = u0
rep�r� + u0

att�r� , �2�

where u0
rep�r� is the repulsive part of the Lennard-Jones po-

tential �truncated at its minimum and shifted�,

u0
rep�r� = 
4
���/r�12 − ��/r�6� + 
 , r � 21/6� ,

0, r � 21/6� ,
� �3�

and u0
att�r� is an attractive potential of Yukawa form,

u0
att�r� = − 
J�r� , �4�

J�r� =



r/�
e−��r/�−1�. �5�

Here 
 and � are dimensionless strength and range param-
eters, respectively. Finally, the spin-spin interaction tending
to align two spins with one another is taken to be of XY form
�14,15�,

uss�r,�1,�2� = − J�r�ŝ1 · ŝ2 = − J�r�cos �12, �6�

where ŝ is the unit spin vector in the direction of � and
�12��1−�2.

The formal elements of the calculation are neatly dis-
played by factoring the partition function Z=ZidZex into an
ideal part and the excess; we get
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Zid =
1

N!�2��3�N � �
j=1

N

�dr jd� j�exp���
j

� j · B0	
=

1

N!
�VI0���B0�

�3 	N

, �7�

Zex =
1

�2�V�N � � j=1

N
�dr jd� j f0�� j��

�exp�− ��
i�j

u�rij,�i,� j�	 , �8�

where u�r ,�1 ,�2��u0�r�+uss�r ,�1 ,�2� is the total pair po-
tential. This defines in Eq. �8� the one-body distribution
function f0��� in the noninteracting XY spin system,

f0��� =
e��B0 cos �

I0���B0�
, �9�

normalized such that

1

2�
�

0

2�

d� f0��� = 1. �10�

In these expressions, I0�z� is the modified Bessel function of
order zero.

II. ANISOTROPIC INTEGRAL EQUATIONS

A. One-body and two-body distribution functions

Since the molecules are subject to both one-body and
two-body forces, a complete statistical description of the sys-
tem requires knowing both the one-body and two-body den-
sity functions,

��1��r,�� =
�
j=1

N

��r − r j���� − � j�� =
�

2�
f��� , �11�

��2��r,�,r�,���

= 
�
i�j

��r − ri���� − �i���r� − r j����� − � j��
=

�2

�2��2 f���f����g��r − r��,�,��� , �12�

where �=N /V is the density and f��� the one-body orienta-
tional distribution in the interacting fluid. Equation �12� de-
fines the generalized pair distribution function g�r ,� ,��� of
the anisotropic spin system in an external magnetic field. The
angular brackets in these definitions denote a canonical en-
semble average exemplified in Eq. �1�.

The basic equations that determine the distribution func-
tions f��� and g�r ,�1 ,�2� are well known �23,24�. The one-
body distribution function f��� can be calculated using the
Lovett-Mou-Buff-Wertheim �LMBW� equation �25,26�,

d

d�1
ln� f��1�

f0��1�	 =
�

2�
� dr�

0

2�

d�2c�r,�1,�2�
df��2�

d�2

=
�

2�
� dr�

0

2�

d�2f��2�c�r,�1,�2�

�
d ln f��2�

d�2
, �13�

where c�r ,�1 ,�2� is the anisotropic direct correlation func-
tion �see below�. Alternatively, the one-body density, Eq.
�11�, can be differentiated with respect to � to give the first
member of a Kirkwood-Born-Green-Yvon �KBGY� hierar-
chy �23�,

d

d�1
ln� f��1�

f0��1�	 = −
�

2�
� dr�

0

2�

d�2f��2�

� g�r,�1,�2�
d�uss�r,�1,�2�

d�1
. �14�

Calculation of f��� from these equations requires know-
ing the pair function c�r ,�1 ,�2� or g�r ,�1 ,�2�. In classical
liquid state theory, the pair distribution function is obtained
from the Ornstein-Zernike �OZ� equation and a closure rela-
tion �23,24�. The first of these, generalized for anisotropy,
reads

��r12,�1,�2� =
�

2�
� dr3d�3f��3����r13,�1,�3�

+ c�r13,�1,�3��c�r32,�3,�2� �15�

for the indirect correlation function �=g−1−c. The second,
or closure, relation expresses the direct correlation function c
back in terms of � and the model’s pair interactions,

c�r,�1,�2� = exp�− �u0�r� − �uss�r,�1,�2� + ��r,�1,�2�

+ b�r,�1,�2�� − 1 − ��r,�1,�2� . �16�

This relation must be supplemented with an approximation
for b, the so-called bridge function �27�, which is formally
defined in terms of a diagram summation �23� that offers
little practical benefit. Most approximate closures for c de-
fine b implicitly.

For a given f���, Eqs. �15� and �16� are solved iteratively
for ��r ,�1 ,�2� and c�r ,�1 ,�2�, after which one can find

g�r,�1,�2� = exp�− �u0�r� − �uss�r,�1,�2� + ��r,�1,�2�

+ b�r,�1,�2�� �17�

and evaluate Eq. �13� or �14�. �In the results reported below
we have used the LMBW relation.� This produces a new f���
and so requires a new round for ��r ,�1 ,�2� and c�r ,�1 ,�2�,
which depend on this function through Eq. �15�. These itera-
tions continue until both one-body and two-body functions
are self-consistently determined.

It is obvious that to actually carry out a numerical version
of these procedures with Eqs. �13�–�16�, the equations must
first be simplified.
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B. Tailored exponential functions

Pair functions such as ��r ,�1 ,�2� may be expanded in an
angle-dependent basis set so that the orientational informa-
tion they contain might be effectively conveyed by a small
set of expansion coefficients. Thus one could write, for ex-
ample,

��r,�1,�2� = �
m1,m2

�m1m2
�r�Em1

��1�Em2

* ��2� , �18�

where the asterisk denotes complex conjugate and

Em��� � eim� = Tm�cos �� + iVm�cos �� . �19�

Here Tm�cos ��=cos m� is the type I Chebyshev polynomial
of order m and Vm�cos ��=sin m� the associated Chebyshev
function of order m �28�. The familiar exponential functions
Em��� of course have the orthonormalization

1

2�
�

0

2�

d� Em���Em�
* ��� = �mm� �20�

for m ,m� positive or negative integers. We write the expan-
sion coefficients in Eq. �18� in upper case � to distinguish
them from the distinct set of coefficients written in lower
case � to be introduced next.

The external field B0 along the x axis produces a nonuni-
form distribution f��� that enters the integrand of Eq. �20�
and spoils the orthogonality of the standard exponential
functions Em���. To regain the valuable property of orthogo-
nality and work conveniently with the external field turned
on, we introduce new basis functions Em��� that are ortho-
normal with weight function f���,

1

2�
�

0

2�

d� f���Em���Em�
* ��� = �mm�, �21�

again for m ,m� positive or negative integers, where

Em��� = Tm�cos �� + iVm�cos �� , �22�

E−m��� = Em
* ��� , �23�

for m�0. Construction of the needed generalized Chebyshev
functions Tm�cos �� and Vm�cos �� is described in Appendix
A.

Equation �18� is now generalized to read

��r,�1,�2� = �
m1,m2

�m1m2
�r�Em1

��1�Em2

* ��2� . �24�

In Eq. �24�, m1 and m2 range as noted over positive and
negative integers. With Eq. �21�, its inversion becomes

�m1m2
�r� =

1

�2��2�
0

2�

d�1�
0

2�

d�2f��1�f��2�

� ��r,�1,�2�Em1

* ��1�Em2
��2� . �25�

Coefficients of all pair functions satisfy the symmetries

�m1m2
�r� = �m2m1

�r� = �m̄2m̄1
�r� = �m̄1m̄2

�r� , �26�

where m̄�−m.

A specific expansion needed in the sequel is that of the
spin-spin interaction, Eq. �6�, where we have

cos �12 = cos �1 cos �2 + sin �1 sin �2, �27�

while, from Appendix A,

cos � = �1 +
1

2
�1 − 2�1

2 + �2�1/2�E1��� + E1
*���� , �28�

sin � =
1

2i
�1 − �2�1/2�E1��� − E1

*���� . �29�

Here the �k are quasimoments of f���, defined in Eq. �A2�.
Combining these expressions and simplifying, we find

uss�r,�1,�2� = − J�r� �
m1,m2

Cm1m2
Em1

��1�Em2

* ��2� , �30�

with nonzero coefficients

C00 = �1
2,

C1−1 = C−11 =
1

2
��2 − �1

2� ,

C10 = C01 = C0−1 = C−10 =
1

2
�1�1 − 2�1

2 + �2�1/2,

C11 = C−1−1 =
1

2
�1 − �1

2� . �31�

C. Ornstein-Zernike equation

Numerical evaluation of the Ornstein-Zernike equation is
simpler in Fourier transform representation, which decon-
volves the direct space integral. In transform space, Eq. �15�
becomes

�̃�k,�1,�2� =
�

2�
�

0

2�

d�3f��3���̃�k,�1,�3�

+ c̃�k,�1,�3��c̃�k,�3,�2� , �32�

with one remaining integration. Because the orientations of
spins 1 and 2 and that of r12 are decoupled in the XY model,
the transforms may be performed holding the former fixed. A
transform pair is then

�̃�k,�1,�2� = 4��
0

�

dr r2��r,�1,�2�
sin�kr�

kr
, �33�

��r,�1,�2� =
1

2�2�
0

�

dk k2�̃�k,�1,�2�
sin�kr�

kr
, �34�

and the transformed functions may themselves be expanded,

�̃�k,�1,�2� = �
m1,m2

�̃m1m2
�k�Em1

��1�Em2

* ��2� , �35�

with expansion coefficients �̃m1m2
�k� that are directly the

Fourier transforms of the corresponding �m1m2
�r�.
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We may now begin to garner the profit from the special
orthogonality built into the basis set Em���. Expanding the
transforms as in Eq. �35�, we find the final integral in Eq.
�32� can be carried out to yield a relation between expansion
coefficients alone,

�̃m1m2
�k� = ��

m3

��̃m1m3
�k� + c̃m1m3

�k��c̃m3m2
�k� , �36�

which can be solved for the �̃m1m2
�k�; in matrix form,

�̃�k� = �C̃�k�C̃�k��I − �C̃�k��−1, �37�

where �̃�k� and C̃�k� are symmetric matrices with elements
�̃m1m2

�k� and c̃m1m2
�k�, respectively, and I is the unit matrix.

The notable feature of Eq. �37� is that it is identical to that of
an isotropic system with B0=0. All of the anisotropy is built
into the basis functions.

The closure relation �16� is also reduced to manipulation
of coefficients. For a given r, first the full function
g�r ,�1 ,�2� is assembled in Eq. �17� by performing summa-
tions like Eq. �24� for the terms in its exponent; this is fol-
lowed by calculation of its coefficients gm1m2

�r� with an in-
version like that of Eq. �25�. Then the cm1m2

�r�=gm1m2
�r�

−�m10�m20−�m1m2
�r� follow from Eq. �16� in coefficient

form.
One cycle of the iterative �numerical� solution that yields

a converged set of coefficients ��m1m2
�r�� will then consist of

four steps:

��m1m2
�r�� ——→

closure

�cm1m2
�r�� ——→

�FT�

�c̃m1m2
�k��

→
OZ

��̃m1m2
�k�� ——→

�FT�−1

��m1m2
�r�� . �38�

D. LMBW equation for f„�…

Equation �13� also simplifies smartly with expansions in
the generalized Chebyshev functions. We put

ln f��� = �
m=0

�

AmTm�cos �� �39�

and seek to find the Am. �Actually, A0 is determined by nor-
malization, so we are concerned with A1 ,A2 , . . .� Expanding
c�r ,�1 ,�2�, we first find from Eq. �13� that

�
m2=1

�

Am2

dTm2
�cos �1�

d�1
= ��B0

d cos �1

d�1

+ �
m1,m2=1

�

�
m3=−�

�

Em1
��1��c̃m1m3

�0�

�iDm3m2
Am2

, �40�

where

Dm1m2
�

− i

2�
�

0

2�

d� f���Em1

* ���
dTm2

�cos ��

d�
. �41�

It follows then that

�
m2=1

�

Dm1m2
Am2

=
1

2
��B0�1 − �2�1/2�m11

+ �
m2=1

�

�
m3=−�

�

�c̃m1m3
�0�Dm3m2

Am2
, �42�

or more briefly

�
m2=1

�

Qm1m2
Am2

=
1

2
��B0�1 − �2�1/2�m11, �43�

where

Qm1m2
� �

m3=−�

�

��m1m3
− �c̃m1m3

�0��Dm3m2
. �44�

For m1 ,m2�0, the matrix elements Dm1m2
are nonzero only

for m2=m1 ,m1+1, while Dm̄1m2
=−Dm1m2

. We have finally
from Eq. �43�,

Am =
1

2
��B0�1 − �2�1/2Rm1, �45�

where in matrix notation R�Q−1.
If it happens that A1 is much larger than A2 ,A3 , . . ., then

we may ignore these higher coefficients in the analysis above
to get

A1 �
��B0�1 − �2�1/2

2D11�1 − �c̃11�0� + �c̃1−1�0��
,

�
��B0�1 − 2�1

2 + �2�1/2

1 − �c̃11�0� + �c̃1−1�0�
, �46�

where we have used D11= 1
2 ��1−�2� / �1−2�1

2+�2��1/2. Then
the form of the angular distribution function remains un-
changed,

ln f��� � const + ��B cos � , �47�

but the effective field in the interacting system becomes

B =
B0

1 − �c̃11�0� + �c̃1−1�0�
. �48�

We will find that Eqs. �47� and �48� are effectively exact
in the context of the numerical solutions. We further antici-
pate the calculations of Sec. IV by noting that the alternative
approach based on the KBGY relation, Eq. �14�, although not
further discussed here, produces essentially the same effec-
tive fields.

III. THERMODYNAMICS

Once the one-body and two-body distribution functions
have been determined, it is straightforward to calculate the
various thermodynamic quantities. For instance, the internal
energy E=−�� ln Z /��� and the pressure p=kBT�� ln Z /�V�
are found as quadratures,

F. LADO AND E. LOMBA PHYSICAL REVIEW E 76, 041502 �2007�

041502-4



�E

N
=

3

2
− ��B0�1 +

1

2
�� dr g00�r��u0�r�

+
1

2
�� dr �

m1,m2

gm1m2
�r��um1m2

�ss� �r� , �49�

�p

�
= 1 −

1

6
�� dr g00�r�r

d�u0�r�
dr

+
1

6
�� dr�1 + �

r

�
�

� �
m1,m2

gm1m2
�r��um1m2

�ss� �r� , �50�

in terms of the coefficients of the distribution function
g�r ,�1 ,�2� and the pair potentials u0�r� and uss�r ,�1 ,�2�,
while the isothermal compressibility KT is given by

�kBTKT = 1 + �h̃00�0� , �51�

where h=g−1. Finally, an expression for the Helmholtz free
energy is presented in Appendix B. One notes again that
expansions in the generalized basis set Em��� lead to equa-
tions that are identical to those of an isotropic system.

Further, we can compute the magnetic properties of the
XY spin fluid in a uniform magnetic field B0. The net mag-
netization in the direction �=x ,y is

M� =
1

�

� ln Z

�B0�

= �
�
j

sj�� , �52�

and so the magnetic susceptibility components are

��� �
1

V

�M�

�B0�

=
��2

V �
��
i

si����
j

sj��� − 
�
i

si��
�
�

j

sj��	 . �53�

Now with B0 defining the x axis, we get the longitudinal,
�L��xx, and transverse, �T��yy, magnetic susceptibilities
as

�L/���2 = �1
2�1 + �h̃00�0�� + 2�1�1 − 2�1

2 + �2�1/2�h̃10�0�

+
1

2
�1 − 2�1

2 + �2��1 + �h̃11�0� + �h̃1−1�0�� ,

�54�

�T/���2 =
1

2
�1 − �2��1 + �h̃11�0� − �h̃1−1�0�� . �55�

The off-diagonal elements of � vanish, while the magnetiza-
tion is M =N��1.

IV. SAMPLE RESULTS

A very thorough integral equation study of the XY spin
fluid in an external magnetic field has recently been pub-
lished by Omelyan et al. �15� using a soft mean-spherical
approximation �SMSA� and we need not duplicate that scope
of data. That work was based on expansions in the ordinary
Chebyshev functions Tm�cos ��=cos m� and Vm�cos ��

=sin m�. Here we aim to present just a small sample of
additional data to illustrate application of the alternative ap-
proach using orthogonal basis functions Tm�cos �� and
Vm�cos �� that are specifically tailored to the anisotropic en-
vironment created by the external field; aside from the en-
hanced simplicity of the formal expressions already manifest
in the equations displayed above, the most notable difference
is found in the results for f���.

The interaction of an individual spin with the external
field involves the familiar dipole potential, −� ·B0, and leads
to the unperturbed distribution function

f0��� =
e��B0 cos �

I0���B0�
. �56�

For the interacting system, Omelyan et al. �15� find that in
setting

ln f��� = const + ��B0 cos � + ��
m=1

�

amTm�cos �� , �57�

with standard Chebyshev polynomials Tm�cos ��, a2 can be
as large as 30% of a1 and only terms am with m�3 are
negligible. In contrast, we find that in setting

ln f��� = �
m=0

�

AmTm�cos �� , �58�

with tailored Chebyshev polynomials Tm�cos ��, no more
than the linear term in the expansion is significant; the coef-
ficients of higher terms �A2 ,A3 , . . . � are smaller than A1 by
two or more orders of magnitude. Correspondingly, the ap-
proximate A1 of Eq. �46� differs from the exact A1 of Eq.
�45� by no more than 0.1%; within the overall precision of a
numerical calculation, Eq. �46� may be treated as exact. Thus
f��� retains the same functional form as the unperturbed sys-
tem,

f��� =
e��B cos �

I0���B�
, �59�

but with an effective field B given by Eq. �48�.
For the sample calculations here, we use both the SMSA

and the reference hypernetted-chain �RHNC� closures, the
latter optimized to achieve a minimum in the free energy.

The SMSA closure �23� is a generalization of the mean-
spherical approximation that is widely used for potentials
with a hard core. Splitting the total potential u�r ,�1 ,�2�
=uSR�r ,�1 ,�2�+uLR�r ,�1 ,�2� into short-range �SR� and
long-range �LR� parts, one replaces the formally exact but
uncomputable �because of the unknown b�r ,�1 ,�2�� Eq. �17�
with the approximation

gSMSA�r,�1,�2� = e−�uSR�r,�1,�2��1 + ��r,�1,�2�

− �uLR�r,�1,�2�� . �60�

A particularly convenient choice for the potential splitting
which we shall adopt here is
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gSMSA�r,�1,�2� = e−�u0
rep�r��1 + ��r,�1,�2� − �u0

att�r�

− �uss�r,�1,�2�� , �61�

since this linearizes the angular dependence of the pair dis-
tribution function. Its coefficients can then be immediately
obtained by inspection,

g00
SMSA�r� = e−�u0

rep�r��1 + �00�r� − �u0
att�r� − �u00

�ss��r�� ,

�62�

gm1m2

SMSA�r� = e−�u0
rep�r���m1m2

�r� − �um1m2

�ss� �r��, for m1m2 � 00,

�63�

which saves some computation time in the iteration step

��m1m2
�r�� →

closure

�cm1m2
�r�� compared to the RHNC procedure.

�It should be noted that the full RHNC calculation is already
extremely fast on any current personal computer—on the
order of seconds per thermodynamic state.� If u0

rep�r� were
the hard sphere potential, these equations would describe the
standard mean-spherical approximation �23�.

The RHNC closure �29,30� consists in replacing the un-
known function b�r ,�1 ,�2� in Eq. �17� with the bridge func-
tion bref�r ,�1 ,�2� obtained from some calculable reference
model,

gRHNC�r,�1,�2� = exp�− �u0�r� − �uss�r,�1,�2� + ��r,�1,�2�

+ bref�r,�1,�2�� . �64�

For convenience, in the present calculation we have chosen
as reference a hard sphere fluid at the same density,

bref�r,�1,�2� � bHS�r;�0� , �65�

where �0 is the reference sphere diameter that is varied to
attain a minimized free energy �31�. For the modeled hard
sphere functions we use the parametrizations of Verlet-Weis
�32� and Henderson-Grundke �33�.

In the RHNC calculation, expansions in m such as Eqs.
�24� and �39� have been extended through �m�=4; reduction
to a maximum of �m�=3 yields unchanged results. For
SMSA, the linearization of the closure in Eq. �61� limits the
nonvanishing terms in all expansions to just those in the
potential; i.e., through �m�=1. We note that given the sym-
metries �26�, the number of distinct coefficients in the expan-
sion of a pair function is �mmax+1�2 for a �maximum�m�
�mmax�=0,1 ,2 ,3 ,4 , . . ..

We have set 
=�=1 in the pair potentials for all calcula-
tions reported �see Eqs. �4� and �5��. Transform functions of
r and k are connected through the fast Fourier transform �34�
and are evaluated on uniform grids rj = j�r, kj = j�k, j
=0,1 ,2 , . . . ,Nr, with �r�k=� /Nr and Nr=1024, �r
=0.02�. Integrals over r and k for thermodynamic quantities
are calculated with the trapezoidal rule using the same grid
points, while Gauss-Chebyshev quadratures over angle, Eq.
�A10�, are carried out with n�10 Gaussian root points.

With regard to the simulation, we have used a standard
Monte Carlo method whose only peculiarity is the imple-
mentation of orientational single-particle and cluster moves

as described in Ref. �35�, with the orientational degrees of
freedom restricted to lie in the xy plane. We have used a
sample of 864 particles and performed averages over 50 000
configurations. Each configuration implies 864 displacement
attempts, with an acceptance ratio of 50%, and either 864
single-particle moves or one cluster move. The initial 20 000
configurations in each run were discarded to attain thermal
equilibrium.

Thermodynamic and magnetic properties of the XY spin
fluid computed with an RHNC-LMBW combination are pre-
sented in Table I. Additionally, in Table II the results ob-
tained using the SMSA-LMBW combination are laid out for
just the case of nonzero field. A global assessment of the
quality of the closure approximations can be made from in-
spection of Fig. 1, in which these results are compared with
Monte Carlo simulation data. From this figure, it is clear that
the RHNC-LMBW approach is practically exact in the zero
field case. At �B0 /�=5, thermodynamic properties from
RHNC-LMBW compare well with simulation data and the
approach is clearly superior to the SMSA-LMBW. Small dis-
crepancies show up as density increases, especially for the
net magnetization M /N�=�1. Interestingly, the simulation
data for this quantity are bracketed by the SMSA-LMBW
and RHNC-LMBW results. This points to a possible route to
improve the quality of the theoretical approach. In the spirit
of the Zerah-Hansen HMSA approximation �36�, one might
use a continuous interpolation scheme between the SMSA
and HNC �or RHNC� closures to implement a thermody-
namically self-consistent approach based on the net magne-
tization and the longitudinal susceptibility as the key quanti-
ties to check for consistency.

To illustrate the structure, we define the functions

g00�r� � �g�r,�1,�2���1�2
= g00�r� , �66�

g11�r� � �g�r,�1,�2�cos �12��1�2
= �

m1,m2

Cm1m2
gm1m2

�r� ,

�67�

where the averages are calculated as

�H�r,�1,�2���1�2
�

1

�2��2�
0

2�

d�1�
0

2�

d�2

� f��1�f��2�H�r,�1,�2� . �68�

Plots of g00�r� and g11�r� for various representative states are
shown in Figs. 2 and 3. The radial coefficient g00�r� is very
well reproduced by both approximations; departures in the
long-range behavior of g11�r� become apparent at the larger
density and nonzero field. This is an immediate consequence
of the deviations observed in the calculated magnetization,
since

lim
r→�

g11�r� = �M/N��2.

Again, we see that the angular coefficient from the simula-
tion lies within the boundaries formed by the SMSA-LMBW
and RHNC-LMBW results.
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V. CONCLUSIONS

In summary, we have shown that a general integral equa-
tion procedure based on tailored orthogonal basis functions,
successfully applied in previous works �10,11� to describe
the Heisenberg spin fluid in an external field, can be readily
extended to the classical XY model in an external field. The
specific RHNC-LMBW approximation is found to work rea-
sonably well, although some deviations are noticed at high
densities and nonzero fields. We speculate that the quality of
the theoretical approximation might be improved by imple-
menting self-consistency at the level of the magnetic quanti-
ties �i.e., magnetic susceptibility vs. magnetization�.
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APPENDIX A: GENERALIZED CHEBYSHEV FUNCTIONS

In principle, the needed generalization of the type I
Chebyshev polynomials Tm�cos ��=cos m� can be produced

TABLE I. Thermodynamic and magnetic properties of the XY spin fluid in an external magnetic field B0 at reduced temperature
kBT /
=10, calculated using the optimized RHNC closure with the LMBW equation; �0 is the optimized sphere diameter of the reference
hard sphere system. The excess free energy is defined here as �Aex/N��A /N−ln���3�+1.

��3 �0 /� �B0 /
 �B /
 �E /N−3/2 �p /�−1 ��kBTKT�−1 M /N� �L /���2 �T /���2 �Aex/N

0.10 0.8889 0 0 −0.105 0.041 1.098 0 0.578 0.578 0.034

0.20 0.8917 0 0 −0.207 0.115 1.302 0 0.687 0.687 0.083

0.30 0.8935 0 0 −0.304 0.231 1.654 0 0.848 0.848 0.150

0.40 0.8943 0 0 −0.394 0.401 2.201 0 1.110 1.110 0.238

0.50 0.8942 0 0 −0.475 0.638 3.006 0 1.610 1.610 0.350

0.60 0.8930 0 0 −0.545 0.960 4.143 0 2.928 2.928 0.492

0.70 0.8914 0 0 −0.604 1.383 5.642 0 14.07 14.07 0.666

0.10 0.8873 5 5.749 −0.254 0.031 1.074 0.276 0.596 0.552 −0.037

0.20 0.8900 5 6.738 −0.394 0.087 1.229 0.319 0.693 0.638 0.000

0.30 0.8917 5 8.069 −0.547 0.173 1.479 0.374 0.799 0.748 0.051

0.40 0.8924 5 9.858 −0.719 0.292 1.835 0.441 0.883 0.883 0.116

0.50 0.8923 5 12.174 −0.914 0.448 2.337 0.518 0.886 1.036 0.196

0.60 0.8915 5 14.956 −1.127 0.656 3.096 0.595 0.772 1.189 0.293

0.70 0.8900 5 18.032 −1.342 0.944 4.282 0.663 0.592 1.324 0.411

0.80 0.8877 5 21.238 −1.542 1.349 6.064 0.717 0.424 1.432 0.556

0.90 0.8851 5 24.483 −1.714 1.906 8.613 0.759 0.300 1.516 0.738

1.00 0.8819 5 27.730 −1.848 2.656 12.116 0.792 0.214 1.581 0.967

TABLE II. Thermodynamic and magnetic properties of the XY spin fluid in an external magnetic field B0

at reduced temperature kBT /
=10, calculated using the SMSA closure with the LMBW equation.

��3 �B0 /
 �B /
 �E /N−3/2 �p /�−1 ��kBTKT�−1 M /N� �L /���2 �T /���2

0.10 5 5.718 −0.253 0.028 1.083 0.275 0.592 0.550

0.20 5 6.640 −0.392 0.079 1.257 0.315 0.680 0.630

0.30 5 7.837 −0.541 0.156 1.546 0.365 0.771 0.729

0.40 5 9.383 −0.706 0.265 1.977 0.424 0.840 0.848

0.50 5 11.319 −0.890 0.407 2.606 0.491 0.847 0.982

0.60 5 13.608 −1.090 0.593 3.555 0.560 0.763 1.120

0.70 5 16.138 −1.297 0.842 5.024 0.623 0.616 1.246

0.80 5 18.786 −1.500 1.179 7.268 0.677 0.464 1.354

0.90 5 21.468 −1.685 1.633 10.596 0.720 0.339 1.441

1.00 5 24.142 −1.846 2.233 15.419 0.755 0.248 1.511
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by a straightforward application of the Gram-Schmidt
method �28�. Thus we can directly find for the first two gen-
eralized Chebyshev polynomials, used earlier in the expan-
sion of the spin-spin potential uss�r ,�1 ,�2�,

T0�cos �� = 1,

T1�cos �� =
cos � − �1

�1 − 2�1
2 + �2�1/2 . �A1�

Here and for higher-order polynomials we need the quasimo-
ments

�k �
1

�
�

0

�

d� f���cos�k�� . �A2�

For the distribution

f��� =
e��B cos �

I0���B�
, �A3�

they are readily found to be

�k =
Ik���B�
I0���B�

. �A4�

In these expressions, Ij�z� is the modified Bessel function of
order j.

The simple Gram-Schmidt process, however, employs
successive subtractions and so risks a progressive loss of
numerical precision as higher-order polynomials are gener-
ated. This is of particular concern for accurate Gauss-
Chebyshev quadratures based on the roots of a polynomial
Tn�x� with n=10 or larger. �In this appendix we put x
�cos �.� Thus we have instead followed a robust alternative
approach described by Press and Teukolsky �37�. The monic
version �m�x��Tm�x� /2m−1 for m�0 of the Chebyshev
polynomials Tm�x� have by construction a leading coefficient
of unity and satisfy a standard recursion relation,

��
�
�

�
��
��

�
�� �

��

-2-2-2-2

-1-1-1-1

0000

ββββE
/N

-3
/2

E
/N

-3
/2

E
/N

-3
/2

E
/N

-3
/2

MCMCMCMC µµµµBBBB
0000
////ε=0ε=0ε=0ε=0�

MCMCMCMC µµµµBBBB
0000
////ε=5ε=5ε=5ε=5

�� �
� ��

�� �
�

��

�

��

0000

1111

2222

ββββp
/p/p/p/
ρρρρ-

1-1-1-1

RHNC-LMBWRHNC-LMBWRHNC-LMBWRHNC-LMBW µµµµBBBB
0000
////ε=0ε=0ε=0ε=0

RHNC-LMBWRHNC-LMBWRHNC-LMBWRHNC-LMBW µµµµBBBB
0000
////ε=5ε=5ε=5ε=5

SMSA-LMBWSMSA-LMBWSMSA-LMBWSMSA-LMBW µµµµBBBB
0000
////ε=5ε=5ε=5ε=5

0 0.2 0.40 0.2 0.40 0.2 0.40 0.2 0.4 0.60.60.60.6 0.8 10.8 10.8 10.8 1
ρσρσρσρσ3333

0000

0.20.20.20.2

0.40.40.40.4

0.60.60.60.6

M
/N

M
/N

M
/N

M
/N

µµµµ

FIG. 1. �Color online� Density dependence of the excess internal
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kBT /�=10, with and without external field. Symbols denote data
from Monte Carlo simulation and lines correspond to the integral
equation results using the RHNC-LMBW and SMSA-LMBW
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g00�r� calculated in the RHNC-LMBW �solid line� and SMSA-
LMBW �dotted line� combinations along with Monte Carlo simula-
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�−1�x� � 0,

�0�x� � 1,

�m+1�x� = �x − �m��m�x� − �m�m−1,

m = 0,1,2, . . . , �A5�

with �m=0 and

�1 = 1/2,

�m = 1/4, m � 1. �A6�

The Press-Teukolsky algorithm then uses these monic coef-
ficients along with the �k to recursively generate a new set of
coefficients am and bm �here am=0� such that the monic poly-
nomials pm�x� generated with these,

p−1�x� � 0,

p0�x� � 1,

pm+1�x� = �x − am�pm�x� − bmpm−1,

m = 0,1,2, . . . , �A7�

are orthogonal with weight function f���,

�pm�pm�� �
1

�
�

0

�

d� f���pm�cos ��pm��cos �� = 0,

if m � m�. �A8�

A final normalization then yields the desired generalized
Chebyshev polynomials,

T0�x� = 1,

Tm�x� =
pm�x�

�2�pm�pm��1/2 , m � 0. �A9�

The algorithm further generates the roots x1 ,x2 , . . . ,xn of
Tn�x�=0 and the weights wj for n-point Gauss-Chebyshev
quadrature,

1

�
�

0

�

d� f���H�cos �� � �
j=1

n

wjH�xj� . �A10�

The quadrature is exact if H�x� is a polynomial of degree less
than or equal to 2n−1.

A similar procedure could now be followed for the gen-
eralization Um�cos �� of type II Chebyshev polynomials
Um�cos �� �28�, where then Vm�cos ��=sin � Um−1�cos ��.
Here however we need the generalizations of Vm�cos ��
=sin m� only through m=4 �in fact, through m=3 is ad-
equate� and for that limited purpose the simpler Gram-
Schmidt orthogonalization suffices. Explicitly, the first two
functions, already used above for the pair potential
uss�r ,�1 ,�2�, are

V0�cos �� = 0,

V1�cos �� =
sin �

�1 − �2�1/2 . �A11�

By construction, then, these generalized Chebyshev func-
tions Tm�cos �� and Vm�cos �� satisfy

1

�
�

0

�

d� f���Tm�cos ��Tm��cos �� = �1, m = m� = 0,

1/2, m = m� � 0,

0, m � m�,
�

�A12�

1

�
�

0

�

d� f���Vm�cos ��Vm��cos �� = �0, m = m� = 0,

1/2, m = m� � 0,

0, m � m�,
�

�A13�

1

�
�

0

�

d� f���Tm�cos ��Vm��cos �� = 0. �A14�

Collectively, Eqs. �A12�–�A14� give rise to the orthonormal-
ization of Em��� expressed in Eq. �21�.

For B0=0 and f���=1 so that �k=0 for all k, the
Tm�cos �� and Vm�cos �� generated in the fashion described
above are of course just the standard Chebyshev functions
Tm�cos ��=cos m� and Vm�cos ��=sin m�.

APPENDIX B: HELMHOLTZ FREE ENERGY

To calculate the total free energy we use the familiar
“charging” process, turning on the interactions with a param-
eter �, 0	�	1. However, as emphasized by Sullivan �38�,
the one-body distribution f��� should remain unchanged as
the interaction is turned on. Thus we will also adopt an ef-
fective external field B0��� designed to maintain fixed the
f��� found by calculation, Eq. �59�. Define then the partition
function

Z��� =
1

N!�2��3�N � �
j=1

N

�dr jd� j�exp���B0����
j

cos � j

− ���
i�j

u�rij,�i,� j�	 , �B1�

where the external field is such that B0��=0�=B and B0��
=1�=B0. Then following the analysis of Ref. �11�, we find
first

�A

N
= ln���3� − 1 − ln�I0���B�� + ���B − B0��1

+
1

2

�

�2��2 � dr d�1d�2f��1�f��2�

��
0

1

d� g�r,�1,�2����u�r,�1,�2� . �B2�

Finally, evaluation of three of the integrals in Eq. �B2� leads
to �11�
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�A

N
= ln���3� − 1 − ln�I0���B�� + ���B − B0��1 +

�A1

N

+
�A2

N
+

�A3

N
, �B3�

with

�A1

N
= −

1

2
�� dr
c00�r� +

1

2 �
m1,m2

�cm1m2

2 �r� − �m1m2

2 �r��� ,

�B4�

�A2

N
= −

1

2�
� dk

�2��3 �ln det�I + �H̃�k�� − tr��H̃�k��� ,

�B5�

�A3

N
=

1

2
�� dr�

0

1

d� �
m1,m2

gm1m2
�r���

�bm1m2
�r���

��
.

�B6�

The final integral over � in Eq. �B6� cannot be evaluated in
closed form and this term must be approximated. In the
hypernetted-chain closure �39�, it is simply neglected.

The effect of the RHNC approximation is to replace Eq.
�B6� with the corresponding integral of the reference system,
which is then evaluated as A3

ref=Aref−A1
ref−A2

ref. In practice,
only the hard sphere system is currently known well enough
for this last step; in this case, we have finally

�ARHNC

N
=

�AHS

N
− ln�I0���B�� + ���B − B0��1 +

��A1

N

+
��A2

N
, �B7�

where �Ak=Ak−Ak
HS. For the excess hard sphere free energy

�AHS
ex /N��AHS/N−ln���3�+1 we use the form derived

from the Carnahan-Starling equation of state �23�.
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