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Thermal expansion effects and heat conduction in granular materials
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In this paper, we report results and analysis on a simulation study of the effects of thermal expansion in
granular systems. We show that these effects impact the force distribution inside a two-dimensional system of
disks that are subject to thermal heating under two different boundary conditions. A significant increase in the
average force is observed for steel particles confined within a box with fixed walls at temperature rises of
50 °C and 100 °C, respectively. As previously noted in the literature, thermal expansion also induces com-
paction. The results show that a systematic and controllable increase in granular packing can be induced by
simply raising and then lowering the temperature, without the input of mechanical energy in agreement with
previous experimental observations. We find that the evolution of the packing fraction is well described by a
fractional relaxation model, which follows the Mittag-Leffler law.
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I. INTRODUCTION

Under the effect of external forces, noncohesive granular
materials develop a highly nonhomogeneous network of
stressed particles, which carries most of the applied force,
while some particles within the bed are effectively isolated
from their neighbors and carry no load at all. An example of
this network is shown in Fig. 1. Because the interparticle
forces and their distribution determine the bulk properties of
a granular system, this behavior has very important conse-
quences in transport phenomena such as heat transfer [1,2],
sound propagation [3], and electrical conduction [4-7].

Experimental work under different settings has revealed
the sensitivity of granular materials to small perturbations of
the grains. Liu and Nagel [3,8] reported on the effect of
thermal expansion on sound propagation in granular media.
Their results revealed that the thermal expansion of a single
glass bead of the order of =3000 A can generate a 25%
drop in sound propagation. Yet another recent experimental
study that shows the importance of thermal expansion in
granular media is the study by Chen er al. [9] on the consoli-
dation of grains by thermal cycling. Chen et al. showed that
it is possible to increase the packing fraction of a granular
bed by a systematic and controlled cycling of the tempera-
ture. Changes in the packing fraction up to 1% were ob-
served in beds of glass particles contained in a plastic cylin-
der with a cycling temperature difference of =120 °C.

Due to the nature of the distribution of contacts—and
forces—in a granular pack (see Fig. 1), the electrical and
thermal contacts can be widely distributed. Given the cross-
property connection between thermal or electrical conductiv-
ity and its dependence on the geometry of the contact
[10,11], it is expected that thermal expansion will play a
significant role on the conduction both of thermal and elec-
trical energy in granular packs of particles.

In this paper, we report results and analyses on a simula-
tion study on the effects of thermal expansion on the force
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distribution in two-dimensional granular packs under com-
pression, as well as compaction by thermal cycling in a
three-dimensional (3D) packed bed using thermal particle
dynamics (TPD)—a modified discrete element simulation in-
troduced by the authors [1]. Here we show that thermal ex-
pansion of the grains in a granular pack can induce signifi-
cant changes in the microstructure, without the input of
mechanical energy, even for mild temperature differences.
This thermal effect may have important practical implica-
tions for the handling and storage of granular materials.

II. THERMAL PARTICLE DYNAMICS

The TPD simulation technique is based upon a traditional
particle dynamics (PD) technique (often referred to as the
discrete or distinct element method [12]) so that every par-
ticle is tracked individually to determine trajectories, veloci-
ties, forces, and temperatures. This allows the determination
of both mechanical and transport properties of granular sys-
tems under static and/or dynamic conditions. Again, the par-
ticle trajectories are obtained via the explicit solution of
Newton’s equations of motion for every particle [12] and the
forces on the particles are determined from contact mechan-
ics considerations [13]. The equations that describe the par-
ticle motion are as follows:

FIG. 1. Stress chains in a particle bed under external loading. (a)
The lines joining the centers of particles in contact represent the
force network and have thickness proportional to the contact force.
(b) Note that the heterogeneities in the stress chains are evident
even in the rescaled region.
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Linear motion:

4, +F,. (1)
dt
Angular motion:
L )
dt

where m; is the mass of particle i, v is the velocity, F, rep-
resents any relevant body forces, F, is the force normal to
the contact plane, F, is the force tangent to the contact plane,
I is the moment of inertia, @ is the angular velocity, R de-
notes the vector connecting the particle centers, and ¢ is time.
Note that bold text denotes vector quantities. Computation-
ally, the deformation at a particle-particle contact point is
realized as a small “overlap” of the particles.

The key feature of TPD is that by incorporating contact
conductance theories many simultaneous two-body interac-
tions may be used to model heat transfer in a system com-
posed of many particles. In analogy with PD, this description
requires that the time step be chosen such that any distur-
bance (in this case a change in a particle’s temperature) does
not propagate further than that particle’s immediate neigh-
bors within one time step. The details of the simulation tech-
nique are identical to those used in Vargas and McCarthy
[1,2] and the reader is referred to those publications for more
details, as only a quick review is included here.

Contact conductance refers to the ability of two touching
materials to transmit heat across their mutual interface and is
the key ingredient added to PD in order to form TPD. The
most basic problem in contact conductance is that between
two smooth, elastic particles under vacuum with a small, but
finite area of contact (as assumed in this study). In this prob-
lem, the “resistance” to heat transfer is assumed to be solely
due to the constriction of heat flow lines such that the heat
flux across the contact area Q between the two particles is

Qij =HL-(T]'— T), (3)

where AT;;=T;~T; is the temperature difference between the
midplanes of the spheres, and H,. is the contact conductance.
Approximate analytical solutions have been proposed inde-
pendently by Yovanovich [14], Holm [15], and Batchelor and
O’Brien [16]. The contact conductance between spheres can
be approximated by H.=2k,a. The contact radius a is ob-
tained from Hertz’s elastic contact theory, such that the con-
tact conductance is given by

3F, |
] : (4)

H,=2k| =%
4E

where E* is the effective Young’s modulus for the two par-
ticles in contact, and r* is the effective radius. As indicated
by Eq. (4), H,. is not a constant value but changes at every
time step depending on the instantaneous normal force be-
tween the particles.

Incorporating the concept of contact conductance into a
PD model—in order to formulate the TPD method—can be
accomplished by summing the pairwise thermal interactions
so that the net heat input to particle i is given as
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N
;= 2 Qij (5)
j=1

so that the evolution of the temperature of particle i may be
given as

ar; Qi

= , 6
dr  piciV; ©

where p;c;V; is the particle’s “thermal capacity.” Note that
this approach requires two caveats. First, that the Biot num-
ber for the particle heating problem is very small. That is,
that the internal thermal transport is much faster than the
external thermal transport. Second, that thermal transients
are small enough that using the quasisteady heat flow given
by Eq. (3) may be used—incorporating a contact “capaci-
tance” is possible to alleviate this caveat [17] but has not
proved necessary over the time scales examined in our cur-
rent topics of research.

To take into account the effect of the thermal expansion
the change in the radius of the particles due to expansion is
incorporated into the simulation as

r=ry+ BAT, (7)

where r is the initial radius of the particles at the reference
temperature, 3 is the thermal expansion coefficient of the
solid particle material, r is the current radius, and AT is the
temperature rise relative to the reference temperature. A simi-
lar approach has been previously applied by Lu et al. [18].

As the purpose of this work is to elucidate the importance
of thermal expansion of the grains on the heat transfer pro-
cess, the main heat transfer mechanism in the systems con-
sidered here is that of conduction between particles and be-
tween particles and walls. Since the temperatures concerned
in this study are relatively low, radiant heat transfer is ne-
glected. No explicit effort has been made to incorporate the
effect of temperature on properties such as Young modulus
or yield stress. It is assumed that over the mild temperature
changes used in this work, their values remain constant. Ex-
tensions of TPD to include the effect of stagnant interstitial
fluids (applicable at small Rayleigh numbers) are straightfor-
ward and have been detailed elsewhere [19]. Similar ap-
proaches have been developed for flowing gas-solid systems
[20,21].

III. RESULTS AND DISCUSSION
A. Heat conduction with thermal expansion

Visualization of two-dimensional granular systems apply-
ing stress-induced birefringence [22] as well as results com-
ing from numerical studies demonstrate that forces within
granular media follow preferred paths, the so-called stress
chains or force chains network [23]. The effect of stress
chains on heat conduction in a granular bed was previously
explored by Vargas and McCarthy [1,2], where it was found
that heat flow along stress chains is significantly enhanced
along their axis, but hampered if running perpendicular to
those same stress chains. In an effort to evaluate the stress
levels to which particles are subjected due to thermal cy-
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TABLE 1. Parameters used in the simulation.

Parameter Glass Steel
Density (kg/m?) 2500 7900
Poisson ratio 0.23 0.29
Young’s modulus (Gpa) 68.9 193
Conductivity (W/m K) 1.1 14.7
Heat capacity (J/kg K) 800 477
Coefficient of thermal expansion (1/K) 9.0X107° 17.5%x107°
Coefficient of friction 0.3 0.3

cling, the dynamics of stress chains within a granular bed,
undergoing thermal expansion, are computationally studied
here.

The simulation consists of a polydisperse system of per-
fectly smooth noncohesive disks forming a random two-
dimensional packed bed (one-particle deep), compressed by
a wall of known weight. All material properties are taken
directly from the literature and consist solely of the mechani-
cal properties of the applicable solid (see Table I). A typical
initial condition for simulation is obtained by perturbing a
hexagonal lattice and allowing the particles to settle under
gravity. Particles settle onto a planar bottom wall under the
action of gravity and a consolidating wall loaded by a con-
stant weight. A load equivalent to 1000 N, which corre-
sponds to roughly 800 times the weight of the particle bed,
was used in all cases, unless stated otherwise. This was done
in order to reduce the impact of the particles’ weight on the
stress distribution.

The thermal simulation proceeds as follows. An initially
isothermal bed of particles under a uniaxial load, in which
the two side walls are insulated and the top wall is at a low
constant temperature, is subject to a step change in tempera-
ture at the bottom wall. The thermal and mechanical re-
sponse of the bed of granular material is followed in time
until the system reaches steady state; that is, until the Qy,
=Q0ul'

Figure 2 shows a stress field superimposed on the tem-
perature field for two different conditions of the top wall.
The black lines represent particle contacts which experience
forces above the average and have thickness scaled by their
magnitude. Figure 2(a) illustrates a situation in which the top
wall has been kept fixed during the heating process (i.e., a
constant volume boundary condition). The temperature field
shows that the propagation of heat is highly nonuniform and
localized around highly stressed chains of particles. Figure
2(b) illustrates the case when the top wall is allowed to move
freely as the bed is heated from the bottom (i.e., a constant
stress boundary condition). Notice that the temperature is
slightly more uniform when compared to Fig. 2(a). Thermal
expansion of the particles, coupled with local rearrangement
of the bed provides a simple hypothetical explanation (tested
below) of this result.

A simple way to characterize the uniformity of the tem-
perature field is a contoured temperature field of the beds as
illustrated in Fig. 3. The results in Fig. 3(b) indicate a more
uniform distribution of the temperature in the case of a bed
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FIG. 2. (Color) Temperature-stress fields at steady state. (a) Bed
with a fixed top wall. (b) Bed with a top freely moving wall. The
black lines represent particle contacts, which experience forces
above the average with thickness proportional to the contact force,
while colors represent dimensionless temperatures (red corresponds
to hot).

with moving wall as previously indicated qualitatively in
Fig. 2. This corresponds with local temperature gradients be-
ing smoothed.

Computational experiments on granular material provide
a unique opportunity to measure quantities that are experi-
mentally difficult to measure in physical systems. A common
way to analyze the distribution of forces in granular materi-
als is to determine the probability distribution function P(f)
of interparticle normal-force magnitudes f=F/(F) between
neighboring particles, where (.) indicates the average over all
the grains in the bed. Several features are common to force
distribution in granular media. The probability density func-
tion (PDF) decays in an exponential manner for forces above
the average (i.e., f>1), and has a peak and/or a plateau
around the mean force f=~1. Both experiments [23] and
simulations [24-26] have shown that “force chains” and P(f)
are different for shearing than for uniaxial compression and
are history dependent. We use the contact forces obtained
from the computational experiments to investigate the effect
of thermal expansion on P(f).

The probability distribution function of normal forces for
various times, i.e., 0, 30, 120, and 240 s, at a constant tem-
perature difference of 100 °C and 50 °C for a 2D bed with
fixed and moving walls, are shown in Fig. 4. The times used
in Fig. 4 illustrate different stages in the dynamics, i.e., ini-
tial condition, initial stage of heating, late stage of heating,
and steady state. The force has been normalized by the av-
erage normal force at each specific time. The results show
that regardless of the boundary conditions imposed or the
effects of thermal expansion, the probability distribution
function does not change when normalized with its own
mean value.
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FIG. 3. Contour plot for two-dimensional beds at a temperature
difference AT=100 °C. (a) Fixed wall, constant volume boundary
condition. (b) Moving wall, constant stress boundary condition.

To better understand the qualitative change in behavior
between the system with a fixed wall and that with a freely
moving wall, as a function of time, we determine the evolu-
tion of average force (F) as the bed is heated from an iso-
thermal initial condition (7=0). Figures 5(a) and 5(b) show
the average force for the bed with a fixed wall and the freely
moving wall, respectively. For the fixed wall system [Fig.
5(a)] the results show a continuous increase in the average
force with time, which reaches a saturation point once the
bed is at steady state. Both temperature differences reveal the
same trend, although the saturation values are different, as
expected.

From a practical perspective, this result implies that when
dealing with packing of grains subjected to heating, a com-
promise has to be made: beds under fixed confinement and
with high initial densities might be easier to implement
physically, but at the same time the stresses induced by ther-
mal expansion are expected to be much higher and may be
detrimental to the integrity of the particles. Thermally in-
duced microcracking of the particles can severely damage a
packed bed reactor or any other device that uses particles as
a means to promote reaction or heat transfer [18,27].

In contrast to the fixed wall system, the bed with a freely
moving wall [Fig. 5(b)], shows a constant average force with
time for both temperature differences of 50 °C and 100 °C,
respectively. A plot of the time evolution of the packing frac-
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FIG. 4. (Color) Probability distributions of the normal forces for
compressed beds with a fixed and moving wall under the effect of
thermal expansion. The forces have been normalized by the indi-
vidual systems’ average force at each specific time. Black symbols:
moving wall at a temperature difference of 100 °C. Red symbols:
fixed wall at a temperature difference of 100 °C. Green symbols:
fixed wall at a temperature difference of 50 °C. Blue symbols:
moving wall at a temperature difference of 50 °C.

tion (Fig. 6) reveals that both systems follow the same trend,
both reaching approximately the same steady-state density.
The results in Fig. 6 suggest a slow relaxation process, rep-
resentative of the collective rearrangement of many grains.
These results are in agreement with results by Brujic et al.
[28] on the relaxation of granular materials at infinitesimal
strain perturbations.
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FIG. 5. Evolution of the average normal force. (a) System with
fixed wall. (b) System with moving wall. The force has been nor-
malized with the average force of the cold (T=0) isothermal bed at
1=0.
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FIG. 6. Time evolution of the packing fraction for the systems
with fixed and moving walls. The slightly higher densification in the
fixed wall system is traced back to thermal expansion of the par-
ticles and a small difference in the wall height, which corresponds
to 26.83d,, for the fixed wall and 26.86d, at steady state for the
freely moving wall at AT=100 °C. The same applies at AT
=50 °C.

The dynamics induced by thermal expansion generates
different effects. On one hand it alters the average force in
the system as illustrated above. It also generates changes in
the structure of the contacts network [23]. In order to inves-
tigate these changes, we study the evolution of average pa-
rameters such as coordination number (Z) and average tem-
perature of the bed (7). The bed with fixed walls [Fig. 7(a)]
shows an increase in the average coordination number from
an initial value of 3.58 to 3.67 at steady state. The bed with
a freely moving wall (dashed line) maintains a value that
oscillates around the average of 3.58. The time required to
reach a steady average value in the average temperature is,
however, different for the two systems [Fig. 7(b)], with the
fixed wall system showing a slightly higher initial rate, and
reaching the steady-state value at an earlier time.

Figure 8 illustrates the variation of the average force with
mean radius of the particles for the two boundary conditions
used in this study. For particles that follow a Hertzian contact
mechanics, Fo 82, where § is the “overlap” of the unde-
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FIG. 7. Variation in average properties for the fixed wall (con-
tinuous line) and moving wall (dashed line) systems. The tempera-
ture difference for both systems is AT=100 °C. (a) Mean coordi-
nation number. (b) Mean temperature of the bed.
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FIG. 8. Variation of the average force with particle radius. (a)
System with fixed wall. (b) System with moving wall.

formed particles. If the bed were to expand with no micro-
structural rearrangements, one would expect that changes in
r would proportionately change 8. Therefore, a plot of (F) vs
(ry3? should be linear in the case of minimal rearrangement.
For the fixed wall system [Fig. 8(a)] the results show almost
a perfect line which, combined with the results of Fig. 7(a),
seems to confirm microstructural continuity. The system with
a freely moving wall, however, shows a constant value in the
average force with increasing mean radius. In the later case
the increase in radius is compensated by particle rearrange-
ment as well as bed expansion in order to maintain a constant
value in the average force.

The results in this section reflect the extreme sensitivity of
granular materials to perturbations. Even a change of the
order of =1.0-5.0 um in the particle radius generates mea-
surable macroscopic effects. The numerical experiments
show that although both systems reach similar macroscopic
steady-state values for the density and temperature this does
not prevent the existence of local fluctuations, which are re-
flected in the fact that the temperature fields look qualita-
tively and quantitatively different as illustrated in Fig. 2.

B. Compaction by thermal cycling

A significant number of industrial products are processed,
transported, and stocked in a granular state. The packing
fraction of those granular materials becomes therefore a rel-
evant parameter for a broad range of applications. From a
practical perspective, the best way to reduce the costs for the
manipulation of such granular materials is to increase the
packing fraction. This has traditionally been achieved by tap-
ping or vibrating the vessel containing the grains. A recent
study by Chen er al. [9] has demonstrated that the same
result can also be accomplished by thermal cycling.

The packing fraction of a granular material is defined as
the fraction of sample volume that is filled by grains rather
than by empty space, and for a 3D system typically varies
between 57% and 64% for randomly arranged, spherical par-
ticles and even more widely for other particle shapes. Several
studies have reported on compaction of granular materials by
vibration or tapping, which induce rearrangements that allow
the grains to settle [29]. Studies on the grain dynamics in-
duced by thermal cycling either experimentally [9] or com-
putationally are scarce.

When a granular material is heated, both container and
grains undergo thermal expansion. This generates settling be-
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(a) (b) (c)

FIG. 9. (Color) Packing by thermal cycling using TPD. (a) Ini-
tial condition. Snapshot of the bed during the (b) heating cycle, and
(¢) cooling cycle. In (b) and (c), the walls of the vessel have been
removed to facilitate the visualization.

cause of the relatively fragile nature of the microstructure,
according to Chen et al. [9]. This seem to be particularly
significant when the grains and container are made of differ-
ent materials with different thermal expansion. The settling is
not reversible upon cooling to ambient temperature, as
shown recently in Ref. [9]. Here we examine the packing
fraction for glass spheres contained in a vertical cylinder in
response to repeated thermal cycling from a reference tem-
perature, much in the same way as the experiments con-
ducted by Chen et al. [9].

The simulation consists of a narrowly polydisperse sys-
tem of perfectly smooth noncohesive spheres of diameter d,
and mass m forming a random three-dimensional packed
bed, bounded by a rough wall and an open top [see Fig.
9(a)]. All material properties are taken directly from the lit-
erature and consist solely of the mechanical properties of the
solid (see Table I). A typical initial condition for simulation
is obtained by perturbing a 3D lattice and allowing the par-
ticles to settle. Particles settle onto a rough bottom wall un-
der the action of gravity (Fig. 9).

The thermal simulation proceeds as follows. The initially
low temperature isothermal bed of particles, is subject to a
step change in temperature at the bottom and side walls, and
the thermal and mechanical response of the bed of granular
material is followed in time until the system reaches steady
state. At this point the system is given another step change in
temperature and is allowed to cool down until reaching
steady state. This process is repeated as many cycles as re-
quired [Figs. 9(b) and 9(c)]. The results of this exercise on
packing fraction are shown in Fig. 10.

We start with an initial solid fraction of 59.0%, which is
typical of spheres poured into a container and not com-
pacted. The results indicate that there is a clear increase in
packing even for a single cycle. This observation is consis-
tent with the experimental data reported by Chen et al. [9]. In
Fig. 10 the packing fraction continues to increase over mul-
tiple thermal cycles and seems to reach a plateau at a high
number of cycles. This behavior is similar for the three tem-
perature rises applied in this study. Chen et al. argued that
the primary cause of the changes in packing fraction is the
difference between the thermal expansion of the grains and
the container. Our simulations—which do not account for
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FIG. 10. Change in packing fraction with thermal cycling for a
temperature difference of 10 °C, 50 °C, and 100 °C between the
cooling and heating cycle. The solid lines are the Mittag-Leffler fits
of Eq. (8), with parameters & and 7 given in Table II.

thermal expansion of the wall—show similar trends although
with smaller changes in packing. These results might suggest
that while the expansion of the walls may increase the degree
of compaction attained, it is not necessary. Instead, expan-
sion or contraction of only the particles is enough to achieve
bed compaction.

Several empirical and theoretical models have been pro-
posed in the literature to describe density relaxation, prima-
rily in vibration and tapping experiments [28,30-34]. The
compaction dynamics observed in Fig. 10 is well described
by the fractional Mittag-Leffler law for relaxation [29,35]

toz
p(t)=pw—ApEa{—<-> ] Ap=p.—py, 0<a<l,
T

(8)

where, p, is the initial packing fraction and p,, is the packing
fraction at steady state. E, denotes the ordinary Mittag-
Leffler function of order «, with series expansion [35,36]

Ea{-eﬂ—gw a>0. 9)

a (1 +an)

The parameters « and 7 determine the rate of compaction on
the current time scale and the characteristic time of the den-
sification process, respectively. 7 and « are treated here as
fitting parameters.

Note that the fitting function in Eq. (8) is a solution of the
fractional relaxation equation [29,35]

TABLE II. Estimated parameters for the Mittag-Leffler law.

AT a T
10 0.95 1.3
50 0.98 1.5
100 0.98 2.0
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7 o DEAP(r) =

a

= Ap(7), (10)

where Ap=p,—p(t). Equation (10) is solved subject to the
initial conditions

Ap(0)=Pm_PO, (lla)

A’p(0)=0. (11b)

The operator ,D; in Eq. (10) is the so-called Caputo frac-
tional derivative, defined as [36]

f(t 7" “"ﬂ (n)dT,

n-N<a=n. (12)

oD f(t) =

As indicated by Eq. (12), for n=1, the fractional operator
introduces a power-law kernel ¢(f) ot * [29]. The convolu-
tion integral therefore involves a decaying memory, so that
the current packing fraction p(7) depends on its previous his-
tory. A comprehensive solution to Eq. (10) has been provided
by Hilfer [35] in terms of the Riemann-Liouville operator for
fractional derivatives.

The Mittag-Leffler law model has been previously applied
to fit simulation data on the compaction of granular materials
under vertical taping [29] and relaxation of glassy systems
[37]. This model is very closely related to the stretched ex-
ponential model p(t)=p..,— (p..— py)exp[—(t/ 7)?] used by Ri-
chard er al. [34] on slow relaxation and compaction of granu-
lar media and which Barker and Mehta [30] pointed out, also
fit their experimental data on compaction. Note that the
Mittag-Leffler function is related to the exponential function

when a=1, such that
t\A
xp|l=1|—] |, (13)
T

E [-(t/ T)B]”
oo I'(+n)

and therefore, the stretched exponential is but a particular

solution of the fractional relaxation model in Eq. (8).

As indicated by Richard et al. [34], granular compaction
has a glassy behavior such that memory effects are impor-
tant; the evolution of the packing fraction depends not only
on the initial condition but also on its previous history. The
model in Eq. (8) is well suited to this purpose since it intrin-
sically incorporates the memory effects. The continuous lines
in Fig. 10 which represent the solution to the Mittag-Leffler
model in Eq. (8), fit the data reasonably well.

It is interesting to note that Eq. (8) has been shown to
describe the relaxation of granular materials under very dif-
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ferent modes of external excitation; that is, vibration [30],
tapping [29], and now thermal cycling (as shown by the re-
sults in Fig. 10). This suggests a connection between these
relaxation processes and fractional dynamics despite differ-
ent modes of perturbation. Fractional dynamics takes place
in systems which are characterized by multiple trapping
events—the caging of granular particles during thermal cy-
cling being but one example—which create a random distri-
bution of waiting times for the motion of individual particles
to take place [38]. As the packing fraction increases, the time
that grains spend in a cage becomes longer and longer until
reaching a fixed position [29]. Mittag-Leffler responses are
therefore expected in systems that exhibit this kind of behav-
ior.

IV. PERSPECTIVE

Heat conduction in granular media with thermal expan-
sion shows how elementary perturbations might have impor-
tant consequences in transport phenomena. Nonlinearity is
particularly important in unconsolidated or mildly consoli-
dated media because the structure of the grain packing is
determined by the fragile contacts between the grains. Thus
even small vibrations or thermal expansions can cause the
structure to evolve with time. This sensitivity tends to disap-
pear when the media is subjected to a strong external load.
We have demonstrated that TPD simulations of granular
packings with thermal expansion offer insight into the behav-
ior of granular media under uniaxial compression. The re-
sults indicate that even mild temperature differences can gen-
erate increases in the average contact forces, as well as
structural rearrangements. Such changes may lead to detri-
mental consequences to the integrity of the particles.

A comparison of our simulations results on thermal pack-
ing with the experimental observations in Ref. [9] showed
good agreement, although the experimental and computa-
tional systems present slightly different boundary conditions.
A fractional relaxation model based on the well known
Mittag-Leffler law has been found to provide the best fit to
the results on compaction by thermal cycling. This generic
law describes the relaxation of granular media under very
different modes of external excitation.
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