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Bulk electroconvection pertains to flow induced by the action of a mean electric field upon the residual space
charge in the macroscopic regions of a locally quasielectroneutral strong electrolyte. For a long time, contro-
versy has existed in the literature as to whether quiescent electric conduction from such an electrolyte into a
uniform charge-selective solid, such as a metal electrode or ion exchange membrane, is stable with respect to
bulk electroconvection. While it was recently claimed that bulk electroconvective instability could not occur,
this claim pertained to an aqueous, low-molecular-weight electrolyte characterized by an order-unity electro-
convection Péclet number. In this paper, we show that the bulk electroconvection model transforms into the
leaky dielectric model in the limit of infinitely large Péclet number. For the leaky dielectric model, conduction
of the above-mentioned type is unstable, and so it is in the bulk electroconvection model for sufficiently large
Péclet numbers. Such instability is sensitive to the ratio of the diffusivity of the cations to the anions. For
infinite Péclet number, the case with equal ionic diffusivities is a bifurcation point separating stable and
unstable regimes at the low-current limit. Further, for a cation-selective solid, when the Péclet number is finite
and the anions are much more diffusive than the cations, an unreported bulk electroconvective instability is
possible at low current. At higher currents and large Péclet numbers, we found that the system is unstable for
all cation-to-anion diffusivity ratios, but passes from a monotonic instability to an oscillatory one as this ratio
passes through unity.
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I. INTRODUCTION

Flow of electrolyte induced by the action of electric
forces on the fluid �electroconvection� on a length scale rang-
ing from nanometers to tens and hundreds of micrometers is
an important mechanism in electrochemical transport and
microfluidics �1–18�. One of the most fundamental processes
in these systems is the one-dimensional steady-state electric
conduction from a binary electrolyte solution into a charge-
�e.g., for definiteness, positive-charge-�selective solid, such
as an electrode �cathode� or ion exchange membrane �cation
exchange membrane�. The stability of quiescent conduction
with respect to a possible onset of electroconvection has
been a long studied problem �19–36�. In particular, instabil-
ity of this configuration has been invoked as a likely source
of overlimiting conductance �1,2�. Two modes of electrocon-
vection may be distinguished. The first is bulk electrocon-
vection, which is the flow of an electrolyte due to body
forces exerted by an electric field acting upon the residual
space charge of a locally quasielectroneutral ionic solution.
The second mode is electro-osmosis, in particular, nonequi-
librium extended charge electro-osmosis, which is a surface-
driven flow originating in the extended space charge region
that develops when an electrochemical cell is at the limiting
current �3,27–32,36�. This work is concerned only with bulk
electroconvection since convection due to extended charge
electro-osmotic slip has been thoroughly addressed in recent
work �36�.

Despite extensive study, whether or not conduction of the
aforementioned type is stable to bulk electroconvection has
remained unclear �19–25,28,29,33,35�. While it was recently
claimed that the bulk electroconvective instability could not

occur, this claim pertained to an aqueous, low-molecular-
weight electrolyte with order-unity electroconvection Péclet
number �29,33,35�. However, when the Péclet number tends
to infinity and when the ionic diffusivities are equal, the bulk
electroconvection model transforms into the leaky dielectric
model �37–40� applied by Hoburg and Melcher to study sta-
bility of doped liquid dielectrics �37–39�. In this and related
models of liquids with nonuniform electric conductance, the
conduction state of the above-mentioned type is unstable
�14–16,28,37–39�. Natural questions arise. How do the two
models relate to each other, and, in particular, what are the
stability characteristics of conduction under bulk electrocon-
vection at large Péclet numbers? The present paper is meant
to answer these questions. In addition to its theoretical value,
this answer may bear some practical relevance for high-
molecular-weight electrolytes.

This paper will show that the existence of bulk electro-
convection is sensitive to the ratio of the diffusivity of the
cations to the anions. Many previous works on this topic
address only the case where the ionic diffusivities are equal.
We will show that, when the current is low and the Péclet
number is infinite, the situation where the ionic diffusivities
are equal is a bifurcation point separating stable and unstable
regimes. Further, when the Péclet number is finite, there is
still a dramatic difference in the convection when the anions
are more diffusive than the cations compared to the opposite
case. We will show that when the anions are much more
diffusive than the cations an unreported �to the best of our
knowledge� bulk electroconvective instability is possible at
low current.

We begin Sec. II with the outline of the bulk electrocon-
vection model, yielding the Hoburg-Melcher model and its
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particular generalization termed the modified Hoburg-
Melcher model as the infinite-Péclet-number limit �Sec. III�.
This is followed by formulation of the linear stability prob-
lems in all three models �Sec. IV�, analyzed analytically in
the low-current limit �Sec. V�, and numerically for finite cur-
rents �Sec. VI�.

II. BULK ELECTROCONVECTION
IN CONCENTRATION POLARIZATION

Let us consider an infinite planar horizontal layer of thick-
ness H of a univalent electrolyte bounded by two ideally
positive charge-selective solid walls, such as cation exchange
membranes or metal electrodes, with a constant dc electric
current passed upward in the direction normal to the walls.
As we will see below, current in this direction induces gravi-
tationally stable density stratification through either electro-
lyte concentration changes or Joule heating. Moreover, to
focus on electroconvection alone, let us assume the layer
thickness to be macroscopic but still sufficiently small for
any gravity effects to be disregarded altogether here �see Fig.
1 for an illustration of the geometry�.

The dimensionless equations for convective electrodiffu-
sion of ions in the layer, together with the Stokes equations
and the incompressibility condition, read �we limit ourselves
to the planar case for which the linear stability results for our
system are identical with those in the three-dimensional
case�

ct
+ + �v · ��c+ =

1

Pe

D + 1

2
� · ��c+ + c+ � �� , �1�

ct
− + �v · ��c− =

1

Pe

D + 1

2D
� · ��c− − c− � �� , �2�

�2�� = c− − c+, �3�

Revt = − �p + �� � � + �v , �4�

� · v = 0 �0 � x � 1, − � � y � �� . �5�

The Nernst-Planck equations �1� and �2� describe convective
electrodiffusion of cations and anions, respectively. Equation

�3� is the Poisson equation for the electric potential, where
c+−c− in the right-hand side is the space charge due to a
local imbalance of ionic concentrations. The Stokes equation
�4� is obtained from the full momentum equation by omitting
the nonlinear inertia terms that do not affect the linear sta-
bility of the quiescent state studied in this paper. Finally, �5�
is the continuity equation for an incompressible solution. The
spatial variables in �1�–�5� have been nondimensionalized
with the layer thickness H, whereas

t =
v0t̃

H
, c+ =

c̃+

c0 , c− =
c̃−

c0 , � =
F�̃

RT
�6�

are the dimensionless time, concentrations of cations and an-
ions, and the electric potential. Above, c0 is the average an-
ion concentration in the layer, F is the Faraday constant, R is
the universal gas constant, T is the absolute temperature, and
the “salt” diffusivity D0 is defined as

D0 =
2D+D−

D+ + D−
, �7�

where D+ and D− are the cationic and anionic diffusivities.
Furthermore, v and p in �4� and �5� are the dimensionless
velocity vector and pressure, defined as

v =
ṽ

v0
= vxi + vyj, p =

p̃

p0
, �8�

with the typical velocity v0 and pressure p0 determined from
the force balance in the dimensional version of the momen-
tum equation �4� as

v0 =
d�RT/F�2

4��H
, p0 =

�v0

H
, �9�

where d is the dielectric constant of the solution and � is the
dynamic viscosity of the fluid. There are four dimensionless
parameters in the system �1�–�5� which are as follows.

�1� The dimensionless Debye length � is defined as

� =
�dRT�1/2

2F��c0�1/2 . �10�

�2 lies in the range 2�10−13��2�2�10−5 for a realistic
macroscopic system with 10−4�H �cm��10−1, 10−4

�c0 �mol��1.
�2� The Péclet number Pe is defined as

Pe = �v0H

D0
� = �RT

F
�2 d

4��D0
. �11�

As indicated previously �20�, Pe does not depend on c0 or H.
For a typical aqueous, low-molecular-weight electrolyte, Pe
is of order unity �more precisely, Pe	0.5�.

�3� The relative cationic diffusivity D is defined as

D =
D+

D−
. �12�

�4� The Reynolds number Re is defined as

0
x

xH

1

~

yy ~

I

FIG. 1. Sketch of the problem’s geometry.
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Re =
v0H

	
= Pe

D0

	
=

Pe

Sc
, �13�

where 	 is the kinematic viscosity of the fluid and Sc is the
Schmidt number, typically of the order 103 for an aqueous
ionic solution.

The extreme smallness of �2 motivates the commonly em-
ployed approximation of local “stoichiometric” electroneu-
trality, which amounts to setting �=0 in �3�, yielding

c+ = c− =
def

c , �14�

everywhere in the bulk of electrolyte, except for the bound-
ary �electric double� layers of thickness �. Note that, al-
though the space charge is very small �of order �2� in the
Poisson equation �3�, it is sufficient to generate an electro-
convective flow with Péclet number of order unity through
the force term in the Stokes equation �4�.

The dimensionless equations for convective electrodiffu-
sion in the local electroneutrality approximation are

ct + �v · ��c =
1

Pe

D + 1

2
� · ��c + c � �� , �15�

ct + �v · ��c =
1

Pe

D + 1

2D
� · ��c − c � �� . �16�

By adding �15� and �16� multiplied by D, we arrive at

ct + �v · ��c =
1

Pe
�c . �17�

Furthermore, by subtracting �15� from �16�, we obtain

D − 1

D + 1
�c + � · �c � �� = 0. �18�

The equations �17� and �18� together with the Stokes equa-
tion

− �p + �� � � + �v = Re vt �19�

and continuity equation

� · v = 0 �20�

form the final set describing macroscopic bulk electrocon-
vection in the local stoichiometric electroneutrality approxi-
mation.

The simplest version of the galvanostatic boundary con-
ditions reads


vx
x=0,1 = 
vy
x=0,1 = 0, �21�

�� �c

�x
+ c

��

�x
��

x=0,1
= I = const, �22�

�� �c

�x
− c

��

�x
��

x=0,1
= 0, �23�

�



�c − 1�dx dy = 0. �24�

Equations �21� are standard no-slip conditions at the solid
boundaries. The current conditions �22� specify a constant
electric current density I through the membrane �the expres-
sion in parentheses stands for the x component of the dimen-
sionless cationic flux�. Conditions �23� state the imperme-
ability of these boundaries for anions �the expression in
parentheses stands, with a minus sign, for the x component
of the dimensionless anionic flux�. These boundary condi-
tions are complemented by periodicity conditions in the y
direction. The normalization condition �24�, in which inte-
gration in y is carried over one period, specifies the total
amount of anions in the layer �per unit area of membrane�.
This condition is necessary for uniqueness of concentration
with flux conditions �22� and �23�. Hereafter, we shall refer
to the problem �17�–�24� as the bulk electroconvection �BE�
model.

The steady state version of the boundary value problem
�17�–�24� possesses a trivial quiescent conduction �concen-
tration polarization� solution:

c0�x� = 1 +
I

2
�x −

1

2
�, �0�x� = ln
1 +

I

2
�x −

1

2
�� ,

�25�

v0 � 0, p0�x� =
1

2
�0x

2 + const. �26�

Expression �25� yields the current-voltage relation,

I = 4
1 − e−V

1 + e−V , �27�

where

V =
def

�0�1� − �0�0� �28�

is the voltage across the solution.
From �27�, when V→�, I→ Ilim=4, and, simultaneously,

by �25�, c0�0�→0. This is the key feature of the classical
picture of the concentration polarization—saturation of the
current density toward the limiting value with increasing
voltage, resulting from the vanishing interface electrolyte
concentration at the cathode.

III. INFINITE-PÉCLET-NUMBER ASYMPTOTICS
AND TRANSITION TO HOBURG-MELCHER

ELECTROCONVECTION IN DOPED DIELECTRICS

The model of electroconvection in doped dielectrics intro-
duced by Hoburg and Melcher �HM� �see Refs. �37–40�� is
obtained from the BE model �17�–�24� by setting equal dif-
fusivities of co- and counterions in Eq. �18� �D=1; see Ref.
�33�� and assuming Pe�1 while keeping the leading-order
term in Eq. �17�, which yields

ct + �v · ��c = 0, �29�
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� · �c � �� = 0, �30�

− �p + �� � � + �v = Re vt, �31�

� · v = 0. �32�

The no-slip conditions �21� at the solid boundaries, and
the migration term of the electric current at the solid/liquid
interface

�c
��

�x
�

x=0,1
=

I

2
, �33�

together with periodicity conditions in y, complete the HM
model.

We consider also the modified Hoburg-Melcher �MHM�
formulation, assuming the Péclet number to be large, Pe
�1, and D�1, which to the leading order yields

ct + �v · ��c = 0, �34�

D − 1

D + 1
�c + � · �c � �� = 0, �35�

− �p + �� � � + v = Re vt, �36�

� · v = 0, �37�


vx
x=0,1 = 
vy
x=0,1 = 0, �38�

��D − 1

D + 1

�c

�x
+ c

��

�x
��

x=0,1
=

DI

D + 1
. �39�

We note that all three models are identical except for the
transport and current continuity equations. To ease the com-
parison we list the differing equations in Table I.

IV. LINEAR STABILITY OF QUIESCENT
CONCENTRATION POLARIZATION IN THREE MODELS

In this section we formulate the linear stability problems
for concentration polarization solution �17�–�24� in the HM,
MHM, and BE models. For this, we assume an infinitesimal
flow v� which creates small two-dimensional fluctuations c�,
p�, �� in the concentration, pressure, and electrostatic poten-
tial. Let us consider a perturbation of the conduction solution
�25� and �26� of the form

�
c0�x�
�0�x�
v0 � 0

p0�x�
� +�

��x�exp�iky�

�x�exp�iky�
V�x�exp�iky�
P�x�exp�iky�

�est �40�

where V�x�=u�x�i+w�x�j.
Substitution of Eq. �40� into the BE problem �17�–�24�,

followed by linearization, yields a spectral problem for
�� ,
 ,u� and s with the equations

u =
2

I
� 1

Pe
L − s�� , �41�

L2�u� − Re sL�u� = k2 I

2 + I�x − 1/2�
L�
�

− 2k2� I

2 + I�x − 1/2��
3


 , �42�

D − 1

D + 1
L��� +

I

2

d


dx
+ 
1 +

I

2
�x −

1

2
��L�
�

+
d

dx
� I

2 + I�x − 1/2�
�� = 0, �43�

where

L =
d

dx2 − k2. �44�

The boundary conditions are

�d�

dx
�

x=0
= �� I/2

1 − I/4
� + �1 − I/4�

d


dx
��

x=0
= 
u
x=0

= �du

dx
�

x=0
= 0, x = 0 �anode� , �45�

�d�

dx
�

x=1
= �� I/2

1 + I/4
� + �1 + I/4�

d


dx
��

x=1
= 
u
x=1

= �du

dx
�

x=1
= 0, x = 1 �cathode� . �46�

In the limit of infinitely large Péclet number, the eight-
order spectral problem �41�–�46� is reduced to the following
sixth-order one representing the MHM model:

u = −
2s

I
� , �47�

D − 1

D + 1
L��� +

I

2

d


dx
+ 
1 +

I

2
�x −

1

2
��L�
�

+
d

dx
� I

2 + I�x − 1/2�
�� = 0, �48�

TABLE I. Different equations in various models.

BE model
MHM model
D�1, Pe→�

HM model
D=1, Pe→�

ct+ �v ·��c= 1
Pe�c ct+ �v ·��c=0

D−1
D+1�c+� · �c���=0 � · �c���=0
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L2�u� − s Re L�u� = k2 I

2 + I�x − 1/2�
L�
�

− 2k2� I

2 + I�x − 1/2��
3


 . �49�

Equation �47� together with no slip at the solid/liquid inter-
faces yields

��0� = ��1� = 0, �50�

and, thus, the boundary conditions read

�d


dx
�

x=0,1
= 
u
x=0,1 = �du

dx
�

x=0,1
= 0. �51�

The HM formulation corresponds to setting D=1 in Eq. �48�,
which removes the first term of this equation.

V. LINEAR STABILITY ANALYSIS
OF THE LOW-CURRENT LIMIT

In this section we analyze the problems �41�–�46� and
�47�–�51� in the low-current �I�1� limit. We first consider
the limit of infinite Péclet number in the Hoburg-Melcher
and modified Hoburg-Melcher models. We then analyze the
transition to finite Péclet numbers in the bulk electroconvec-
tion model.

A. Hoburg-Melcher model, Pe\�, D=1

Let us start with the original Hoburg-Melcher formulation
�Eqs. �47�–�51� with D=1�. For I→0, Eq. �48� yields the
following relation between L�
� and d� /dx:

L�
� + �
d�

dx
= 0; �52�

here �= I /2; whereas Eq. �49� yields

L2�u� − s Re L�u� = k2�L�
� . �53�

Substitution of Eq. �52� into Eq. �53� yields a fourth-order
equation,

S1L2�u� − S1
2�3 Re L�u� − k2du

dx
= 0, �54�

where

S1 =
s

�3 . �55�

Let us note that the scaling Eq. �55� is particular for this
formulation with D=1. Keeping leading terms in Eq. �54�,
we obtain

S1L2�u� − k2du

dx
= 0, �56�

which together with the no-slip conditions

�du

dx
�

x=0,1
= 
u
x=0,1 = 0 �57�

forms the linear stability problem for the HM model at low
current.

The numerical solution of the problem �56� and �57�
yields a purely imaginary spectrum with an accumulation
point at the origin. This is the expression of singularity of
this limiting formulation. This singularity is based in the
spectrum parameter in Eq. �56�, which multiplies the highest
derivative instead of multiplying in the dominant second
power the lower-order derivative in Eq. �54�. Correspond-
ingly, this singularity is removed by returning for a finite �
from Eq. �56� to Eq. �54�. In Fig. 2 we present the depen-
dence of the imaginary part of the eigenvalue with the largest
absolute value on the wave number k.

B. Modified Hoburg-Melcher model, Pe\�, DÅ1

Turning to the modified Hoburg-Melcher model, that is,
Eqs. �47�–�51� with D�1, the limiting low-current spectral
problem assumes the form

u = −
s

�
� , �58�

D − 1

D + 1
L��� + L�
� = 0, �59�

L2�u� − s Re L�u� = k2�L�
� . �60�

This case is simpler than the degenerate case D=1 because
Eq. �59�, as opposed to Eq. �52�, establishes a relation be-
tween L�
� and L���. Substitution of this relation into Eq.
�60� yields

S2L2�u� − S2
2�2 Re L�u� = − k2D − 1

D + 1
L�u� , �61�

which is a second-order equation for L�u�. Note that

S2 =
s

�2 �62�

contains the scaling �2 instead of �3 in Eq. �62�. To leading
order in �, Eq. �61� is reduced to

0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03

k

I(S1)

FIG. 2. Imaginary part of the dominant eigenvalue S1 as a func-
tion of wave number as computed from the low-current HM model.
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S2L2�u� + k2D − 1

D + 1
L�u� = 0, �63�

which together with the no-slip boundary conditions �57�
forms the limiting spectral problem for the MHM model.

Seeking the solution of Eq. �63� in the form

u = A sinh kx + B cosh kx + C sinh k�1 −
1

S̃2

x

+ D cosh k�1 −
1

S̃2

x �64�

and applying the boundary conditions �57� yields the equa-

tion for S̃2,

2�1 −
1

S̃2

�1 − cosh k cosh�1 −
1

S̃2

k�
+ �2 −

1

S̃2
�sinh k sinh�1 −

1

S̃2

k = 0, �65�

where

S̃2 = S2
D + 1

1 − D
. �66�

Numerical solution of Eq. �65� shows that all S̃2 are real and
positive and accumulate at 0. Once more, this accumulation
is regularized �removed� by returning from Eq. �63� to Eq.
�61�. The eigenvalues to the problem Eqs. �57� and �61� form
an unbounded infinite decreasing sequence. The number of
eigenvalues lying in the vicinity of 0 increases upon decreas-
ing �, so that in the singular limit, �=0, boundedness of the
spectrum appears with accumulation at the origin. Taking

into account the definition �66� of S̃2, the sign of S2 coincides
with that of 1−D. This implies stability for D�1 and mono-
tonic instability for D�1, separated by marginally stable
low-frequency �S1=S2�� oscillations in the degenerate case
�D=1� corresponding to the original Hoburg-Melcher model.
In Fig. 3 we present the dependence of the maximal modified

eigenvalue S̃2 on k in the singular limit �=0.

C. Bulk electroconvection model, DÅ1

We now turn to the BE formulation �41�–�46� and start
with a case of nonequal diffusivities D�1. The limiting low-
current spectral problem analogous to �47�–�51�, �57�, and
�63� assumes the form

L3��� − s�Pe + Re�L2��� + Pe�Re s2 + k2�2D − 1

D + 1
�L��� = 0,

�67�

with the following boundary conditions:

�d�

dx
�

x=0,1
= �� 1

Pe

d2�

dx2 − � k2

Pe
+ s����

x=0,1
= �d3�

dx3�
x=0,1

= 0.

�68�

Keeping leading-order terms in Eq. �67� and assuming
Re=O�1�, we find

L3��� − S3L2��� + Pe1k2D − 1

D + 1
L��� = 0, �69�

�d�

dx
�

x=0,1
= ��d2�

dx2 − �k2 + S3����
x=0,1

= �d3�

dx3�
x=0,1

,

�70�

where

Pe1 = Pe �2, S3 = s Pe =
s

�2Pe1. �71�

We seek the solution of Eq. �69� in the form

� = A sinh kx + B cosh kx + C sinh k�1 + �1x

+ D cosh k�1 + �1x + E sinh k�1 + �2x

+ F cosh k�1 + �2x , �72�

where

�1,2 =
1

2
�S3

k2 ±��S3

k2�2

+ 4
L

k2 , L = Pe1
D − 1

D + 1
. �73�

Substituting Eq. �72� into boundary conditions �70� and solv-
ing the obtained transcendental equation for S3 �we do not
present this solution here due to its lengthiness and technical
character�, we find that all S3 are real. In Fig. 4 we present
the dependence of the largest eigenvalue S3

0 on k for two
values of the control parameter L �L=−100,100�. Figure 4
shows that the system can become unstable with respect to
bulk electroconvection when D�1.

Substitution of S3=0 into Eqs. �70�, �72�, and �73� yields
the following equation for the marginal stability curve:

�1 + �1 + L/k2

sinh k��1 + �1 + L/k2�/2
= ±

��1 + L/k2 − 1

sin k���1 + L/k2 − 1�/2
.

�74�

In Fig. 5 we present the dependence of the parameter L on k
for marginal stability when D�1. When D�1 the system is
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1
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FIG. 3. Dominant eigenvalue S2 as a function of wave number
as computed from the low-current MHM model.
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unstable when −L exceeds the threshold value of L=−68.
A positive value of L yields the stability of low-current
���1� one-dimensional conduction for D�1 and Pe
�O�1/�2�.

We wish to point out that Eq. �70� obtained in the low-
current and infinite-Péclet-number limit, corresponding to
constant concentration �conductivity� in the base state and
vanishing contribution of diffusion, is reminiscent of the ap-
proximate spectral equation in the leaky dielectric model of
suspended fluid film stability by Daya et al. �41�. This latter
model, also employing constant conductivity and negligible
charge diffusion assumptions, yields a critical wave number
4.744 compared to 4.74 in Fig. 5, a striking manifestation of
similarity between the two models.

D. Bulk electroconvection model, D=1

Let us now consider the D=1 case in the BE formulation.
The low-current spectral problem at D=1 assumes the form

L3��� − s�Pe + Re�L2��� + Pe Re s2L��� + Pe k2�3d�

dx
= 0,

�75�

with the same boundary conditions �68� as in the previous
section.

Keeping leading-order terms in Eq. �75� and assuming
Re=O�1� we find

L3��� − S4L2��� + Pe2k2d�

dx
= 0, �76�

�d�

dx
�

x=0,1
= ��d2�

dx2 − �k2 + S4����
x=0,1

= �d3�

dx3�
x=0,1

= 0,

�77�

where

Pe2 = Pe �3, S4 = s Pe =
s

�3Pe2. �78�

Numerical solution of Eqs. �76� and �77� shows that all ei-
genvalues S4 have a negative real part and the first eigen-
value S4

0 is real and negative.
Finally, sending Pe2 to � in problem �76� and �77� yields

the following convergence of all complex eigenvalues S4 to
the respective eigenvalues of the problem �56� and �57�, S1:

S4

Pe2
→ S1. �79�

In Fig. 6 we present the dependence of the second and third
eigenvalues S4

1 and S4
2 �the first one S4

0 is equal to −k2 and
does not depend on Pe2� on Pe2 for k=4. Let us note the
merging of the pair of real eigenvalues S4

1 and S4
2 followed by

their splitting into a complex conjugate pair at the threshold
Pe2

*.
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FIG. 4. Wave number dependence of the dominant eigenvalue
for the BE formulation at low current, S3

0. When L=−100, the sys-
tem has a band of wave numbers where the growth rates are posi-
tive and the system is unstable, corresponding to D�1. When L
=100, the system is stable, corresponding to D�1.
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FIG. 5. Marginal stability curve for the BE formulation when
D�1; the minimum corresponds to critical values Lc�Pe �2�D
−1� / �D+1�=−68, kc=4.74.
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FIG. 6. Real and imaginary parts of the eigenvalues S4
1 and S4

2 as
a function of Péclet number for k=4. The two real eigenvalues
merge around Pe2

*=900 and form a complex conjugate pair. As the
Péclet number increases to infinity, the eigenvalues computed from
the BE model converge to those computed from the HM model.
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E. Summary of low-current results

At low current, both the MHM and BE models predict
that the system is stable when D�1. When D�1, the MHM
model predicts instability. However, when the Péclet number
is taken to be finite in the BE model, the system is unstable
only when the parameter L exceeds a critical threshold as
shown in Fig. 5. The stability results of this section can be
summarized by Fig. 7 where we show the critical Péclet
number as a function of D. Note that in Fig. 7 the critical
parameter is Pe1=Pe �2.

From Fig. 7 we can see that the critical Péclet number
increases as D→1. The scaling for Pe1 shows that the criti-
cal Péclet number increases as �→0, a behavior consistent
with the MHM model; at infinite Pe there is always instabil-
ity. Finally, by applying this low-current analysis outside its
region of validity for �→2, corresponding to the limiting
current, we find that that for D→0 the minimum Péclet num-
ber for which instability occurs is approximately Pe=17. As
we will see in the next section, this result is modified when
proper account is taken of the finite current.

VI. LINEAR STABILITY ANALYSIS AT FINITE CURRENT

In this section we analyze the bulk electroconvection
problem at finite current. First, we solve the BE model at
large Péclet number such that we can compare that model to
results obtained from the limiting MHM model. We then
consider how the results with the BE model change as the
Péclet number decreases toward more realistic values. All
results presented in this section are not amenable to analyti-
cal solutions, so in each case we compute the stability nu-
merically. The results presented in this section allow one to
determine whether a given system would be subject to bulk
electroconvection.

A. Bulk electroconvection model, large Péclet numbers

We first consider the case when the Péclet number is very
large and set Pe=104 in the BE model. At a fixed k, we can
compute the critical voltage as the function of D. The solid
curve in Fig. 8 is obtained from a numerical solution of the

BE problem for various values of D. The behavior of the BE
model when D�1 can be understood in terms of the low-
current behavior. With the Péclet number taken finite in the
BE formulation and D�1, we found in the low-current limit
that there is a control parameter L�Pe �2�D−1� / �D+1�
which determines the stability. Fixing Pe and knowing the
critical value of L, we can readily solve for the critical cur-
rent �voltage�. It is easy to see from the definition of the
parameter L that, as D→1, � must increase sharply to main-
tain instability. The critical voltage predicted from the low-
current results at Pe=104 and k=4 is shown as the dashed
curve in the region D�1 of Fig. 8. We see that for D�1 the
critical voltage is well predicted by the low-current asymp-
totics. As D increases toward unity, and thus � increases, this
approximation is no longer valid and the BE solution departs
from its low-current asymptotics. When D�1, both the
MHM and BE models predict stability at low-current. For
D�1 and current near the limiting value and exceeding
some threshold, the system becomes unstable. The dashed
curve in the region D�1 is computed from the MHM model
at finite current. As seen in Fig. 8, in this region the results
for both models conform, whereas around D=1 the BE for-
mulation transitions from one limiting behavior to the other.

In the low-current limit of the MHM model, we found
that there was monotonic instability when D�1 and stability
for D�1, with stable oscillations at D=1. At higher currents
and high Péclet number, we find that the system is unstable
for all D but passes from a monotonic instability to an oscil-
latory one as D passes through 1. This is shown in Fig. 9
where we plot the two most dominant eigenvalues as a func-
tion of D at high Péclet number �Pe=104�, near limiting cur-
rent �V=4�, and k=4. The real part of the eigenvalues are
plotted as solid lines and the magnitude of the imaginary part
as the dashed line. We observe a merger of the two largest
real eigenvalues which split into complex conjugates at D
=1.

B. Bulk electroconvection model, moderate
Péclet numbers

We now compare the stability results for the BE formula-
tion at finite current to those in the low- current limit when
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FIG. 7. Critical Péclet number as a function of D at low current.
The system is unstable when Pe exceeds this critical value. When
D�1 the low-current analysis predicts that the system is always
stable. Note that the y axis uses Pe1=Pe �2 from Eq. �71�.
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FIG. 8. Critical voltage as a function of D at high Péclet number
at k=4. The solid curve is computed from the BE formulation; the
two dashed curves are computed from the low-current formulation
for D�1 and the MHM model for D�1.
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D�1. In Fig. 10 we show marginal stability curves for volt-
ages V=0.01,0.1,1 ,2 ,4. We present the stability results us-
ing the control parameter identified in the low-current limit,
namely, L=Pe �2�D−1� / �D+1�. We find that the marginal
stability curves depart from those in the low-current limit,
but that the latter still provides a reasonable picture of the
stability behavior. As the voltage increases, the critical value
of L decreases.

The critical value of L=−68 at low current is reduced to
L=−30 when V=4. Figure 10 allows for easy determination
of the system’s stability given the electrolyte properties Pe
and D and the applied voltage. For example, when V=4 and
D=0.1 the critical Péclet number for instability is approxi-
mately Pe=9.9. Since the critical Pe decreases with the de-
crease of D, in order to evaluate the minimal value of Pe for
which bulk electroconvective instability occurs, we com-
puted the critical Pe dependence on voltage for D=0. The
resulting curve is presented in Fig. 11, suggesting Pe�4.2 as
that minimal value.

When D�1, the MHM model predicted a critical voltage
at which the system becomes unstable. For a finite Pe in the

BE model, this threshold increases as the Péclet number is
lowered toward more realistic values. In Fig. 12, we show
the dependence of the marginally stable Péclet number ver-
sus voltage for different values of D and at some fixed wave
number �k=4�. The marginally stable values of voltage cor-
responding to the infinite-Péclet-number limit �MHM model�
are shown by the dashed vertical lines. With increase of the
voltage, the marginally stable Péclet number decreases,
showing an ever-weakening dependence on D.

VII. CONCLUDING REMARKS

In this paper, we study the relation between the Hoburg
and Melcher model of electroconvection in doped liquid di-
electrics �37–40� and the bulk electroconvection model of
the flow of an electrolyte due to the body forces exerted by
an electric field acting upon the residual space charge of a
locally quasielectroneutral ionic solution �20�. Considering
both cases of low and high current we have traced the man-
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FIG. 9. Two largest eigenvalues when V=4, k=4, and Pe=104.
The solid line denotes the real part of the two most dominant ei-
genvalues and the dashed line the magnitude of the imaginary part.
A transition to oscillating instability occurs as the system passes
through D=1.
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FIG. 10. Marginal stability curve at finite current, plotting the
control parameter L vs wave number. The voltages are V=0.01,
0.1,1,2,4 and D=0.1.
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FIG. 11. Dependence of the critical value of Pe on voltage for
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FIG. 12. Marginally stable Péclet number versus voltage for
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age computed from the MHM model �infinite Pe�. The solid curves
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ner in which the bulk electroconvection model transforms
into the leaky dielectric model in the limit of infinitely large
Péclet number.

We have also demonstrated that the existence of bulk
electroconvection depends critically upon the ratio of the cat-
ionic to anionic diffusivity, D. When the Péclet number is
infinite, the case with equal ionic diffusivities becomes a
bifurcation point, separating stable �D�1� and unstable �D
�1� regimes in the low-current limit. At higher currents and
very large Péclet numbers, we find that the system is un-
stable for any value of D but switches from a monotonic
instability to an oscillatory one as D passes through unity.

When the Péclet number is finite and the anions are much
more diffusive than the cations, an unreported bulk electro-
convective instability is possible at low current. This insta-
bility can occur when the electroconvection Péclet number is
on the order of Pe�10. This bulk instability mechanism may
have some practical relevance for high-molecular-weight
electrolytes.
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APPENDIX: DERIVATION OF THE LINEAR STABILITY
SPECTRAL PROBLEM

In this appendix we formulate the linear stability prob-
lems for the concentration polarization solution �17�–�24� in
the HM, MHM, and BE models. For this, we assume an
infinitesimal flow v� which creates small two-dimensional
fluctuations c� , p� ,�� in the concentration, pressure, and
electrostatic potential. Let us consider a perturbation of the
conduction solution �25� and �26� of the form

M� = M� 0 + M� 1. �A1�

Here,

M� 0 =�
c0�x�
�0�x�
v0 � 0

p0�x�
�, M� 1 =�

c��x,y�
���x,y�
v��x,y�
p��x,y�

�est, �A2�

whence v�=vxi+vyj is the velocity perturbation vector.
Substitution of M� into the BE problem �17�–�24�, fol-

lowed by linearization, yields a spectral problem for
�c� ,�� ,v�� , p�� and s with the equations

�v� − �p� + ��0 � �� + ��� � �0 = Re sv�, �A3�

1

Pe
�c� = vx�

dc0

dx
+ sc�, �A4�

D − 1

D + 1
�c� + � · �c0 � �� + c� � �0� = 0, �A5�

� · v� = 0. �A6�

Applying the operator rot rot to the linearized Navier-
Stokes equation �A3� yields

�2vx� − Re s�vx� = −
��0

�x

�2���

�y2 +
�3�0

�x3

�2��

�y2 . �A7�

Thus, the linear stability formulation reads

1

Pe
�c� =

I

2
vx� + sc�, �A8�

D − 1

D + 1
�c� +

I

2
�x� + c0��� +

�

�x
� I

2 + I�x − 1/2�
c�� = 0,

�A9�

�2vx� − Re s�vx� = −
I

2 + I�x − 1/2�
�2���

�y2

+ 2� I

2 + I�x − 1/2��
3�2��

�y2 , �A10�

with the following boundary conditions resulting from
�21�–�24�:

� �c�

�x
�

x=0
= �� I/2

1 − I/4
c� + �1 − I/4�

���

�x
��

x=0
= 
vx�
x=0

= � �vx�

�x
�

x=0
= 0, x

= 0 �left membrane — anode� , �A11�

� �c�

�x
�

x=1
= �� I/2

1 + I/4
c� + �1 + I/4�

���

�x
��

x=1
= 
vx�
x=1

= � �vx�

�x
�

x=1
= 0, x

= 1 �right membrane — cathode� . �A12�

The basic question we address is whether the boundary value
problem �A8�–�A12� possesses a nontrivial solution for some
value of the control parameter I.
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