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A theoretical calculation of bulk viscosity has been carried out by deriving an expression for the relaxation
time which appears in the formula for bulk viscosity derived by Okumura and Yonezawa. The expression
involved a pair distribution function and interaction potential. Numerical results have been obtained over a
wide range of densities and temperatures for Lennard-Jones fluids. It is found that our results provide a good
description of bulk viscosity as has been judged by comparing the results with nonequilibrium molecular
dynamics results. In addition, our results demonstrate the importance of the multiparticle correlation function.
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I. INTRODUCTION

Shear viscosity is a well-studied transport coefficient and
describes the irreversible resistance of a fluid to shearing
forces. However, bulk viscosity, measuring the irreversible
resistance of the fluid to dilatational—i.e., volume-changing
forces—has drawn comparatively less attention. Bulk viscos-
ity can be considered as a measure of resistance offered by a
medium subjected to the forces of compression or expansion.
It is one of the parameters which appear in the constitutive
equation of the hydrodynamics or in the Navier-Stokes equa-
tion and hence is an important parameter describing the ki-
netics of fluids. It plays a significant role in investigating
acoustics on microscopic grounds �1,2�, in understanding the
intermolecular forces of attraction, and investigating the dy-
namical structure factor, a quantity which is directly measur-
able in neutron diffraction experiments. Nevertheless, there
exist �3–6� some estimates for the bulk viscosity of various
liquids, which encourages one to study this quantity using a
microscopic approach. Microscopically, one can study bulk
viscosity by the Green-Kubo method which expresses it �7�
as a time integral of the bulk stress-time autocorrelation
function.

Another equivalent approach to calculate bulk viscosity is
through the evaluation of longitudinal and shear viscosity by
exploiting the relation �B=�l−4/3�s, where �B, �l, and �s
are, respectively, bulk, longitudinal, and shear viscosities.
The longitudinal and shear viscosities can be estimated
through knowledge of the time development of longitudinal
and transverse stress autocorrelation functions. For dilute
gases, the bulk viscosity becomes zero whereas for the dense
fluid its magnitude is comparable to that of shear viscosity as
shown in our previous paper �8�.

In principle, there are three different routes to estimate the
bulk viscosity: �i� experiment, �ii� computer simulation, and
�iii� direct calculation. However, in practice, experimental
determination of bulk viscosity is difficult and can only be
accomplished indirectly through sound attenuation measure-
ments. For the second route, recently, Okumora and Yon-
ezawa �9� derived an approximate formula for the calculation
of bulk viscosity. In this paper, a method which employs this
formula for direct calculation �the third route� of this param-
eter has been proposed.

The formula proposed directly involves the pair correla-
tion function g�r�, density derivative of g�r�, and interaction
potential. In addition, it involves relaxation time. Until now,
there exists no theoretical way to calculate this relaxation
time. In this paper, an attempt has been made to calculate the
relaxation time based on microscopic considerations. The nu-
merical calculations for bulk viscosity from this formula
have been carried out for Lennard-Jones �LJ� fluids over a
wide range of densities and temperatures. Results have been
compared with those obtained by nonequilibrium molecular
dynamics �MD� simulations �10� and the Green-Kubo
method. It has been found that our results for bulk viscosity
are in very good agreement with both.

The layout of the paper is as follows. In the next section
we briefly present the formula derived by Okumura and Yon-
ezawa. In Sec. III the expression for the relaxation time is
presented. Section IV contains the result and discussion. The
summary and conclusion are given in Sec. V.

II. THEORY: APPROXIMATE FORMULA FOR BULK
VISCOSITY

Recently, Okumura and Yonezawa �9� derived an approxi-
mate formula for the calculation of bulk viscosity which we
present it briefly here. The bulk viscosity �B is defined as

P̄ − P = − �B
V̇

V
, �1�

where P̄ is the pressure in a fluid being compressed or ex-

panded, P is the pressure at constant volume, and V̇
V is the

volume-changing rate. Using the virial definition, P̄ can be
as written as

P̄ =
NkBT

V
−

n2

6
�

0

�

r
du�r�

dr
g�r,t�4�r2dr . �2�

Here it may be noted that the nonequilibrium pair distribu-
tion function g�r , t� is a function of the distance r as well as
time t. During compression, g�r , t� is also compressed. For
example, the peak position of nonequilibrium g�r , t� is
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shifted towards smaller r. The equilibrium distribution func-
tion is treated as a function of r, volume per particle,
� �=V /N�, and entropy per particle, s, and is represented by
g0�r ,� ,s�. Thus the equilibrium pressure P is calculated us-
ing g0�r ,� ,s� from the following equation:

P =
NkBT

V
−

n2

6
�

0

�

r
du�r�

dr
g0�r,�,s�4�r2dr . �3�

In cases where the relaxation of g�r , t� could not be described
by a single relaxation time, the treatment of the relaxation
becomes more complicated. However, the Debye relaxation
is the simplest type of relaxation and is widely used as an
appropriate approximation �2,11�. The time evolution of
g�r , t� in the course of compression is given as

� �

�t
g�r,t��

r

= −
L̇

L
r� �

�r
g�r,t��

t

−
1

�
�g�r,t� − g0„r,��t�,s�t�…� .

�4�

In the above equation, L= �V�1/3 and � is the relaxation time
of g�r , t�. This equation is most important step for achieving

our formula of the bulk viscosity. The pressure P̄ during
compression is determined using g�r , t� as

P̄ =
NkBT�

V
−

n2

6
�

0

�

r
du�r�

dr
g�r,t�4�r2dr . �5�

In the above equation, T� is the temperature during compres-
sion which is given as

T� = T +
n

3kBT
�

L̇

L
�

0

�

u�r��r� �

�r
g0�r,�,s��

+ 3�� �

��
g0�r,�,s��

r,s
	4�r2dr . �6�

By inserting Eqs. �5� and �3� into Eq. �1� and making use
of Eq. �6�, the approximate formula for bulk viscosity is
given as

�B = −
n2

18
��

0

� �r
du

dr
+ 2u�r���r� �

�r
g0�r,�,s��

�,s

+ 3�� �

��
g0�r,�,s��

r,s
	4�r2dr . �7�

This formula expresses the bulk viscosity, using the micro-
scopic information of u�r� and g0�r ,� ,s�. Here, it may be
noted that the above formula involves a density derivative of
the pair distribution function and hence also includes the
effect of multiparticle correlation functions. Further, it can
also be observed that the above formula involves a single
relaxation time as a multiplier and, therefore, is different
from Mori’s memory function approach. However, it has the
advantage that the method can safely be applied to two-
dimensional systems as it avoids the logarithmic divergence.

Moreover, computer simulation results of this formula are
similar to those obtained by Malbrunot et al. �12�, Hoover et
al. �13� and also by Heyes �10�. To make it more useful for
theoretical calculations, we need to know the relaxation time
and density dependence of g�r�. In the next section we pro-
pose a method to calculate the relaxation time.

III. EXPRESSION FOR THE RELAXATION TIME

The equation which describes the relaxation time in Eq.
�7� is given as

� = �
0

� �P�t�
�P�+ 0�

dt , �8�

where �P�t�= P�t�− P���, P��� is the equilibrium pressure.
In fact, it refers to the manner in which P�t� approaches
equilibrium pressure. We assume that the decay of �P�t� is
Gaussian, such that

�VP�t� = �VP�0�e−t2/2��2
. �9�

Therefore, Eq. �8� can be written as

� = �
0

� �VP�t�
�VP�0�

dt = �
0

�

e−t2/2��2
dt . �10�

Thus the relaxation time is obtained to be

� =
�

2
��. �11�

We propose �14� to calculate �� from the second time deriva-
tive of the correlation of displacement and force exerted by
particle at a given time, normalized to idealized pressure. To
obtain expression for �� we use

P�t�V = �ri�t�Fi�0�� . �12�

By comparing the Taylor expansion of the Eq. �12� with that
of Eq. �9� the expression for �� can be obtained and is given
as

��−2 =
1

kBT

d2

dt2 
�ri�t�Fi�t��
t=0. �13�

Thus, time � in Eq. �8� is not different from that in Eq. �12�.
Following the definition of Fi,

Fi = − �iU�r� , �14�

and of F̈i�,

F̈i� = − � �3U�r�
�ri� � rj� � rj��

v j�v j�� +
�2U�r�

�ri� � rj�
V̇j�� , �15�

and making use of the Yvon theorem, we obtain a relevant
expression from which, on carrying out angular integration,
one obtains
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��−2 =
8�n

3m
�

0

�

g�r�r2�d2u�r�
dr2 +

2

r

du�r�
dr

	dr . �16�

Numerically evaluating �� and after inserting the results into
Eq. �11�, the bulk viscosity is obtained from Eq. �7� in the
next section.

IV. CALCULATIONS AND RESULTS

In order to calculate the bulk viscosity from Eq. �7� and
relaxation time from Eq. �16�, we require the pair potential,
equilibrium distribution function g�r� and its density deriva-
tive. For pair potential we make use of Lennard-Jones poten-
tial defined as

u�r� = 4	��


r
�12

− �


r
�6	 , �17�

where 	 and 
 are two parameters of the LJ potential.

For the equilibrium distribution function we use theory of
Sung and Chandler �15� based on optimized cluster theory.
For the purpose of calculation of the effect of two parts of
formula �7� of bulk viscosity, we write these two integrals
separately as

C1 = −
n2

18
�

0

� �r
du�r�

dr
+ 2u�r��r

�

�r
g�r� �18�

and

C2 = +
n3

6
�

0

� �r
du�r�

dr
+ 2u�r�� �

�n
g�r� . �19�

In order to obtain the density derivative of the equilibrium
distribution function we have used a five-point differential
formula. The g�r� was calculated for different densities with
�n*=0.005. For evaluating the integrals, we have used the
Gauss quadrature method. The values thus obtained for C1
and C2 are given in Table I for various reduced densities n�

�=n
3� and temperatures T� �=kBT /	�.
It can be seen from Table I that C1 is positive whereas C2

is negative. It is further seen that both C1 and −C2 increase
with an increase in density and temperature. Here it may be
noted that C1 and C2 do not involve temperature explicitly.
The temperature dependence of C1 and C2 is only through
the dependence of g�r� on temperature. C2 involves the den-
sity derivative of g�r�, implying that it also contains the ef-
fect of the higher-order static correlation function. The in-
crease of C2 /C1 with density may imply that the role of
triplet correlation increases with an increase in density. It can
also be seen from Table I that C1+C2 increases with an in-
crease in density and an increase in temperature.

The values of relaxation time �� �=�
	 /m
2� obtained
from Eqs. �16� and �11� are given in Table II. It is seen that
�� decreases with an increase in density and an increase in
temperature. From the values of �� it can be seen that with an
increase in temperature, �VP�t� decays faster. On the other
hand, it decays slower with a decrease in density at a given
temperature.

TABLE I. The analysis of two contributions C1 and C2 �in units
of 	 /
6� appearing in the definition of viscosity at various densities
�n�� and temperatures �T��. C1 and C2 are defined in Eqs. �18� and
�19�. The contribution C2 representing the multiparticle
contribution.

T* n* C1 −C2 C1+C2 100 C2 /C1

0.71 0.800 29 8.6 21.4 30.0

0.700 0.844 33 11.0 22.0 34.1

0.72 0.884 40 16.0 24.0 40.0

0.73 0.928 48 22.0 26.0 46

1.23 0.419 7.09 0.17 6.92 2.4

1.25 0.500 10.32 0.7 9.61 6

1.19 0.584 14.6 1.6 13.0 11

1.28 0.600 16.0 2.17 13.83 13.5

1.16 0.844 41.8 15.0 26.8 35

1.21 0.966 69 34.0 35 49

1.81 0.400 6.8 0.4 6.4 5

1.83 0.500 11.4 1.17 10.23 10.2

1.81 0.700 27.5 6.5 21 23

1.84 0.743 33 9.0 24 27

1.90 0.801 42 13.5 28.5 32

1.88 0.966 79 37.0 42.0 46.7

2.47 0.450 9.62 0.94 8.68 9.8

2.48 0.500 12.4 1.52 10.88 12.2

2.5 0.600 19 3.50 10.5 18

2.56 0.743 36 10.03 26 28

2.5 0.803 45 15.06 29.94 30.8

2.53 0.909 68.6 28.71 39.9 42

3.46 0.400 7.8 0.74 7.06 9.4

3.46 0.500 13.5 1.88 11.62 14

3.41 0.600 21.5 4.18 17.32 19.4

3.5 0.700 32.8 8.50 24.3 24

3.54 0.803 49 16.61 32.4 34

3.48 0.909 72.5 30.50 42.0 42

TABLE II. Values of relaxation time � as given by Eqs. �11� and
�16� in units of 
m
2 /	 and �B and �B�MD� in units of 
2 /
m	 for
LJ fluids for few densities and temperatures.

T* n* � �B �B�MD�

0.71 0.800 0.058 1.18 1.34

0.700 0.844 0.055 1.21 1.47

0.72 0.884 0.051 1.23 1.19 �1.09� �16��1.20��9�
0.73 0.928 0.047 1.25 1.56

1.23 0.419 0.084 0.58 0.36

1.25 0.500 0.076 0.73

1.19 0.584 0.070 0.88 0.78

1.28 0.600 0.067 0.91 0.801

1.16 0.844 0.047 1.30 1.50

1.21 0.966 0.040 1.37 1.83
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The results obtained for �B
� �=�B
2 /
m	� are given in

Table II along with ���MD� representing nonequilibrium
molecular dynamics values of Heyes �10�. The Green-Kubo
value for bulk viscosity �16� and the value obtained by Oku-
mura and Yonezawa �9� are also shown at the triple point in
Table II. The results for bulk viscosity are shown in Fig. 1,
where the solid line represents our results and solid squares
represent MD results of Heyes �10�. It can be seen from the
figure that our method provides results which are in good
agreement with simulation results for Lennard-Jones fluids.

V. SUMMARY AND CONCLUSION

We have proposed a method for the theoretical calculation
of bulk viscosity from a formula proposed by Okumura and

Yonezawa. This formula includes the interaction potential,
density, and distance derivatives of the pair distribution func-
tion and relaxation time. Since theoretical evaluation of the
relaxation time was not known yet, therefore we have pro-
posed a method based on microscopic considerations to cal-
culate the relaxation time. The expression of relaxation time
has also been numerically calculated. We have obtained bulk
viscosity of Lennard-Jones fluids for a wide range of densi-
ties and temperatures. The results obtained from our method
have been compared with nonequilibrium molecular dy-
namic simulation of Heyes �10� and at a triple point with
results of Okumura and Yonezawa �9� and the Green-Kubo
method. It is a found that our method provides a good de-
scription of bulk viscosity as has been judged by a compari-
son of the results.
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FIG. 1. Variation in the bulk viscosity �B
� �=�B
2 /
m	� with reduced density n* at various temperatures. Solid lines are our results, and

solid squares are results of MD simulations of Heyes �10�.
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