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We employ a successive Monte Carlo renormalization group procedure in the presence of a linearly varying
temperature to study the three-state �q=3� Potts model on square lattices. By matching correlation functions of
different lattice sizes at different renormalization levels, a rate exponent r associated with the temperature
sweep rate R and the correlation length exponent � are obtained. The dynamic critical exponent z is then
obtained by the scaling law z=r−1/� derived in our method. The results of z=2.171�62� for q=3 in this work
and the previously obtained z=2.15�13� for q=2 seem to support the extension of the “weak universality”
hypothesis to dynamic critical behavior. With these calculated exponents, the dynamic scaling forms of both
specific heat and order parameter at various R are presented and all the other static critical exponents are
determined, which verify our method. Discussions are made on how to improve the accuracy of the estimation
of the dynamic critical exponent.
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I. INTRODUCTION

The theoretical framework for equilibrium critical phe-
nomena has been well established and some predictions have
been estimated in high precisions allowing high quality tests
with experiments �1�. The specific heat critical exponent �
and the asymptotic amplitude ratio for the scalar �4 model,
for example, have been calculated up to a seven-loop expan-
sion within renormalization group �RG� theory with proper
resummations �2� and are consistent with microgravity ex-
periments �3�. The corresponding quantities for the three-
dimensional �3D� XY universality class have been deter-
mined by both six- and seven-loop expansions with a
resummation algorithm �4�, by Monte Carlo simulations
based on finite-size scaling methods and combined with
high-temperature expansions �5�, and by measurements of
liquid helium in a low gravity environment �6�. The three
values of � obtained, for example, are respectively,
0.0112�21�, 0.0146�8�, and 0.0127�3�, representing the state
of the art. Whereas these numbers show clearly the validity
of the renormalization group theory, substantial theoretical
�both analytical and numerical� and experimental efforts are
still needed to resolve the little discrepancy even in such a
case of high precision �1�.

Also established in principle has been the theoretical
framework for dynamic critical phenomena and the concept
of dynamic universality classes have been introduced to
group different dynamic critical systems �7�. Agreement of
two-loop RG results of the thermal conductivity �8� with
microgravity experiments �6� has been found. Less precise
theoretical results, nonetheless, could be obtained even
though a systematic dynamic field-theoretical method has
been developed �9�. There is a three-loop 4−d �d is the spa-
tial dimensionality� expansion for the dynamic critical expo-
nent z of a N-component vector order parameter with O�N�
symmetry �10�. Up to now the longest theoretical expansion

is a four-loop 4−d expansion for z of model A with only a
scalar order parameter �11�. It gives, for the 3D Ising model,
z=2.0237�55� which agrees with results of Monte Carlo
simulations �12� and our varying-field renormalization-group
theory �13�, and, for the 2D kinetic Ising model, z
=2.0842�39�, which is a little smaller than the current value
of about 2.17 �13–15�. Thus further analytical and numerical
work is still needed even for this simplest model.

A simple extension of the Ising model is the q-state Potts
model �16�. The continuous field version of the model, how-
ever, contains a trilinear term and thus should show discon-
tinuous transitions qualitatively distinct from the Ising model
�17�. Nevertheless, it has been proved rigorously that the 2D
Potts model, when q�4, exhibits continuous phase transi-
tions in the presence of temperature driving �18�. The Potts
model can describe a lot of transitions and thus has many
applications. Examples include the isotropic to nematic tran-
sition of liquid crystals �19�, the martensitic transition in �
tungsten �20�, percolation problems �21�, the Yang-Lee edge
singularity �22�, the Edwards-Anderson model of spin
glasses �23�, and quantum field theory models in particle
physics �24�. The 2D q=3 model to be studied here, in par-
ticular, can be used to describe phase transitions of krypton
absorbed on graphite �25�. As one of the most studied mod-
els, there have been yet few exact results for this model
�26,27�. Three-loop 6−d expansions with proper resumma-
tions for the static critical exponents of the Potts model have
been compiled �28�, allowing for possible comparisons with
experiments. These results, however, are not expected to be
close to the corresponding exact values at two dimensions.
Moreover, there has not yet been dynamic field theory for the
dynamic properties of the model, though for the 2D three-
state Potts model, various other approaches exist to calculate
its dynamic critical exponent �29–47� and we will make a
brief account in the following.

A first calculation of the dynamic critical exponent of the
2D three-state Potts model used a Migdal-type recursion
method generalized to dynamics �29�, yielding z=1.92 or
2.25 when the series expansion results and the corresponding*Corresponding author. stszf@mail.sysu.edu.cn
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scaling relation were utilized, respectively. Measuring the
nonlinear relaxation exponent �nl of the magnetization gave
rise to z=2.41 with the aid of the scaling relation z= ��nl

+�� /� �30�. The first dynamic Monte Carlo renormalization
group �MCRG� method applied to the model at its critical
temperature led to z=2.7±0.4 �31�, which was also found by
a modified MCRG �32�. However, when data of earlier times
were included, z becomes close to the value 2.1–2.3 that was
found by the same authors later using a finite size scaling
method �33�. On the basis of hyperscaling, a scaling relation
z�=2+� for the two-dimensional Ising and Potts model was
predicted �34�. It produces a value of 2.8 for z that is close to
the early MCRG result. However, by comparing the magne-
tization of the original and the renormalized one in the modi-
fied dynamic MCRG scheme �48� with lattice sizes as large
as 800�800, z was calculated to be 2.43±0.15 �35�. Subse-
quent work improved the precision. By fitting the equilib-
rium relaxation functions for energy and order parameter to a
sum of exponential decays and using the finite-size depen-
dence at Tc, z was obtained as z=2.17±0.04 �36�. Power-law
relaxation of the magnetization in lattice sizes up to 1200
�1200 directly resulted in z=2.16±0.04 using the exact re-
sults for the static critical exponents �37�. Yet another dy-
namic finite-size scaling analysis of the relaxation times gave
z=2.18±0.04 with the relaxation times being obtained by the
collapse of the time-dependent magnetization squared of dif-
ferent system sizes �38�. Another method to determine the
dynamic exponent was by making use of the short-time scal-
ing behavior of the critical dynamics �49�. From the power
law behavior of the physical observables at the beginning of
the time evolution, the dynamic critical exponent could be
determined. A heat bath algorithm was employed in Ref. �39�
and with the short-time analysis of the autocorrelation func-
tion the result was z=2.1983�81�. By taking into account the
microscopic time scale that the system needed to enter a
macroscopic quasistable state �40�, the results were z
=2.196�8� �heat-bath algorithm� and z=2.198�13� �Metropo-
lis algorithm�. The greater efficiency of the heat-bath algo-
rithm in the short time dynamics was also revealed. The
same simulations with the heat-bath algorithm were carried
out on triangle lattices �41� and the dynamic critical expo-
nent was 2.191�6�, which was consistent with those on
square lattices �39,40� and verified the universality of the
short-time dynamics. By searching for the best fit of collapse
of the fourth-order Binder cumulant and the second moment
of the magnetization, the results were z=2.203�11� and z
=2.191�1�, respectively �42,43�. By submitting the system to
different initial conditions and combining the behavior of the
order parameter and its second moment, z was obtained to be
2.197�3� �44�, which was compatible with those found in
�39–43� very well. We note that there were specifically de-
signed cluster algorithms such as Swendsen-Wang and Wolff
algorithms �45–47� that could produce unusually small z re-
sulting from the greatly reduced relaxation times.

At the present situation concerned, several issues emerge.
First, one has to conclude that the dynamic critical exponent
of the 2D three-state Potts model is still scattered. There are
mainly three catalogs of values. One is around 2.4 obtained
mainly from dynamic MCRG and some other methods

�29–33,35�. Another is about 2.17 from the scaling of equi-
librium relaxation times and the like �36–38�. The other is
2.20 or so from short-time critical behavior �39–44�. Though
there is a slight overlap within statistical errors for the latter
two catalogs, the results from the dynamic MCRG appear a
little far apart even for quite large lattices �35�. This neces-
sitates a reinvestigation of the MCRG kind methods. More-
over, except for the last catalog, the other two suffer from the
notoriously critical slowing down. Indeed, since the system
is simulated at the critical temperature, critical slowing down
is a major concern for accurately detecting the equilibrium
properties of the system. A further issue concerns the idea of
“weak universality” �50� extended to the dynamic critical
behavior for the 2D Potts model, namely, z is the same for
q=2, q=3, and q=4 �36�. Although there are agreements on
this �35–37�, the debate on the q independence still exists
�44�. Thus in this paper, the successive MCRG procedure we
have successfully used in the 2D Ising model �51� is applied
to the 2D three-state Potts model with greater numerical ef-
forts to calculate both dynamic and static critical exponents.
This nonequilibrium method can effectively overcome the
critical slowing down which appears in equilibrium situa-
tions. In this way, we can compare the dynamic critical ex-
ponent with that in Ref. �51� for the 2D Ising model that is
equivalent to the q=2 Potts model and investigate the reli-
ability of the dynamic universality class, since q=3 was sug-
gested to be slightly different from q=2 and 4 in the weak
universality scheme �36�. Furthermore, the dynamic scaling
form of the specific heat obtained from the fluctuation-
dissipation theorem in the nonequilibrium conditions is pre-
sented as an additional outcome of the method. Dependence
of the variances of the energy and the order parameter on the
lattice size and the sweep rate are also respectively discussed
in order to improve the accuracy of our method.

The renormalization group theory was first introduced to
the study of critical phenomena by Wilson �52�. It was then
incorporated with Monte Carlo simulations by Ma �53� and
developed by Swendsen �54� to study both static and dy-
namic critical phenomena. A dynamic successive MCRG
was proposed by Tobochnik and co-workers �55� and ex-
tended by Katz and co-workers �56�, where the dynamic ex-
ponent z was obtained by matching correlation functions at
different blocking levels at different times. It was further
extended to include two variables in the case of the 2D Ising
model below its critical temperature Tc and in the presence
of a linearly varying magnetic field, and it was found that the
dynamic scaling behavior of hysteresis was originated from a
rate exponent r that characterized the response of the system
to the sweep rate of the field driving the transition �57�. The
exponent r related the original sweep rate R of the external
field to the renormalized one by R�1�=Rbr, where b was the
scaling factor. Also the scaling of thermal hysteresis with
temperature scanning rate for first-order phase transitions
was studied �58�. A linearly varying temperature was applied
to the 2D Ising model near its criticality �51�. By implement-
ing the successive MCRG procedure, both dynamic and
static exponents were obtained, which were in agreement
with existing results. Recently, a field theoretical version of
the RG theory was developed to treat analytically the linearly
varying field and temperature �13�, which proved the validity
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of the method. Owing to the nonequilibrium driving, the
method can effectively overcome the critical slowing down
and can thus be an alternative method for determining criti-
cal exponents efficiently.

The rest of the paper is organized as follows: In Sec. II,
we introduce the 2D Potts model and the dynamic MCRG
technique. Section III contains the results and data analysis,
which proceeds like this. First, the critical temperature is
obtained by fitting the simulated transition temperature for
different sweep rates. The correlation functions are then
matched at different blocking levels at different times to ob-
tain the correlation length exponent � and the additionally
introduced exponent r. Then the dynamic critical exponent z
is obtained via z=r−1/�. As our main aim is to determine z
and confirm its q independence, we will verify the accuracy
of the estimations of the exponents and determine all the
other static critical exponents simultaneously. According to
the scaling relation �=2−d�, the specific heat exponent � is
obtained. By virtue of the calculated exponents, the specific
heat and the temperature are rescaled and the corresponding
collapsed curves for different system sizes and sweep rates
are presented, which verifies the dynamic scaling form of the
specific heat and the reliability of the exponents obtained.
Moreover, a good estimation of the order parameter exponent
� is made by the collapse of the rescaled order parameter vs
the rescaled temperature with the previously obtained expo-
nents. Having two independent static exponents � and � in
hand, we can determine other static exponents according to
the known scaling laws. The influence of the sweep rate on
both specific heat and order parameter is discussed. To im-
prove the accuracy of the method on the whole, we discuss
the variations of the energy and the order parameter vari-
ances with different lattice size and sweep rate. A summary
of our results is made in Sec. IV.

II. MODEL AND METHOD

We consider the three-state Potts model on a two-
dimensional square lattice. The Hamiltonian of the Potts
model is defined as

H = − �
�i,j�

	
i
j
, �1�

where 	 is the Kronecker delta function, and �i , j� denotes
the sum over nearest-neighbor spins. We use J as an energy
scale and set J=1 for simplicity. The spin variable 
i of this
model can take on three different values, i.e., q=3. The order
parameter is defined as

�M� = �qNmax/N − 1�/�q − 1� , �2�

where Nmax=max�N1 ,N2 , . . . ,Nq�. Nq is the number of spins
in state q and N is the total number of spins. The specific
heat per site is

C =
Ld

T2 ��E2� − �E�2� , �3�

where L and d indicate, respectively, the size and the dimen-
sionality of the system. �E2�− �E�2 is the fluctuation of the

internal energy per site. The nearest-neighbor spin-spin cor-
relation function is

Gnn =� 1

2N
�
�i,j�

	
i
j	 − �M�2. �4�

We use dynamic MCRG to study the Potts model in the
presence of a linearly varying temperature field T=Rt, where
t is the time that is measured by Monte Carlo steps per spin.
In each step all the spins are tested sequentially to flip or not
according to the Metropolis algorithm �59�. We start with a
ground state that is set to be one of the three equivalent
states. As heated from zero temperature to that above the
critical temperature, the system undergoes a transition from
the ordered state to a disordered one. In each Monte Carlo
step, the successive MCRG procedure is carried and M, E,
and G at various renormalization levels are recorded and
subsequently averaged over many different independent
runs. Matching correlation functions at different renormal-
ization levels with the same size can then give rise to both
dynamic and static critical exponents. The whole procedure
has been discussed explicitly in Ref. �51� and we will only
make a brief account here.

During the MCRG procedure, bd spins are replaced by a
new block spin which is determined by the majority rule.
The renormalized T, R, and t are denoted by T�m�, R�m�, and
t�m�, respectively. Here m indicates the mth iteration of the
renormalization procedure. After renormalization, the three
parameters flow to their corresponding new ones, which can
be expressed as

�T − Tc��1� = �T − Tc�b1/�, �5�

R�1� = Rbr, �6�

�t − tc��1� = �t − tc�b−z, �7�

where tc is the time at which T=Tc. Combining the three
equations above with T=Rt we obtain the scaling law
�13,51,57�

1/� = r − z , �8�

from which the dynamic critical exponent can be obtained
once r and � are known.

To this end, correlation functions of two block spin sys-
tems with the same size are matched in order to reduce the
size effect, that is,

Gnn�L,m,Rs
�m�,Tps

�m� − Tc� = Gnn�Lb,m + 1,R�m+1�,Tp
�m+1� − Tc� ,

�9�

where Tp is the dynamic transition temperature that corre-
sponds to the peak value of the correlation function Gnn and
the subscript s indicates the small lattice. From Eqs. �5�, �6�,
and �9� one sees that

Rs
�m� = R�m+1� = R�m�br, �10�

and

Tps
�m� − Tc = Tp

�m+1� − Tc = �Tp
�m� − Tc�b1/�. �11�

Therefore
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r = ln�Rs
�m�/R�m��/ln b , �12�

and

� = ln b/ln��TPS
�m� − Tc�/�Tp

�m� − Tc�� . �13�

Other critical exponents can also be obtained. With the
present exponent �, the related exponent � can be deter-
mined by the scaling law �=2−d�. According to the renor-
malization group theory �60�, the specific heat and the order
parameter in the vicinity of the critical region can be cast
into the following scaling forms:

C�T − Tc,R� = R−�/r�f1„�T − Tc�R−1/r�
… , �14�

M�T − Tc,R� = R�/r�f2„�T − Tc�R−1/r�
… , �15�

where f1 and f2 are universal scaling functions. Equation
�15� thus implies that � may be determined by seeking a
good collapse of the rescaled order parameter.

One still needs the critical temperature Tc in the procedure
described above. As the system is driven by a linearly vary-
ing temperature T=Rt, its response to the temperature is con-
trolled by the sweep rate R. So it is clear that there is a
hysteresis in the transition temperature. It is just the hyster-
esis of this kind that overcomes the critical slowing down.
Each R has its own Tp and increasing R leads to a larger
deviation of Tp from Tc. Note that as R approaches zero, the
transition from the ordered to the disordered state ought to
approach the equilibrium transition that takes place at Tc.
Moreover, at equilibrium, the peak of the correlation func-
tion is just at Tc. Accordingly, we expect

Tp = Tc� + aRn �16�

with Tc� necessarily equal to Tc, where a and n are fitted
parameters. This then provides a method for determining Tc.

III. RESULTS AND DISCUSSIONS

We select the large and small lattice pairs to be 512
�512 and 256�256, respectively, and the scaling factor b
=2. The nearest-neighbor correlation function, the specific
heat, and the order parameter are calculated and all these
quantities are averaged over 200–4000 independent runs.

A. The critical temperature Tc

Fitting of Tp vs R of the small lattice �m=0 and m=1�
yields Tc�=0.9968�20�, a=1.704�106�, and n=0.365�11�. As
expected, Tc� is consistent with the exact result Tc=1/ ln�1
+
3��0.995 very well. Since there is little difference be-
tween the fitted critical temperature and the exact one, we
will use the latter hereafter.

Figure 1 shows the log-log plot of Tp−Tc� vs R of the
small lattice. The straight line is the power law fit of data
when m=0 and m=1. For R not greater than 10−4, the data
points of different iterations coincide with each other very
well. With the increasing of R, the more iterations lead to
more obvious deviations. So R should be sufficiently small in
order not to be too far away from the fixed point. In other
words, the accuracies of the fitted transition temperature and
parameters in Fig. 1 are to some extent restricted by the
range of R, while the range of R is restricted by the computer
running time.

B. The exponents obtained by the dynamic MCRG procedure

Table I shows our calculated exponents according to the
dynamic MCRG procedure. R in the first column indicates
the sweep rate of the temperature of the large lattice, which
varies from 0.000 01 to 0.0005. Five iterations were carried

FIG. 1. �Color online� Log-log plot of Tp−Tc� vs R of the small
lattice. The straight line is the power law fit of data when m=0 and
m=1.

TABLE I. The exponents obtained by successive renormalization group approach.

m=1 m=2 m=3 m=4

R � r z 1/r� � r z 1/r� � r z 1/r� � r z 1/r�

1�10−5 0.695 3.978 2.539 0.362 0.826 3.264 2.053 0.371 0.866 3.407 2.251 0.339 0.851 3.370 2.195 0.349

3�10−5 0.705 3.889 2.469 0.365 0.784 3.362 2.086 0.380 0.793 3.430 2.169 0.368 0.838 3.378 2.185 0.353

5�10−5 0.696 3.856 2.419 0.373 0.770 3.517 2.219 0.369 0.796 3.400 2.143 0.370 0.836 3.291 2.095 0.363

7�10−5 0.707 3.819 2.405 0.370 0.806 3.506 2.266 0.354 0.818 3.380 2.157 0.362 0.818 3.389 2.166 0.361

1�10−4 0.723 3.816 2.432 0.363 0.784 3.498 2.222 0.365 0.821 3.442 2.224 0.354 0.836 3.328 2.131 0.360

3�10−4 0.718 3.764 2.372 0.370 0.771 3.513 2.216 0.369 0.764 3.459 2.150 0.378 0.798 3.434 2.182 0.365

5�10−4 0.714 3.751 2.349 0.374 0.752 3.530 2.2001 0.377 0.760 3.474 2.158 0.379 0.755 3.388 2.063 0.391

SHUANGLI FAN AND FAN ZHONG PHYSICAL REVIEW E 76, 041141 �2007�

041141-4



out on the two lattices and the parameter m in the table
indicates the mth iteration of the renormalization procedure
of the large lattice. From the table we see that r is positive,
which means that the renormalized sweep rate will be greater
than the original one. In other words, R is a relevant variable.
The flow of parameters as renormalizations in the parameter
space may be inferred by the exponents in Table I. When
m=1, irrelevant variables are still prevalent and the corre-
sponding exponents show large deviations from their respec-
tive fixed point values given below. After the irrelevant vari-
ables have been iterated away, the system approaches the
fixed point. As a result, the exponents almost remain constant
within statistical errors and thus reflect the properties of the
fixed point involved. Further iterations will drive the system
away from the fixed point since R is a relevant variable,
which conforms with Fig. 1. Consequently, we only present
the exponents calculated from m=1, 2, 3, and 4 in Table I
and calculate average values over the second, third, and
fourth renormalization, yielding �=0.802�33�, r=3.417�74�,
z=2.168�59�, and 1/r�=0.365�23�. The dynamic exponent
obtained in this way is consistent with those in Refs.
�36–38�.

The deviation of �=0.802 from the exact one ��=5/6
�0.833� is within the statistical error. Comparing 1/r� ob-
tained from the successive MCRG approach with the hyster-
esis exponent n from Eq. �16�, one finds they are compatible
with each other very well and in agreement with previous
results �13� and prove the validity of the scaling law z=r�1
−n� �51�.

We only matched the peak values of the correlation func-
tions of the large and small lattices to find the exponents in
Table I. To be consistent, however, all the correlation func-
tions of the two lattices ought to be matched. According to
the renormalization group theory, the sweep rate R flows to

R�1�=Rbr when the system is renormalized. For a certain
sweep rate R for the large lattice, its renormalized correlation
function will match that of the small unrenormalized lattice
whose sweep rate is Rbr. Since �T−Tc��1�= �T−Tc�b1/�, we let
b=R−1/r so that the rescaled temperature is �T−Tc�R−1/r�.
Figure 2 shows the matching of the two lattices with R1
=0.000 01 and R2=0.0005, respectively. The corresponding
sweep rates of the small lattice are R1br=0.0001 and R2br

=0.0053. Five iterations of the RG procedure were carried on
both lattices. The solid and dashed lines from top to bottom
correspond to m=0−5, respectively. From Fig. 2 we can see
that the peak values of the correlation functions decrease
when increasing both the renormalization level and the
sweep rate. Increasing the sweep rate, especially that of
0.0053 of the small lattice in Fig. 2�b� thus leads to less
distinguishable peak values, which in turn lead to less reli-
able exponents calculated according to the successive
MCRG. For sufficiently small sweep rates such as those in
Fig. 2�a� the matching of the two lattices is desirable except
when m=1, consistent with the averages above. Although the
matching in Fig. 2�b� is not as good as that in Fig. 2�a�, it is,
nevertheless, acceptable. Consequently, the upper limit of the
sweep rate in Table I is acceptable, too. Note that m=0 of the
large lattice and m=5 of the small lattice are not expected to
coincide with others.

The above paragraph shows the reliability of the correla-
tion function matching, which is essential for our calcula-
tions. Since no analytic result for the dynamic critical expo-
nent z has yet been calculated for the model concerned and
the existing numerical ones are scattered, it is necessary to
verify the reliability and accuracy of the estimation of z,
which is also important for solving the debate on its q inde-
pendence. In our work, the dynamic critical exponent z is
obtained via the scaling relation z=r−1/� that has been con-
firmed analytically, the accuracy of the estimation of z de-

FIG. 2. �Color online� The correlation function Gnn vs the rescaled temperature �T−Tc�R−1/r� for the small lattice �dashed lines� and the
large lattice �solid lines�. “L” and “S” above the curves indicate the large and small lattices, respectively. Insets show Gnn vs T, where the
peak locations of Gnn are almost constant for each lattice size. The sweep rates of the large lattice are 0.000 01 in �a� and 0.0005 in �b�. The
numbers above curves of �a� denote the number of iterations of the RG procedure. Situations in �b� and the two insets are the same as in �a�
and have not been labeled.
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pends on those of r and �. Then in the following two sub-
sections we will discuss the reliability of the estimations of r
and � and determine all the other static critical exponents
simultaneously.

C. The specific heat exponent �

Applying the exponent � calculated in Table I to the scal-
ing law �=2−d�, one obtains the specific heat exponent �
=0.396�66�, which is consistent with the exact one �=1/3
within statistical error. We may check the reliability of the
calculated � and 1/r� by Eq. �14�. Figure 3�a� shows the
temperature variations of the specific heat with various
sweep rates, where some data of the small lattice have been
removed for clarity. Figure 3�b� exhibits the data collapsing
of the specific heat in the vicinity of the critical region for
different R, which confirms our results.

Several remarks are in order here. First, the system exhib-
its larger fluctuations for smaller sweep rates, as it becomes
more equilibriumlike. But for R around 0.000 01, we have

averaged only over 200 samples. This is the reason for the
large curve width in Fig. 3�b�, and thus the collapse in it is
not so bad. Second, the specific heat was obtained from the
fluctuation-dissipation theorem in Eq. �3�. This equation ap-
plies to the static case �61�, where �E� and �E2� are averages
of equilibrium states, while in our dynamic case they are
both ensemble averages. Thus possible systematic devia-
tions, especially when the sweep rate getting larger, may ap-
pear due to the violation of the theorem. Another factor is the
possible finite-size effect. Usually this effect renders the di-
vergences at criticality rounded and shifted. An indication of
it can be seen in Fig. 3�a�, namely, for small rates, the spe-
cific heat curves of the two lattices with the same R do not
exactly coincide with each other near the transition point,
i.e., around the peak values of the specific heat �not because
of the removal of some data as mentioned above�. In the
present case, however, the rounding, shifting, and the coin-
cidence of the specific heat in Fig. 3�a� may result from the
linearly varying temperature that imposes an external time
scale for the system to follow. Consequently, the peak values
of the specific heat in Fig. 3 decrease and the corresponding
transition temperatures increase with increasing R. It should
also be pointed out that the possible finite-size effect appear-
ing here ought to have a negligible effect on the results in
Table I, where the matching is between two lattices with the
same size.

D. The order parameter exponent �

Figure 4 shows the temperature dependence of the order
parameter of the two lattices with various R. With the de-
creasing of R, the behavior of the order parameter near the
critical region is more analogous to the equilibrium case that
shows finite-size effect. For an infinitesimal R the curve will
be identical to that of the equilibrium phase transition, while
increasing R will lead to better and better data collapsing of
the two lattices sharing the same R, i.e., less finite-size effect.
This is compatible with that in Fig. 3�a�. The collapsed
curves of the rescaled order parameter according to Eq. �15�
by using the exact and conjectured values of � are shown in
Fig. 4�b�. Less diffusivity of the collapsed curve means more

FIG. 3. �Color online� �a� Temperature dependence of the spe-
cific heat for the large lattice �solid lines� and the small lattice
�filled circles�. Sweep rates from the left to right are 0.000 01,
0.000 03, 0.000 05, 0.000 07, 0.0001, 0.0003, and 0.0005, respec-
tively. Curves except that of R=0.000 01 have been shifted along
the horizontal coordinates by 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2 for
clarity. �b� The rescaled specific heat CR�/r� vs the rescaled tem-
perature �T−Tc�R−1/r� for different R. The range of R and the plot
types are the same as those in �a� except that the lines for the small
lattice are dashed.

FIG. 4. �Color online� �a� Temperature dependence of the order parameter of the large lattice �solid lines� and the small lattice �filled
circles�. Curves from left to right correspond to R of 0.000 01, 0.000 03, 0.000 05, 0.000 07, 0.0001, 0.0003, 0.0005, 0.0007, and 0.001,
respectively. �b� The rescaled order parameter MR−�/r� vs the rescaled temperature �T−Tc�R−1/r� for m=0. The upper and bottom curves are
respectively shifted along the vertical coordinates by +0.2 and −0.2 for clarity. �c� The rescaled order parameter MR−�/r� vs the rescaled
temperature �T−Tc�R−1/r� for �=0.108 and m=0, 1, 2, and 3, respectively. The curves corresponding to m=1, 2, and 3 are shifted along the
vertical coordinates by 0.2, 0.4, and 0.6, respectively. The lattice size and the range of R in �b� and �c� are the same as those in �a�.
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accuracy of �. As a rough estimate, we average over �
=1/9�0.111 and �=0.105 to get �=0.108�4� �51�. Figure
4�c� ��=0.108� shows that when m=0 and m=1, the collaps-
ing of the curves are very good. With the increasing of m, the
situation becomes worse. For example, when m=3 the col-
lapsed curve is separated into two parts. The upper part near
the critical region corresponds to the sweep rate that ranges
from 0.000 01 to 0.0001. The bottom part corresponds to
0.0003 to 0.001. This is because the renormalized sweep rate
R�m� becomes larger and larger as m increases, giving rise to
more deviation of the order parameter from the dynamic
scaling form due to the deviation from the fixed point. When
the sweep rate is sufficiently small �ranging from 0.000 01 to
0.0001�, the coincidence of the rescaled parameter is desir-
able for each curve.

This then gives us a better estimate of the relevant expo-
nents. Indeed, from Table I we may well average the expo-
nents over the sweep rates from 0.000 01 to 0.0001, leading
to �=0.816�27�, r=3.398�74�, 1 / �r��=0.361�10�, z
=2.171�62�, and �=0.368�54�. Moreover, the scaling plots
will become better for this restricted range of sweep rates.
And because of the small rates used, corrections to scaling
�62� ought to be small too. In fact, we have used a wider
range only to show the validity of the theory. With the ob-
tained static exponents �=0.816�27� and �=0.108�4�, other
static exponents can be determined by the scaling laws. The
results are �=1.416�62�, 	=14.1�1.1�, and �=0.265�19�, re-
spectively. The corresponding exact ones are �=13/9
�1.444, 	=14, and �=4/15�0.267. Our results thus agree
well with the exact ones within statistical errors and confirm
the validity of our method in determining both dynamic and
static critical exponents.

E. Variance analysis

The main results of this work have been discussed in the
preceding subsections and the validity of our method is thus
verified. Aside from the validity of a method, improving the
accuracy is another important issue in simulations. The ex-
ponents in Table I are obtained by matching the correlation
functions, where the correlation function, according to the
definitions in Sec. II, is calculated by Gnn=−�E� /2− �M�2.
The energy per site and the order parameter are measured by
averaging over many independent samples. To improve the
accuracy of the exponents, it is necessary to improve the
accuracies of E, M, and then Gnn. So we should discuss the
variance of E and M, i.e., the sample to sample fluctuations.
In an equilibrium situation we observe a quantity A in n
independent observations and calculate the error

�A�n,L� = 
��A2� − �A�2�/n , �17�

with n�1. Depending on whether �A�n ,L� tends to zero or
not in the thermodynamic limit, the system exhibits either
self-averaging or lack of self-averaging, respectively �63�. In
the former case we can improve the accuracy of the observ-
able by increasing the system size, while in the latter case the
only way is using more samples. In this work we are dealing
with the nonequilibrium situation and both �A2� and �A� are
ensemble averages. Here we concentrate on the temperature

variation of VA= �A2�− �A�2, which reaches a peak value at
the transition point. In our simulations there are two control-
lable parameters, the lattice size L and the sweep rate R.
Each iteration of the renormalization group procedure leads
the system size to be b times smaller than the preceding one
and we can analyze the size dependence and the sweep rate
dependence of the variance concerned.

Figure 5�a� shows the peak values of VE of different itera-
tions vs the system size. For a certain unrenormalized lattice
size with a certain unrenormalized sweep rate, the variance
of the energy for m=0−5 are denoted by the same symbol.
The straight line is the fit of all the data points presented for
the two lattices with VE�L−
E and 
E=1.66�31�, consistent
with 
E=2�1−�� /�=1.6 in the equilibrium situation. There-
fore VE tends to zero in the thermodynamic limit and for a
fixed number of samples the accuracy can be well improved
by increasing the lattice size. Since the fit is from m=0−5
for various unrenormalized sweep rates, there must be some
discrepancy resulting from the larger and larger renormalized
sweep rates. Another factor is the restricted lattice sizes used.
Nevertheless, the fit is good for the lattice sizes and the
sweep rates concerned here and we can get a rough idea
about the self-averaging of the nonequilibrium situation.

Figure 5�b� is the double logarithm plot of the peak values
of VM vs L. Note that the susceptibility � could be obtained
if the variance of the order parameter was multiplied by
Ld /T. And just like the specific heat and the order parameter,
the rescaled susceptibility �R�/r� vs the rescaled temperature
�T−Tc�R−1/r� of different sweep rates could collapse onto a
single curve around the critical region. The not-perfectly
straight lines in Fig. 5�b� indicate the violations of a simple
power law of VM �L−
M in equilibrium situations and we
only give a qualitative description here. From Fig. 5�b�, it
can be seen that for the large and small lattices with an equal
unrenormalized sweep rate, VM decreases with increasing lat-
tice sizes, which means that the order parameter also exhibits
self-averaging, while for a certain lattice size, VM increases
dramatically with decreasing sweep rates. This accounts for
the violation of VM from the simple power law with respect
to the lattice size. More iterations lead to smaller renormal-

FIG. 5. �Color online� Double logarithm of the peak values of
�a� VE and �b� VM vs L. The filled symbols are for the small lattice
and the open symbols are for the large lattice. The straight line in
�a� is the fit of the two lattices from m=0 to m=5 for the sweep
rates shown. The sweep rates in the legends in �a� correspond to the
unrenormalized ones and they apply to �b� too. Solid lines in �b� are
just guides to the eye.
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ized lattice sizes �so an increasing VM� but larger renormal-
ized sweep rates �so a decreasing VM� and the influence of R
on VM becomes more and more negligible and VM of differ-
ent sweep rates get approximately to a constant at L=8. We
also note that there is coincidence of VM between the two
lattices with the same sizes from L=256 to L=16, with un-
renormalized sweep rate of the small lattice being RS
=0.001 and that of the large lattice RL=0.0001. Tracing the
hysteresis exponent r estimated in Sec. III A we can obtain
that RL

�1��RS, which just explains the coincidence here.
Summarizing, for a certain sweep rate we can improve the

accuracies of E and M significantly by increasing the lattice
size. Then the accuracy of the correlation function Gnn is
improved. In terms of the renormalization group procedure,
the more iterations lead to smaller lattice sizes and larger
sweep rates and then larger fluctuations of the energy and the
order parameter. These fluctuations will affect the correlation
function and then the estimations of the exponents in Table I.
So the iteration number m cannot be too big and the lattice
size should be as large as possible so as to get the results as
accurate as possible. This conclusion is in agreement with
the exponent variations in Table I, where the values of the
exponent �, for example, deviate dramatically from the exact
one when m=5 �not listed� and the final estimations of the
exponents are averaged over m not bigger than 4. However,
this is not sufficient for obtaining considerably accurate ex-
ponent estimations. As discussed previously, decreasing the
sweep rate leads the system to be closer to the fixed point
and then more reliable estimates of the exponents. So with
the lattice sizes as large as possible, accuracies of the expo-
nents in Table I may then be further improved by decreasing
the sweep rate and using more samples.

IV. SUMMARY

We have applied the extended MCRG to the two-dimen-
sional three-state Potts model to study the continuous phase
transition. The two lattices are respectively renormalized
successively and the correlation functions are matched be-
tween the two systems having the same lattice sizes and the
exponents �, r, and then z have been calculated. Due to the
linearly varying temperature that drives the system out of
equilibrium, the method can effectively overcome the critical
slowing down which pledges in equilibrium situations. Al-
though this work is a direct application of our previous
method, by using substantially more samples, the precisions
of the exponents obtained have been improved by one digit.

Moreover, the dynamic exponent z=2.171�62� makes the re-
sults of the MCRG catalog overlap the other two catalogs,
leading to a converging result. Combining our present result
of z=2.171�62� with the previously obtained z=2.15�13� for
q=2, one sees that the extension of weak universality hy-
pothesis to dynamic critical behavior seems reliable and z
appears to be q independent within statistical errors. The
remaining small deviations among the existing results for
identical and different q may arise from systematic and sta-
tistical errors since the present available methods are all to
some extent approximate �64� and systematic RG results
have not yet been available. This strongly calls for analytic
dynamic RG results for such simple models to resolve such
basic questions as the dynamic critical exponent and univer-
sality classes, even after nearly four decades of studies on
critical dynamics.

As additional contributions to the method, we have deter-
mined the specific heat and shown that it follows its dynamic
scaling form with respect to the temperature sweep rate cor-
rectly even in the present nonequilibrium conditions, as does
the scaling form of the order parameter. The order parameter
exponent � has also been determined from the satisfactory
collapse of the rescaled order parameter vs the rescaled tem-
perature. With � and � in hand, all the other static critical
exponents have been determined with considerable accuracy.
Our results thus further confirm the method and its theory
and indicate that we can apply this method to a system with
unknown critical exponents, both dynamic and static. The
critical temperature can also be determined within the
method. We have also discussed both quantitative and quali-
tative the variations of VE and VM with the lattice size and
the sweep rate. They all show self averaging in that they both
decrease with increasing lattice sizes albeit in different man-
ners, viz., the former follows possibly the equilibrium finite-
size relation but not the latter. The sweep rate has a slight
effect on VE but significantly affects VM. Consequently, to
improve the accuracy of the exponents, the first step is to
improve the accuracy of Gnn, so we need to improve the
accuracies of both VE and VM by increasing the lattice size,
and the RG iteration number cannot be too big. The second
step is to decrease the sweep rate so as to drive the system to
be closer to the fixed point and get averages over more
samples.
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