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Structures formed by a colloidal suspension of silica particles in 4-methyl cyclohexanol have been analyzed
in the presence of an electric field. The formation of chains of particles was detected using an elliptical mirror
to collect scattered light and a nearly matched refractive index between particles and solvent. A numerical
method has been developed to obtain the size distribution of chains and their kinetics of formation from the
record of a two-dimensional map of scattered light. We have compared the experimental size distribution to the
prediction of a statistical theory based on a minimization of the free energy of a gas of chains. This theory quite
well reproduced the experimental results for small chains but overestimates the tail of the distribution at high
field. A saturation of the average size of chains versus the electric field was observed experimentally instead of
a continuous growth as would be expected from aggregation under dipolar forces. A kinetic model, taking into
account both capture and escape rates of a particle at the extremity of a chain, was shown to reproduce well the
experimental growth of the average size of chains with time.
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I. INTRODUCTION

The theory of the liquid state has progressed a lot, thanks
to the concept of local structure, which characterized the
organization of molecules around a reference one. The pair
distribution function g�r� is the basic tool which serves to
describe this local structure. When the molecules interact
through an isotropic potential �like the Lennard-Jones one�,
we only have to consider the probability to find another par-
ticle at a distance r from the reference one. The problem
becomes more difficult in the presence of an anisotropic po-
tential like the dipolar one. The pair distribution function
g�r ,�� is now anisotropic, and many theories have been de-
rived in order to predict this function from knowledge of the
energy of the interaction between two spherical dipolar par-
ticles �1,2�. The comparison with experiments is not simple
since dipolar molecules are not spherical—they have at least
two atoms—and taking into account this anisotropy would
still complicate the theory a lot. The simplest realization of a
dipolar fluid made of spherical entities is actually a suspen-
sion of spherical colloidal particles carrying a permanent di-
polelike ferrofluid or also colloidal particles polarized by an
electric or a magnetic field. In this paper we are dealing with
the second kind of suspensions, also known as electrorheo-
logical fluids when the change of structure under the applied
field is large enough to strongly increase the viscosity of the
suspension. Actually our main interest is not the change of
viscosity or a test of theories about dense dipolar liquid, but
an analysis of the change of structure at low volume fractions
in the presence of an external field. At low volume fraction
and in the presence of strong dipolar interactions, the pair
distribution function is no longer an adequate tool to describe
the structure of the suspension. The situation is closer to the
one described by aggregation theories where we consider the
formation of small clusters which can grow due to the attrac-
tive dipolar interactions or be destroyed due to Brownian
motion �3�. In this case the structure of the suspension is
better characterized by a size distribution of chains contain-

ing n particles: gn�E� for a given applied field E. Our aim in
this work was to determine experimentally this size distribu-
tion and to compare it with the predictions of statistical theo-
ries. Previous theories concerning the equilibrium state of
aggregation in the presence of dipolar forces �4–7� differ in
the way they calculate the free energy of a gas of chains and
also in the consideration of interactions between chains of
particles. In this paper we shall present a derivation of the
equilibrium size distribution where we discard interactions
between the chains of spheres. As we shall see in Sec. IV B,
this approximation is justified for the low volume fractions
we are going to consider experimentally. Concerning the ki-
netics of chain formation most approaches are based on irre-
versible aggregation with the use of the standard Smolu-
chowski equation �8� and cluster-cluster aggregation model
�8–10� predicting a power law for the growth of average size
versus time. Other models �11� consider each particle as a
sink surrounded by a homogeneous cloud of particles which
diffuse towards the sink according to Fick’s equation; this
kind of model can only predict the evolution in time of the
concentration of isolated particles, but not the size distribu-
tion. We propose in Sec. II B a model based on the reversible
Smoluchowski’s equation which can predict the kinetics of
growth towards an equilibrium state corresponding to the
minimization of the free energy of the system. Comparisons
with experiments are very scarce because of the difficulty to
obtain experimentally the size distribution of particles. Most
papers deal with the observation of chains by optical micros-
copy of micron-sized spheres with the field parallel to the
glass plates. These particles are only slightly Brownian, and
the regime studied is the one of irreversible aggregation �12�.
Furthermore, the chains of particles settle quite quickly and
associated microflow or density gradients can disturb the ag-
gregation process. From light scattering it is possible to get
information on the aggregation process of smaller particles
which do not sediment, but it is indirect information, often
difficult to interpret in terms of the size of aggregates. A first
possibility is to relate turbidity measurements to the average
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length of aggregates �13�, but it supposes that all the aggre-
gates have the same length. Instead of the transmitted light
we can record the scattered light in order to have more com-
plete information on the structure. Such an approach on a
system of quasimatched silica spheres has already been used
to study the kinetics of the coarsening of dipolar chains �14�.
In this paper we focus on the early stage of chain formation,
where transverse coarsening can be neglected, and also on
the relation between chain formation and the interparticle
potential. As was demonstrated for magnetic particles, light
scattering under the action of an external field can be used to
measure the repulsive force between colloidal particles �15�.
In a preceding paper �16� we presented a device able to col-
lect scattered rays in a half space and an example of what
could be deduced about chain formation in an electric field
from the record of the scattered light. In this paper we pro-
pose a theory aiming to predict the size distribution of chains
and their kinetic of formation and we compare these predic-
tions with experimental data. Section II is devoted to the
theory of chain formation under the action of an external
field dealing with both the prediction of the equilibrium size
distribution and kinetics of growth. In Sec. III we briefly
describe the experiment and explain the analysis of the scat-
tered pattern through an inverse method �17�, giving the size
distribution of chains and the distance between particles in-
side the chains. Last, in Sec. IV we present experimental
results obtained from this inverse analysis and compare them
to the predictions of the models presented in Sec. II for both
the equilibrium structure and its dynamic of growth. We con-
clude with a brief discussion about possible developments of
this work to characterize interparticle forces in the presence
of an applied external field.

II. CHAIN FORMATION IN THE PRESENCE
OF DIPOLAR COLLOIDS

In this theoretical section we shall present a general view
of chain formation through dipolar interactions. The first
part, devoted to the equilibrium size distribution of chains, is
also relevant to the case of particles having a permanent
dipole like, for instance, in ferrofluid. The second part con-
cerns the kinetics of chain formation when the field is turned
on and is more specific to the response time of electrorheo-
logical or magnetorheological fluids.

A. Equilibrium size distribution

First of all, we suppose that each particle has acquired the
same electrical dipole moment; that is to say, it is not modi-
fied by the local field of other dipoles. This means, in par-
ticular, that we ignore any interactions between the chains.
Second, we suppose that each particle only interacts with its
nearest neighbors in the chain.

We call gn
0 the equilibrium number of n-particle chains per

unit volume of the suspension, and our purpose is to deter-
mine this function for every integer n.

To this end we write the free energy per unit volume of
the system as follows:

F = kT�
n=1

�

gn
0�ln

gn
0v

e
− ln zn�, e = 2.72 . . . . �1�

Here v is the volume of a particle and zn is the configuration
integral of n particles belonging to a given chain. The first
term in the brackets on the right-hand side of Eq. �1� corre-
sponds to the entropy of an ideal gas of chains due to their
translational motion. The second term is the internal free
energy of the n-particle chain which contains both entropy
and energy of the chain contrarily to the previous models
�16�.

The equilibrium distribution function gn
0 should provide a

minimum of the free energy F under the condition of con-
servation of the total number of particles per unit volume:

�
n=1

�

ngn
0 =

�

v
. �2�

Here � is the total volume fraction of the particles in the
suspension and � /v the number of particles per unit volume.

Minimizing Eq. �1� under the condition �2�, we get

gn
0 =

1

v
zn�a

n, �3�

where �a is an unknown Lagrange multiplier. In order to
determine this multiplier one needs to substitute Eq. �3� into
the balance equation �2�. Before we have to calculate the
chain configuration integral zn of a chain of n particles.

In order to determine zn we consider the total configura-
tion integral Zn of n particles in any position:

Zn =
1

vn � exp�−
1

2�
i�j

u�rij��dr2dr3 ¯ drn, rij = ri − r j .

�4�

Here ri is the radius vector of the ith particle and u�rij� is the
dimensionless potential of the interaction between the ith and
jth particles.

The integral �4� includes all mutual positions of the n
particles, and not only configurations corresponding to a lin-
ear chain. By using the well-known virial expansion method,
we can write Zn in the form of a combination of integrals of
the Mayer function f�r�=−1+e−u�r�/kT:

1

v
� dr , �5�

1

v2 � f�r�dr,
1

v3 � f�r12�f�r23�dr12dr23,

1

v4 � f�r12�f�r23�f�r34�dr12dr23dr34, . . . .

The first integral in �5� corresponds to an ideal gas of
noninteracting particles. Since the Mayer function tends to
zero rapidly when the distance r between two interacting
particles increases and, therefore, correlations between these
particles decreases, the second integral in Eq. �5� corre-
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sponds to clusters of two particles. The integrand in the third
term in �5� significantly differs from zero when the correla-
tions between the first and second, second and third particles
are not weak. Thus this integral corresponds to clusters of
three particles. The same considerations show that the fourth
term of �5� corresponds to a chain of four particles, etc. Note
that in �5�, only terms containing multiplications of nearest
particles are included. We do not consider terms like
f12f13f23, f12f13f23f14, etc., since only linear clusters are con-
sidered here; whereas terms like f12f13f23 correspond to
closed rings, terms like f12f13f23f14 describe bulk or
branched structures.

The situation where all n particles belong to the same
chain corresponds to the integral

1

vn−1 � f�r12�f�r23� ¯ f�rn−1,n�dr12dr23 ¯ drn−1,n, �6�

and only this integral will contribute to zn in Eq. �1� since the
other ones correspond to configurations where the n particles
are not inside the same chain.

The integration in �6� is the product of n−1 similar inte-
grals, but we must also take into account that if we consider
a particle i and integrate on the position of particle i+1, the
integration should only take place on an half upper space
since the half lower space is occupied by particle i−1. There-
fore, the configuration integral of the n-particle chain has the
following form:

zn = � 1

2v
� f�r�dr�n−1

, �7�

where the integration should be carried out over all space. It
should be noted that this form of the configuration integral zn
is a direct consequence of the “nearest-neighbor” approxima-
tion and thus, it is not surprising that the configuration inte-
gral is given by a power of the second virial coefficient of the
interacting particles in the chain.

Combining Eqs. �7� and �3�, we come to the following
expression for the equilibrium distribution function:

gn
0 =

1

v
Xn exp�− w� ,

w = ln� 1

2v
� f�r�dr�, X = � exp�w� . �8�

Substituting expression �8� into the conservation equation �2�
gives an equation for X:

X

�1 − X�2 = � exp�w�

or

X =
1 + 2y − 	1 + 4y

2y
,

where

y = � exp�w� . �9�

Equations �8� and �9� give the final result for the equilibrium
distribution functions gn

0 of a gas of chains in the “nearest-
neighbor” approximation.

The equilibrium mean number of particles in the chain is


n�0 =
�

v�
n=1

�

gn
0

,

and using expression �8� we get


n�0 = � exp�w�
�1 − X�

X
. �10�

In order to calculate w in Eq. �8� we need to know the Mayer
function and therefore the interaction potential between two
particles.

We consider monodisperse spherical particles carrying a
dipolar moment m and suspended in a fluid of dielectric per-
mittivity � f. The particles are supposed to be surrounded by
thin double electrical layers, which screen the attractive van
der Waals interaction between the particles.

The dipolar interaction energy, normalized by kT is,

udd�r,�� =
�

2r3 �1 − 3 cos2�� ,

where

� =
2m2

4��0� fd
3kT

. �11�

Here � is the angle between the field E and radius vector
r ;d=2a is the diameter of the particles, and r is the distance
between the centers of the two particles normalized by d.
This definition of � corresponds to dipoles aligned with the
field and is appropriated to study dipolar aggregation.

For the dimensionless potential of electrostatic interaction
between two spherical particles, surrounded by thin double
electrical layers, we took �18�

uc�r� = −
Q2

8��0�1a3kT

1

�2 ln�1 − exp�− �2a�r − 1�� .

�12�

Here Q is the charge of the particle surface �the charge of the
motionless part of the double layer� and 1/� is the Debye-
Huckel thickness of the ionic double layer.

The total dimensionless potential of interaction between
these particles is

u�r,�� = udd�r,�� + uc�r� . �13�

Using Eq. �13� one can calculate numerically the coupling
parameter w �Eq. �8�� and therefore the equilibrium size dis-
tribution gn

0.

B. Kinetics of the chain formation

Let us turn now to the study of time evolution of an en-
semble of chains. We consider an initially homogeneous sus-
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pension and the field is switched on at t=0. As we shall see
later, in the condition of our experiments, the concentration
of the chains and their hydrodynamic mobility are signifi-
cantly less than those for the single particles and so we have
considered only the “chain-particle” aggregation, neglecting
the “chain-chain” aggregation as well as any interactions be-
tween the chains.

First, we will obtain an equation for the flux of single
particles arriving on a chain—i.e., the number of single par-
ticles “adsorbed” by a chain per unit of time—using the clas-
sical approach described by Fuchs �19�. Then we will ex-
press the growth of a chain expressed as a balance between
this adsorption and the escape flux due to Brownian motion.

1. Flux of dipolar particles towards a sink

We consider a chain consisting of n particles surrounded
by free particles and suppose that the free particles only join
the chain at its extremity. Let c� be the concentration of the
free particles at infinite distance from the chain and c�r� the
local concentration of these particles at the point r. Since the
attraction between a chain and free particles, in this approxi-
mation, is the same as the attraction between two single par-
ticles, we consider the kinetics of formation of a doublet.
One of the particles of the doublet will be considered as free
and the other as fixed in the space. The fixed particle in our
approximation corresponds to the particle at the extremity of
a chain.

The diffusion equation of free particles in the presence of
the dimensionless attractive energy u�r� is

�c

�t
= ��D�r��c� + ��D�r�c�u�r�� . �14�

Here D�r�=D0	�r�, where D0 is the usual coefficient of dif-
fusion of an isolated particle and 	�r� takes into account the
hydrodynamic interaction between two particles; in the first
order versus the separation, we have 	=1−3d /4r �20�. The
boundary conditions of Eq. �14� are

c → c�, r → � ,

c → 0, r → d . �15�

Equation �14� does not have any analytical solution; in
order to get such solutions, two kinds of approximations are
done �11�. First, as the time needed to establish a stationary
concentration profile around the sink is short in comparison
to the time needed to change c�, we can write Eq. �14� in the
quasistationary approximation

��D�r��c� + ��D�r�c�u�r�� = 0. �16�

Second, we average the attractive part of the noncentral
dipole-dipole potential over the angles

ūdd = −
�

2x3

�
Sattr

�3 cos2� − 1�d�cos ��

�
−1

1

d�cos ��
. �17�

Here x=r /d and Sattr is the surface of the unit sphere corre-
sponding to an attractive energy ��cos � � 
1/	3�; note that
the same expression applies for a sink which is a single par-
ticle and for a chain since the two particles at the extremities
have the same Sattr than a single one. Finally we get

ūdd�r� = −
�d3

3	3r3
. �18�

Now instead of Eq. �16� we have

��D�r��c� + ��D�r�c�ū�r�� = 0, ū = ūdd + uc. �19�

In a spherical coordinate system with the origin at the
center of the fixed particle, this equation has the following
form:

�

�r
�D0	�r�r2� �c

�r
+

�

�r
ū�r��� = 0. �20�

Equation �20� directly leads to the following expression
for the flux J of the free particles toward the attractive sink
�21�:

J = Ac�,

A =
4�D0d

W
, W = �

1

� exp�ū�x�/kT�
	�x�x2 dx . �21�

2. Time evolution of an ensemble of chains

Now we have all the ingredients to calculate the time
evolution of the system of chains. Let gn be the number of
n-particle chains in a unit volume of the system. By defini-
tion, g1=c�. Our aim now is to derive and solve the kinetic
equations for gn. We will take into account that the following
two processes take place simultaneously during the chain
formation. The first one is the adsorption of free particles at
the extremity of the chains, which has been considered in the
previous part, and the second process is the desorption of
particles at extremity due to Brownian motion. As the energy
of interaction of the particles at the ends of the chain is
smaller than the energy of “internal” particles—
approximately by a factor of 2—it seems reasonable to con-
sider only the “evaporation” of the particles located at the
extremity of the chain and to neglect other kinds of rupture.
Since the “adsorption” of a free particle by the n-particle
chain transforms the chain into an �n+1�-particle chain and
the “evaporation” of the terminal particle transforms an
n-particle chain into an �n−1�-particle chain, we come to the
following kinetic equation:
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�gn

�t
= − Ag1�gn − gn−1� + B�gn+1 − gn�, n 
 1. �22�

Here A is the adsorption coefficient given by Eq. �21� and B
the escape coefficient which will be determined below. This
kind of equation was already used in another context for
living polymers, but with an important difference related to
the fact that living polymers can break anywhere along the
chain �22�.

The equation for g1 has the following form:

�g1

�t
= − 2Ag1

2 − Ag1�
n=2

gn + B�2g2 + �
n=3

gn� . �23�

In Eq. �23� we take into account, first, that when two single
particles gather to form a doublet, their relative hydrodynam-
ics mobility is twice the relative mobility between an indi-
vidual particle and a motionless chain and second that, when
a doublet disappears, two new free particles appear.

One can show that the system of equations �22� and �23�
automatically satisfies the following balance condition:

�
n=1

ngn = C , �24�

where C should be equal to the total concentration � /v of
particles in the suspension.

Now we have to determine the escape coefficient B. For
this purpose, let us determine the stationary solution gn

0 of the
system of equations �22� and �23�, which corresponds to the
equilibrium state of the system. One can easily verify that the
following distribution function satisfies Eqs. �22� and �23�
when the left-hand term is zero:

gn
0 =

B

A
Yn, �25�

where Y is an undetermined parameter. On the other hand,
the approach, based on minimization of the free energy of
the system, leads to Eq. �8� for the equilibrium distribution
function. Obviously, both ways, the kinetics and thermody-
namics ones, must give the same result for the equilibrium
distribution function.

Equating the results �8� and �25�, we get

Y = X, B = A exp�w� . �26�

In order to handle the sums appearing in Eq. �23� we intro-
duce a new variable N=�n=1gn, which is the total number of
chains �including the monomers� in the suspension. The total
number of chains will decrease only if isolated particles ad-
sorb on any other chain, and it will increase if any chain,
except of course isolated particles, desorbs one particle. Re-
writing Eqs. �22� and �23� with this new variable gives the
following set of equations:

�N

�t
= − Ag1N + B�N − g1� ,

�g1

�t
= − Ag1

2 − Ag1N + B�g2 + N − g1� ,

�g2

�t
= − Ag1�g2 − g1� + B�g3 − g2� ,

�g3

�t
= − Ag1�g3 − g2� + B�g4 − g3� , �27�

with initial conditions at t=0: g1=N= �
v , g2=g3= ¯ =0.

The average number of particles per chain will be


n��t� =
�

vN�t�
. �28�

The system of equations �27� can be solved numerically.
The main problem is that it contains an infinite number of
equations. In order to break this infinite chain of equations,
one can take into account that if the number n is significantly
larger than the equilibrium number 
n�0 of particles in the
chains, the corresponding chain concentration gn must be
very small. Thus one can choose a certain maximal number
nmax �nmax
 
n�0� of particles in the chains and put gn=0 for
n
nmax. The value of nmax is determined by the desirable
accuracy and the computation time. We have used nmax=10.

Before applying this model, we have to see how the size
distribution of chains can be obtained from the light scatter-
ing experiment. This experiment was already described in a
preceding paper �16�, so here we shall focus more on the
analysis of the data and on the procedure used to obtain the
size distribution of chains and the interparticle distance be-
tween particles.

III. CHAIN STRUCTURE FROM INVERSE ANALYSIS
OF THE STRUCTURE FACTOR

Light scattering is currently used to obtain information
either on the size and shape of particles or on spatial organi-
zation of particles inside colloidal suspensions. For instance,
the determination of size distribution of colloidal particles is
realized on commercial instruments by recording the light
scattered in different directions on several photodiodes
�about 70� disposed both at low and large scattering angles.
The intensity of the light scattered at different angles is then
used as input of a least-squares method based on a theoretical
scattered intensity expressed as a function of the weights of
the size distribution. Different numerical schemes allow us to
determine the size distribution, but the refractive indices of
the particles and of the suspending liquid need to be rather
close in order to avoid multiple scattering.

In our case we have used monodisperse silica particles
with a diameter of 400 nm dispersed in
4-methylcyclohexanol. A silane coating molecule, the
trimethoxysilyl-propylmethacrylate, was used to ensure a
good stability of the dispersion. The refractive index of the
particles is close to the one of the suspending fluid �nf
=1.457, np=1.44� so that the simple Rayleigh-Gans-Debye
�RGD� theory can be applied without too much error. For the
case of a chain of N particles we have compared the intensity
calculated using the many-particle Mie scattering calculation
�23� to the usual approximation given by
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In�q� = F�q�Sn�q� = F�q��n + �
i=1

n

�
j=1,j�i

n

eiq·ri,j� , �29�

where F�q�= 3
u3 �sin u−u cos u� with u=q ·a �q is the modu-

lus of the scattering wave vector defined by the difference of
incident and scattered wave vectors, q=ki−kd, k=2�nf /�,
with �=632.8 nm and a the radius of the particles�. We can
see in Fig. 1 that the only visible difference is at large angles
and still the difference remains low. So in the following we
shall only use the RGD model to describe the scattered pat-
tern.

We shall also neglect multiple scattering between chains,
an approximation justified by the small refractive index con-
trast and the quite low volume fraction used. In this approxi-
mation the total intensity scattered by chains of different
lengths will be just the sum of intensities scattered by each
chain:

Ith�q� = �
n

anF�q�Sn�q� , �30�

where an is the number of chains containing n particles in the
scattering volume. The experimental structure factor is quite
easy to obtain experimentally since in the absence of field
the scattered intensity is proportional to the form factor and
can be used to normalize the scattered intensity in the pres-
ence of field, so that the total structure factor is

S„q,E… = �
n

anSn�q� =
I�q,E�
I�q,0�

. �31�

This procedure of normalization is valid since the low
volume fraction in our experiment allows us to neglect the
structure factor at zero field. It avoids difficult corrections
such as those related to the dependence of the scattering
volume as a function of angle, reflected rays at interfaces, or
defects and impurities of the optical glasses. The experimen-
tal apparatus consists of an ellipsoidal mirror, with the cell

placed at the first focus of the mirror and the objective of a
video camera placed at the second focus �Fig. 2�. This ellip-
soidal mirror and the presence of a hemispherical lens �BK7
glass with refractive index ng=1.515� as a constitutive part
of the cell to avoid refraction at the glass air interface allow
us to collect all angles scattered in a cone of a half angle of
70°5. The experimental information consists of a set of
points related to the intensity collected on each pixel of the
video camera. We wish to determine the ensemble of coeffi-
cients an representing the size distribution of chains. Calling
P the number of pixels, we have to minimize the quantity

�2 = �
i=1

P

�Sexpt�qi� − Sth�qi��2. �32�

The theoretical structure factor of a chain of n particles con-
tains at least one parameter which is the average distance
between two neighbor particles inside a chain. For a rigid
chain of n particles regularly spaced of a distance d along the
x axis with ki along the z axis and kd defined by the polar
and azimuthal angles �, �, we have

Sn
th��,�� = n + 2�

j=1

n−1

j cos�kd�n − j�sin���cos���� . �33�

A picture of the structure factor of a rigid chain of ten
particles is shown in Fig. 3�a�. The vertical central line
would extend to infinity for a set of perfectly aligned scat-
ters. The width of this line is inversely proportional to the
length of the chain. The two arcs on the side are first-order
interferences between the particles spaced by a distance d.
The angle �max between the center of the figure ��=0� and
the center of one arc in the perpendicular direction gives the
average distance between particles through the Bragg rela-
tion: sin �max=� / �
d�ng�. Note that ng is the refractive index
of the hemispherical lens and not of the fluid; it comes from
the use of Snell’s law at the fluid-glass interface. With our
wavelength �=632.8 nm and the maximum observable
value of �=70°5, we are limited to distances larger than

FIG. 1. �Color online� Comparison between Rayleigh-Gans-
Debye and multiple Mie scattering for a five-sphere chain �gray�
and a two-sphere chain �black�.

FIG. 2. �Color online� Experimental setup: the chains are
aligned on the x axis. Note that the dimension of the cell is only one
centimetre compared to a radius of ellipsoidal mirror of 30 cm.

BOSSIS, MÉTAYER, AND ZUBAREV PHYSICAL REVIEW E 76, 041401 �2007�

041401-6



440 nm and that is more than the diameter of the particles
�400 nm�. Actually by using the aisle of the Bragg peak it is
possible to access distances until 420 nm; for lower dis-
tances, we have used neutron scattering.

In practice, these chains are not rigid and the position of
each particle fluctuates inside the chains. It is quite important
to take into account these fluctuations if we want to have a
good determination of the size distribution of chains. For
instance, we can see, by comparing Figs. 3�a� and 3�b�, that
the structure factor of a rigid chain �Fig. 3�a�� is quite differ-
ent from the one of a Brownian one �Fig. 3�b��. For the
Brownian case, the positions of the particles were derived
from a Monte Carlo simulation with hard spheres plus a
dipolar interaction characterized by an already high value of
the coupling parameter ��=5�. Despite this quite high value
the residual motion of the particles has a noticeable effect on
the structure factor and the result is more similar to the ex-
perimental one �Fig. 3�c�� than to the case of a rigid chain. It
is then necessary to introduce some parameters describing
the random motion of particles inside the chain. The struc-
ture factor Sn of a cluster of n particles reads


Sn��,��� = n + 2

� �
i=1

n

�
j=i+1

n

cos�q · rij�P�rij� � drij

� P�rij� � drij

,

�34�

where P�rij� is the Boltzmann probability to find a distance
rij between the pair i , j. For a chainlike cluster we can de-
compose the separation vector between two particles i and j
inside the chains as rij = �j− i�
d�+rper+rpar, where rper and
rpar are the random shifts from the equilibrium position, re-
spectively, perpendicular and parallel to the axis of the chain
and 
d� the average distance between two neighbor particles
in the direction of the field. We suppose that these random
displacements can be represented by a Gaussian probability
of standard deviation, respectively, per and par. This is a
reasonable approximation since the equilibrium position is
close to the minimum of potential energy and the expansion
of the Boltzmann factor around this minimum would give a
quadratic term for the dependence on position. The structure
factor of a chain of n particles is given by an integral over
the positions of each pair of particles �specified by �j− i�
d�,
rpar, rper,�� multiplied by the two Gaussian functions P� and
P�. The angle �=�i−� j is the difference of cylindrical angle
in the plane perpendicular to the chain axis and has a con-
stant probability. Neglecting the correlations of position in
the plane perpendicular to the axis of the chain, Eq. �34� can
be transformed into


Sn��,��� = n + 2�
j=1

n−1

j

�
−�

+� �
−�

+� �
0

�

cos���n − j�q · 
d� + q · rper + q · rpar��P��rper�P��rpar�rperdrperdrpard�

��
−�

+� �
−�

+�

P��rper�P��rpar�rperdrperdrpar

. �35�

FIG. 3. �Color online� �a� Structure factor of chains whose par-
ticle’s positions are aligned on a straight line with constant separa-
tion �chains of ten particles�. �b� Structure factor of chains whose
particle’s positions are simulated through Monte Carlo method
�chains of ten particles, �=5� �reproduced from Ref. �16��. �c� Ex-
perimental structure factor: volume fraction �=3% and field E
=2.5 kV/cm. The angles on the horizontal and vertical axes corre-
spond to the ones defining the angular positions of the projection of
kd, respectively, on the field axis and perpendicular to it.
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The three quantities 
d�, per, and par were considered as
parameters related to the form factor of the chain and their
influence on the scattering image is quite different from the
effect of the size distribution coefficients. It is then possible
to decouple the minimization of the set of parameters an
from the three form factors. The derivation of the coefficients
an and of the three parameters 
d�, per, and par is described
in the Appendix. Basically we first minimize �2 relatively to
an, keeping constants the values of 
d�, per, and par. Then
we keep constant the values of an that we have found and
minimize the three parameters. This procedure is iterated un-
til we get converging values.

IV. EXPERIMENTAL RESULTS AND COMPARISON
WITH THEORY

In the first part we are going to deduce the parameters of
the interparticle potential from the measurement of the dis-
tance between particles in a chain; then, in the second section
we shall use this interaction potential to calculate the size
distribution and compare it to the one deduced from light
scattering. In the same way, we will, in the third part, com-
pare the theory with experiment for the kinetics of chain
formation.

A. Interparticle distance

The average interparticle distance 
d� versus the applied
electric field can be either obtained directly from the angular
position �max of the maximum intensity on the ring �cf. Fig.
3�c�� using sin �max=� /ng
d� or from the whole calculation
where it is taken as a free parameter together with per and
par as described in Sec. III. The comparison between the
two determinations is shown in Fig. 4 for the highest volume
fraction ��=10% �. First, we can see that the two determina-
tions are very close, except at the highest fields where the
direct method gives a higher distance. Actually for the high-
est fields the peak position is just on the rim of the image and
its precise position is difficult to guess without using the
fitting procedure. The second observation is that we have a
sudden drop of interparticle distance between E=5 and

6 kV/cm. We are now going to try to model this behavior.
We can calculate the average distance between nearest neigh-
bors in the approximation of pairwise interactions. The mean
distance along the chain axis between the centers of two
particles is given by a Boltzmann average


d� =
� r cos � exp�− u�r,���r2drd cos �

� exp�− u�r��r2drd cos �

. �36�

Both integrals as well as their ratio in Eq. �36� diverge
since the Boltzmann exponent exp�−u�r��, where u�r� is the
energy normalized by kT, tends to unity when the distance r
between the particles increases. Actually, if two neighbor
particles far from the reference one do not interact with it, it
should not be included in the integral. If the potential hole
defined by u�r ,�� is deep enough, it is possible to approxi-
mate it by a fourth-order expansion around its minimum
value; therefore, the potential energy is well approximated
around its minimum and its divergence when the distance
increases prevents the particle from escaping from the well.
This approximation is acceptable if ��1 which is not veri-
fied in our case, since for the lowest field E=1.5 kV/cm we
have ��2. A more natural way to calculate this average
distance is to remain in the reciprocal space, since we record
the angular dependence of the scattered light, and to look for
the distance giving a maximum in scattered intensity:

S��� = 1 + 2

�
a

R

cos�kr sin����exp − u�r�dr

�
a

R

exp − u�r�dr

. �37�

Here k=2�ng /�. In Eq. �37� we use for the upper limit R of
integration a value satisfying kR sin���= p2� with p an inte-
ger and � the scattering angle. This choice avoids short pe-
riod oscillations of S��� due to long-range correlations. In
that way, the result converges quickly when increasing the
value of p. We then detect the maximum �max of S���, and
the average distance is therefore 
d�=� / �ng sin �max�. An-
other way would be to use the Mayer function exp�−u�r��
−1 instead of the Boltzmannn function. The result is almost
identical except at the lowest values of � where it overpre-
dicts by a few percent. The results shown in Fig. 5 were
based on the use of Eq. �37�. For the choice of the potential
energy u�r�, we took Eq. �13� representing a short-range
Debye-Huckel repulsion and a long-range attractive dipolar
energy. This latter was deduced from measurements of the
dielectric constant of the suspension. At a frequency of
10 kHz we obtained �=0.98E2 with E in kV/cm. The repul-
sive part still depends on two parameters: the Debye-Huckel
screening length 1/� and the charge of the particles, Q
=Zqe, qe being the charge of the electron. In practice, it was
not possible to determine these two parameters from our lim-
ited range of separation distances; for instance, we see in Fig.
5 that Z=10 500 and �=1.13�108 fits as well as Z=2500
and �=0.8�108. Using the O’Brien-White �24� numerical

FIG. 4. Average distance 
d� between particles vs applied elec-
trical field for the suspension with the particle volume concentration
�=0.1. Line with crosses presents calculations from Bragg formula

d�=� / �ng sin �max�; the line with squares presents results obtained
from Eq. �35� and the minimization procedure, described in the
Appendix.
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procedure we can relate the charge to the zeta potential. For
instance, for the first set we obtain ��10 mV and still less
for the second one. We have tried to measure the value of the
zeta potential with a zetasizer �Malvern� equipped with U
cell but the uncertainty in this nonaqueous solvent was too
high to help us choose a better set of parameters. In any
event, thereafter we just need a good representation of the
potential and we shall see that both sets of parameters predict
the same values for the size distribution of chains or for the
time evolution of the structure. It is also worth noting that
the sudden drop of distance cannot be explained in terms of
the usual Debye-Huckel and dipolar interactions as can be
seen in Fig. 5. On the other hand, we have verified that, for
a gap of about 0.07 diameter where the change of slope
begins, the order of magnitude of the van der-Waals attrac-
tive force remains completely negligible in comparison to
the repulsive one. It is known that the dipolar approximation
strongly underestimates the attractive force and a multipolar
expansion could be used for a better prediction if the polar-
izability were only characterized by the bulk permittivity of
the particles. Unfortunately, in our system the frequency de-
pendence of the dielectric constant shows that the polariz-
ability is dominated by ionic motion and we are not aware of

any model able to predict the attractive force between two
double layers polarized by a strong external field.

B. Size distribution of chains

Knowing the energy of interaction between two particles
which is given by Eqs. �11�–�13� with Z=2500, �=0.8
�108, and �=0.98E2 �E in kV/cm�, we are now able to
predict the average size distribution of chains from Eqs. �8�
and �9�. Furthermore, it is worth stressing that any choice of
parameters �Z ,�� able to fit the change of distance between
particles �Fig. 5� will predict the same size distribution; it is
shown in Figs. 6–8 where the two theoretical curves refer-
ring, respectively, to set �1� Z=2500, �=0.8�108 and �2�
Z=10 500, �=1.13�108 are almost undistinguishable. The
experimental size distribution is obtained as explained in the
Appendix. In Figs. 6–8 we present the comparison between
experiment and theory for three values of the field: E
=1.5, 2.5, and 3.5 kV/cm and a volume fraction �=0.03.
We have plotted the percentage of particles belonging to a
chain of size n �n=1 corresponds to isolated particles�. We
see that about 90% of the particles are still isolated at E
=1.5 kV/cm, and it falls to about 50% at E=2.5 kV/cm. For
these two fields the agreement between the theory and the
experiment is quite fair, especially if we recall that there is
no free parameter in the model. On the contrary, for the field
E=3.5 kV/cm, there is a quite important disagreement for
isolated particles that experimentally remain at 40% whereas

FIG. 6. Percentage of particles belonging to a chain of size n for
E=1.5 kV/cm and a volume fraction �=0.03. Solid squares are for
experiment. The solid line labeled “Theory�1�” is the theoretical
prediction �Eq. �37�� with the set of parameters Z=2500 and �
=0.8�108 for u�r�. The dashed line, labeled “Theory�2�,” is ob-
tained with the other set of parameters Z=10 500 and �=1.13
�108.

FIG. 7. Percentage of particles belonging to a chain of size n,
E=2.5 kV/cm; same legend as in Fig. 6.

FIG. 5. Average distance 
d� between particles vs applied elec-
tric field. Comparison between experiment ��, �=0.01; �, �
=0.03; �, �=0.1� and theory using a Debye-Huckel potential �Eq.
�12�� with Z=2500, �=0.8�108 �solid line� and Z=10500, �
=1.13�108 �dash-dotted line�.

FIG. 8. Percentage of particles belonging to a chain of size n,
E=3.5 kV/cm; same legend as in Fig. 6.

ANALYSIS OF CHAINING STRUCTURES IN COLLOIDAL… PHYSICAL REVIEW E 76, 041401 �2007�

041401-9



the theory predicts that only 15% of particles should remain
isolated. Also the model predicts the existence of a tail in the
distribution that corresponds to the existence of long chains
of particles. The fact that we do not observe this tail experi-
mentally is not due to a limitation of the inverse analysis of
light scattering: using a Monte Carlo simulation of chain
formation to calculate the scattering image, we are well able
to recover by inverse analysis the tail of the size distribution.
Furthermore, when we plot the average size of clusters ver-
sus the electric field in Fig. 9, we see that the behavior of the
experimental and theoretical curves are quite different: ex-
perimentally the average size reaches a plateau 
n�=1.6 for
fields larger than 3.5 kV/cm, whereas the model predicts an
average size that steadily grows with the electric field. We
also find this leveling of the average size with the electric
field for the two other volume fractions ��=0.01 and �
=0.1� that we have studied. The reason for this behavior is
not clear; it could be related to the motion of ions around the
particles caused by the applied electric field, which could
induce a local convection able to break the longer chains.
Another cause of the difference between our theory based on
isolated chains and the experiments at E=3.5 kV/cm could
come from the coarsening of the structure with the agglom-
eration of side chains in a body-cubic-tetragonal �bct� struc-
ture which, for example, is described in �14�. As the scattered
light gives information in the reciprocal space, the thickening
of structures perpendicularly to the electric field will give
rise to a peak in the direction of the electric field. In our
sample we actually begin to see a small peak in this direction
at an angle of 43° for a field of 3.5 kV/cm �cf. Fig. 10�. This
beginning of coarsening could explain partly the disagree-
ment between experiment and theory that we observe for this
field in Fig. 8.

Another interesting piece of information is related to the
dynamics of chain formation. The dynamics of chain forma-
tion is recorded with a standard charge-coupled device
�CCD� camera at the rate of 25 images per second; in this
case, the information contained in each image is more noisy
than the ones used for the equilibrium situation where the
light intensity was averaged over a few seconds. Neverthe-
less, we have verified that the size distribution and the aver-
age size obtained at equilibrium within 1/25 s were about
the same as the one obtained by averaging the intensity of
each pixel during several seconds. The evolution with time
of the average size of chains is given by Eq. �28� with N�t�
obtained from the numerical solution of Eq. �27�. In Fig. 11
we compare this theoretical prediction to the experimental

one for a volume fraction �=0.03 and a field E=3 kV/cm.
The agreement is very good, and this is proof that the dy-
namics of growth of chains of Brownian particles in the pres-
ence of dipolar interactions is well captured by our model.
The importance of Brownian motion in slowing down the
kinetics of growth is well demonstrated by comparing with a
former theory of irreversible aggregation of particles under
an electric field �8�. In this other model, at each step of
aggregation all the chains have the same size and the time
needed to double their size is the one needed for two equal
chains to move on the average distance separating them in
the field direction. The force between two chains is calcu-
lated from the sum of dipolar interactions between all the
particles belonging to these chains. The resulting kinetics for
the average size is �8�


n�t�� =	3�

C
t + 1,

with

C = 2�
�a3

kT�
. �38�

In Eq. �38�, � is the viscosity of the suspending fluid and �
the coupling parameter �cf. Eq. �11��. Both the rate of aggre-

FIG. 9. �Color online� Average size of the chains versus electric
field for a volume fraction �=0.03 ��, experiment; �, theory�.

FIG. 10. �Color online� Structure factor along the direction of
the field �x axis of Figs. 2 and 3� for different field values, from
bottom to top: 2 KV/cm; 2.8 KV/cm; 3 KV/cm; 3.5 KV/cm.

FIG. 11. Average size of chains versus time after turning on the
field at a frequency f =10 kHz for E=3 kV/cm, �, and for E
=2 kV/cm, �; solid and dotted lines represent the theory �cf. Eq.
�28��, respectively, for E=3 kV/cm and E=2 kV/cm. Open squares
with solid line represent the prediction of Eq. �38� without Brown-
ian motion.
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gation and the shape of the curves predicted by Eq. �38� are
very different from the experimental one as can be seen in
Fig. 11; it demonstrates that even with a dipolar force domi-
nating the Brownian one ��=9 for E=3 kV/cm� the influ-
ence of Brownian forces remains dominant in the kinetics of
chain’s formation. The ability of our model to reproduce the
kinetics of growth is also confirmed at a lower field: E
=2 kV/cm. Nevertheless, we must mention that the value of
the escape rate B was adjusted to predict the experimental
equilibrium value at large time instead of using Eq. �27�
since it is only at 3 kV/cm that the theory predicts the right
equilibrium value �cf. Fig. 9�.

V. CONCLUSION

The aim of this paper was twofold. First, we wanted to
show that, from an analysis of scattered light, it was possible
to get a size distribution of elongated objects, and second, we
wanted to establish a model capable of describing the first
step of chain formation in a colloidal dispersion submitted to
an electric field. The first task was facilitated by the uniform
orientation of the chains that are aligned along the field, but
it would not have been possible without the use of the ellip-
tical mirror which allows us to gather information in a wide
solid angle. An improvement of this system is under study to
adapt it on a rheometer. Note that it could be used to obtain
the size distribution of rodlike particles if they were first
oriented by the application of an electric �or a magnetic�
field. Of course, the entire numerical treatment of the scat-
tered image can apply to neutron scattering, giving access to
smaller sizes of particles. Concerning the interactions be-
tween spherical particles, the measurement of the distance
between two neighbor particles allows us to get direct infor-
mation on the interaction energy in the presence of a high
field. This information is crucial, for instance, in explaining
the mechanisms leading to the giant electrorheological effect
with nanoparticles �25�. Our analysis of the kinetics of chain
formation captures well the experimental result because both
adsorption and desorption at the extremity of the chain de-
termine the kinetics of growth as long as the average size of
the chain is not too large �typically n�100 or ��20�. For
larger � the number of equations becomes too important and
furthermore we expect a lateral growth of the chains which
could not be accounted for by this model.
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APPENDIX: MINIMIZATION OF �2 [EQ. (32)]

We have to solve the two sets of equations

��2

�an
= 0, �A1�

��2

�pi
= 0, �A2�

where i=1,3.

The first one is a minimization relative to the weights of
the size distribution and the second one are the three param-
eters �
d�, per, par� appearing in Eq. �35�.

Each set of equations is solved in the same way, using the
method that we are going to describe for the parameters of
the size distribution, an.

We define the vector a= �a1 ,a2 , . . . ,an�, and we are look-
ing for a vector �a such as the new vector, a�=a+�a cancels
all the partial derivative of �2.

Using a second-order Taylor expansion we have

�2�a�� = �2�a� + �
n=1

N
��2�a�

�an
�an +

1

2 �
n,l=1

N
�2�2�a�
�an � al

�an�al + ¯ ,

�A3�

with N the maximum size that we consider. If we note

�A�nl = �
n,l=1

N
�2�2�a�
�an � al

and

�b�n = −
��2�a�

�an
,

Eq. �A3� reads

��2

�an
�a�� = A · �a − b .

Since the ensemble of partial derivative of �2 must be equal
to zero, we get

a� = a + A−1 · b ,

where the elements of A and b only depend on the values of
the derivative of �2 for the old values a. In order to calculate
these partial derivative, the simplest method is to start from a
first order Taylor expansion of Sth,

Sth�q,a�� � Sth�q,a� + �
n=1

N
�Sth�q,a�

�an
�an

� Sth�q,a� + �
n=1

N

Xn�q,a��an,

and to consider that Sexpt�q�−Sth�aold ,q� is a constant. The
change �a that must be added to the old value a is then
obtained, solving

� �a = � , �A4�

with �nl=�i=1
p Xn�qi ;a�Xl�qi ;a� and �n=�i=1

p �Sexpt�qi�
−Sth�qi ,a��Xn�qi ,a�.

This method converges quickly towards the solution only
if the initial solution is close to the final one. We have then
used the method of Marquardt �26� which takes advantage
both of this method and also of the gradient method which
quickly converges. The only modification compared to Eq.
�A4� is to replace � by ��:
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�� � �ij�1 + �� for i = j and �ij for i � j .

The parameter � must be large when we are far from the
minimum and small when we are close. We have chosen to
divide � by 10 each time the value of �2 is decreasing and to
multiply it by 10 in the opposite case �27�.

This method needs knowledge of some initial values for
the separation distance, 
d� and the coefficients an defining
the size distribution. We used for the initial value of 
d� the
one deduced from the Bragg relation applied to the apparent
angular position 
d�=� / �ng sin �max�. The initial values of an

are obtained from the solution of the linear problem �28,29�.
Actually the use of this nonlinear method is not obligatory
since, once the value of 
d� is fixed, the problem becomes
linear. Nevertheless, in practice, it is easier to introduce the
“non-negativity constraint” on the parameters an with this
method by taking equal to zero the negative values obtained
from the solution of the linear problem. In the case of a large
distribution of size of chains, the number of the different
classes of size defining the an can be quite large and the
existence of statistical uncertainty �or systematic error� can
easily lead to an almost singular system. It leads to large

oscillations of the values of an that are clearly unphysical. To
overcome this problem we generally apply the minimization
not to �2 but to �2+�iNc, where Nc is related to the ampli-
tude of the oscillations of the an, Nc=�n=1

N−1�an+1−an�2, and �i

is a Lagrange multiplier. This procedure allows us to choose
from all the solutions of the problem the one whose coeffi-
cients vary smoothly: in practice, there is a large range of
values for �i giving a good value of the minimization but for
low values of �i the parameters an show strong oscillations
whereas, on the contrary, for high values of �i, the distribu-
tion is flat. The optimal value of �i is obtained by the method
of inflection point �30�. In our case the large number of mea-
sured angles �120 000� and the strong anisotropy of the scat-
tering figure also helps to stabilize the solution and using
only the minimization of �2 gives results similar to the one
obtained with the minimization of �2+�iNc.

Finally we have to impose that the parameters have a
positive value and that 
d�
2a. Each time a parameter is
negative, its value is divided by 10; in the same way, if 
d�
�2a, the value of 
d�−2a is divided by 10. On the other
hand, a robust method like the Gauss-Jordan method needs
to be used for the solution of the problem.
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