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Asymmetric bistable systems subject to periodic and stochastic forcing in the strongly nonlinear
regime: The power spectrum
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In this, the fourth of a series of papers [the first three papers were Phys. Rev. E 68, 016103 (2003), 68,
036133 (2003), and Phys. Lett. A 334, 12 (2005)] on the response of overdamped noisy bistable systems
subject to an asymmetrizing constant signal superimposed on a time-sinusoidal driving signal, we obtain
analytic expressions for the power spectral density of the response, including a detailed theoretical analysis of
the power spectrum. The results are valid for any two-state system, however the specific case of the Duffing (or
standard quartic) potential is considered in detail. The stochastic dynamics are confined to the weak noise limit
(periodic signal amplitude much greater than noise intensity), i.e., when the response of the system to the

external periodic field is strongly nonlinear.
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I. INTRODUCTION

Periodically driven noisy bistable systems have been ex-
tensively studied in the past couple of decades because they
are convenient models that can explain some aspects of ob-
served dynamic behavior in real-world nonlinear systems. A
good example of such behavior is afforded by the stochastic
resonance effect [ 1] that has been invoked as an explanation
of phenomena as diverse as the occurrence of the ice ages [2]
and some aspects of neuronal response in the presence of a
noise floor [3].

For all its seeming simplicity, however, the dynamics of
the model can be very nonlinear, and so an exact analytic
solution for the response probability distribution does not
exist as yet [4]. Furthermore, in practice, other measures of
the response are equally important; for example, in signal
processing applications it is the power spectral density (PSD)
that is paramount [5] for which exact analytical expressions
also do not exist. Approximate treatments (based on a two-
state representation of the dynamics or using perturbation
theory) have been obtained for the PSD[6-10] but none of
these studies consider the case of asymmetry.

The power spectrum of the response of the two-state sys-
tem contains two components: delta-peaks and a continuous
background. The background, for the linear response case of
a weak periodic force amplitude and large noise intensity is
known to be Lorentzian [6]. In the opposite (nonlinear re-
sponse) limit of weak noise and a large subthreshold periodic
force amplitude, the spectral background has the form asso-
ciated with an oscillatory output, i.e., the background con-
tains dips that occur near the even multiples of the driving
frequency. These dips were observed experimentally
[11-13], for the case of symmetric bistable systems, pre-
dicted theoretically in singular form [14], and described by a
phenomenological law [13]. To date, however, the most rig-
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orous theoretical description of the noise background, in-
cluding the dips, is found in [8]. However, none of these
studies have considered the effect of system asymmetry. In
practice all physical systems will have a degree of asymme-
try and hence it is important to quantify this effect.

The influence of asymmetry on the dynamics of a periodi-
cally driven bistable system has received little attention (es-
pecially with respect to the PSD) in comparison to the sym-
metric case, and this provides our goal—to develop a
comprehensive theory for the asymmetric bistable system.
Our study has both an academic interest as well as potential
applications, one application is to the detection of weak dc
signals [15,16].

Our approach builds on the method introduced by Stocks
[8], which considered a symmetric bistable system. These
studies show the consequences of breaking symmetry. This
symmetry breaking not only perturbs features in the PSD that
exist in the symmetric case but leads also to entirely different
phenomenon that can only occur in the asymmetric system;
for example, asymmetry-induced peaks were found to occur
in the PSD background [17]. Our approach has resulted in a
large number of results that have been split into a series of
papers [15-17], a brief summary of these papers now fol-
lows.

In our first article [15] we found the hierarchy of switch
times distributions (between the stable attractors) for the
asymmetric bistable system driven by noise &(r) with zero
mean (&(r))=0 and correlation function (&(¢)&(¢'))=2D&(t
—t"), and the strong periodic force A cos({2z):

IV(x,1)
-——
ox

X =

&), (1)

where the periodically rocked double-well potential is
V(x,t)=—(a/2)x*+(b/4)x*+cx—Ax cos(Qr). The stochastic
equation (1) describes an overdamped particle motion in the
bistable potential V(x,7), with the system asymmetry enter-
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ing through the parameter ¢, and the symmetric case corre-
sponding to ¢=0.

Our results [15] are obtained for the following conditions.

(i) The adiabatic regime. In this regime, the periodic force
A cos Ot is very slow, i.e., the driving frequency () is much
less than the relaxation times 7 =[V! (x,,0]" and Trel,
=[V! (x,,0)]7" of the potential wells where x,, are the
minima of the potential V(x,1).

(ii) Weak noise intensity and strong forcing limit, A/D
> 1, with subthreshold amplitude A, i.e., the theory is valid
for forcing amplitudes smaller than those required to induce
deterministic switching which requires

A <min(A,,Au),

2 a
—(=1DiZg]—
c=( )3a 3b

where A.; and A, are the critical values of the amplitude
corresponding to each potential well (due to a finite ¢, the
wells have unequal depths).

Our analysis of the switch times for the asymmetric
bistable system allowed us to find an optimal measurement
strategy of weak dc signal detection which we presented in
[16].

In the Letter in [17] we reported on peaks in the power
spectrum background that only occur in the presence of a
symmetry-breaking dc signal. We gave a brief outline of the
method of calculation of the PSD background and showed
some preliminary analysis of the peaks. In the present paper
we show the PSD calculation in detail and obtain an expres-
sion for the full power spectrum coupled with a detailed
theoretical analysis of its features. More specifically, we
present a detailed study of the delta-peaks of the PSD and the
spectral background. We also observe dips and peaks in the
spectral background and discuss how these are modified and
influenced by asymmetry. We note that the results presented
are of direct relevance to studies of stochastic resonance and
problems of weak magnetic field detection [18,19] and the
detection of magnetic fields at nanometer scales [20] via oc-
currence of even harmonics of the periodic force [21].

A=

ci

s l: 1,23 (2)

II. THE POWER SPECTRUM

For this calculation, we use a procedure that was de-
scribed in [22] and adapted to the case of a two-state filtered
stochastic process driven by a periodic force [8]. Following
[8] we invoke the two-state filter

2X: x>0, 3)
"o x<o,

on the system response (here the parameter X is the ampli-
tude of the two-state filter output); this removes all informa-
tion about intrawell motion, leaving us with a sequence of
“spikes” corresponding to excursions across the threshold
(the unstable maximum of the potential energy function V).
Thus the filter response contains only the switch dynamics
that can be described by the master equation,
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Wy == [Wip(0) + Wy (1) Iwy + Wy (1),

W]+W2=1, (4)

where w;, w, are the probabilities of being in the states 1
(y=0) and 2 (y=2X), and W,(¢), W,,(r) are the transition
rates from the states 1 —2 and 2 — 1, respectively. The rates
Wi,(2) and W,,(¢) are periodic with period T=2/Q. In [15]
we show that the rates can be approximated by the set of
Gaussian peaks

* _ 2
le(t) = E W12 max exp(— m) (5)

s 261
and
- [t—(n+1/2)T]
WZl(t) = 2 W21 max exP(‘ 2 5 (6)
f— 26t;

with the heights Wi, .« and Woy

VL (). TV ()]

12 max — 20
t'),t"] = V]x,(t'),t'
Xexp{vw )11 VI (1) ]}, )
D
for +'=0, and
VIV L) VI Lx (). ])
W21 max — 2
ar
t"),t'] - t'),t
y exp{vm( )ot']= VIx (o) J] -
D
for t'=T/2, and the widths
8t, = \D/|x,(nT) — x,(nT)|AQ? )

and

Sty = \Dl|x,[(n + 1/2)T] = x[(n + 1/2)T]AQ?, (10)

where n is an integer. Here x; and x, are the locations of the
minima of the potential, and x; is the location of the maxi-
mum between them. The transition rates W,,(z) and W,,(z)
are schematic shown in Fig. 1(a).

The response of the two-state filter is well-represented by
the pulse sequence,

y(t):E(_ l)ns(l_tn)’ (11)
n=0

where s(£)=2X0(1), t, is the time at which the nth transitions
occurs, and O(¢) is the Heaviside function:

o) 0: r<O0, (12)
A (t) =
1: =0,
with X taken as the amplitude of the two-state filter output.
To calculate the spectral density it is useful to introduce
the window function
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FIG. 1. (a) The transition rates W,,(¢) and W,,(z), and (b) typical
response of the two-state filter.

1: =L,
(1) = 0- (13)

| > L.

Then the spectral density can be defined as

0(w)= lim 5—=-([5, (@), (14)

where the hat denotes the Fourier transform which is taken
over an interval of time 2L,

L
Vilw)= J y(t)exp(- iwt)dt. (15)
-L

Since the bistable system (1) is periodically driven, the pro-
cess y(7) is nonstationary, but, as shown in Appendix A, the
definition (14) is equivalent to the power spectrum averaged
over an initial phase ¢ of the periodic force, A cos(Qr+ ¢),
¢el0:27].

The stochastic process y(f) can be rewritten in the form of
a convolution integral

yi(t) = f B(t—1")s(t")dt’, (16)
where
B = (0> (- 1)"8r—1,). (17)
n=0

Using the convolution theorem, y;(w)= ,éL(w)f(w), the PSD
can be written as

0(0)= lim @B, (8)

where
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. 4x?
$(w)]*= PER (19)

and the Fourier transform of B;(¢) is

n+N,~1

> (= D"expl(-iot,), (20)

n=nj

BL((U) =

N, being the number of transitions which occur on the time
interval 2L.

Then, using the expression (—1)""=(=1)""(-1)%"
=(=1)"" we can write

|,[3L(w)|2 = BL(‘U)BZ((U)

n1+N,—1 n1+Nr—l
> (=D"exp(-iwr,) X (-1)"expliot,)
m=ny n=n;

ni+N,~1 nj+N,~1
E E (_ 1)m—n exp(_ l'w(tm - tn)) . (21)
m=n; n=n,

We now introduce the new variable 7;, via

Ly =Ly =Ty =0, = Tjgs

j=m-n, (22)

so that the expression for {|8;(w)[?) can be rewritten

-1 n+N-1
<|,3L(w)|2>= E 2 (- 1)j exp(- inj,n)
Jj==N,+1 n=n,-j
ni+N,~1
+{ > exp- iwT,)
n=ny
N,~1 nj+N,~1-j
+ E 2 Y exp(-iwT,)
n=nj
(23)
Assuming N, to be very large, and since N, and 7;, are

almost independent variables, we can average expressions
containing N, and 7;, independently, and we can write

-1 n+N-1 nj+N-1
(Blo)Py= 2 X 10w+ 2 0yw)
Jj==N+1 n=n|-j n=nj
N-1 nj+N-1-j
+2 2 (-1Y0)w), (24)
j=1 n=ny

where N is the integer part of (N,) (since N, is very large we
assume [(N,)—N]/{N,)=0), and the characteristic functions
O,(w) of the variables 7;, are introduced as O (w)
—(exp(lw ) [23]. Since the characteristic functions are in-
dependent from n, we have
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-1

(BUo)P)= 2 (~1Y(N+)0w)+N
Jj=—N+1
N-1

+ 2 (- IY(N- )0 (w), (25)
j=1

where we assume ©y(w)=1. We also note that O_;(w)
=0/(-w) as well as the following expression O;(-w)
=j(w) is the conjugate of the characteristic functions.
Then, we can rewrite Eq. (25) as

N-1

(BU@)P)=N+ 2 (= IY(N = )[0)(w) + O](w)]
Jj=1

N-1

=N+22 (- 1Y(N-j)Re O,(w). (26)
j=1

To calculate the power spectrum we need to find the char-
acteristic functions of the random variables 7;, contained in
Eq. (26). Since the bistable system is asymmetric, we note
that the time intervals 7;, and 7;,,, have different statistics
for any number n, but the intervals 7;, and 7;,,, have iden-
tical statistics. This means that we can reduce the number of
variables from N into only two: 7, and 7;,; 7;, denotes the
interval that started in state 1 (the timing starts when the
system first makes a transition to state 1 and stops when it
makes a transition to state 2) and similarly 7;, is the time
interval when the system started in state 2.

Then, the characteristic function ®(w) can be decom-
posed into two functions

1 1
@_,«(a)) = EC_,',I(CU) + Ecj,z(w), (27)

where the indices “1” and “2” of the characteristic functions
C;(w) and C;,(w) denote the starting positions of the pulse
sequence (the state 1, or the state 2). Decomposing the sum-
mation in Eq. (26) into the summations over odd and even j
separately, using Eq. (27), and assuming without loss gener-
ality that N is even, we can write

N/2
(IBL@)) =N+ (N=2k)Re[Cyy 1 (@) + Coz()]
k=1

NI2—-1

- > (N-1- 2k)Re[Copp1 (@) + Copy 2(w)].
=0

(28)

With new definitions of 7;, and 7;,, the variable 7, ; de-
notes the time between two transitions when the first transi-
tion was to state 1 and 7;, denotes the time between two
transitions when the first transition was to state 2. These
intervals are shown in Fig. 1(b). Clearly, this is a rather com-
plicated way of saying that 7, | and 7, are the residence
times of states 1 and 2, respectively. The residence times can
now be decomposed into a sum of three independent random
variables [see Fig. 1(b)],

T =An+ O+ 6
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Tia=An+ 8+ Op.

The variables A7, ; and A#, , carry the periodic information
and can only take on values of (m+1/2)T, m=0,1,2.... The
variables &, 9y, Oy, and &y, are continuous and take on
values [-T/4:T/4]. These variables take into account the
smearing of the transition point due to noise, i.e., they allow
for the fact that the transitions do not occur precisely at in-
teger multiples of 7/2. The variable &, takes into account
the smearing when the system makes a transition from state
2 to state 1 (the s denotes that this is the start of the transition
sequence) and &, takes into account the smearing when the
system makes a transition from state 1 to state 2 (the f de-
notes that this is the finish of the transition sequence). The
variables &, and &, are the same but for the opposite tran-
sition sequence, i.e., the start of the sequence is the transition
from state 1 to 2 and the finish of the sequence is the tran-
sition from state 2 to 1. Clearly, &;; and (=&p,) have identical
distributions (i.e., they are i.i.d.) as are J,, and (=Jyy).

We now consider the calculation of the hierarchy of the
characteristic functions with emphasis on the characteristic
functions of the residence times and the return times.

In a similar fashion to the residence times, the return time
(that is the time required to start from one state and return
back again, i.e., the time interval for two transitions) inter-
vals can be decomposed into a set of independent elemental
switching events,

Ty =An + A+ 6+ 5flv

Toa=An,+Amy + S+ 6,

where A7,, is the number of periods spent in state 2 and
A, is the number of periods spent in state 1; again these
can only take on values of (m+1/2)T, m=0,1,2.... We can
extend this notation to denote the number of time periods
between switching event k and (k+1) as Ay, The [
€ (1,2) denotes which state the system was in between the
two switching events.

Therefore, for the general case, we have the following
decomposition,

J
Ti1= 2 A Mk [2-(k mod 2)] + Os1 + 5f[2—(j mod 2)]
k=1
=An + A+ Ay Ay, + o + 5y
+ O2-(j mod 2)]>
which starts from the state 1, and
J
Tji2= 2 A e[ 1+(k mod 2)] + Os2 + 5f[1+(j mod 2)]
k=1
=An o+ A+ A+ Ay + o + 5
+ 5f[l+(j mod 2)]»

which starts from the state 2.

041138-4



ASYMMETRIC BISTABLE SYSTEMS SUBJECT TO...

Since the switching times 7;; and 7;, include a sum of
independent random variables the characteristic functions,
C;(w) and C;,(w), can be rewritten as following products
of the characteristic functions,

Cji(w) = CAm,1(“’)C%,z(“’)cAﬂz,1(w)CA”4,z(w)
X X G (O)Cop, g (@) 29)
and
Cj,Z(w) = CAm,z(w)CAﬂz,1(w)CAﬂz,z(w)CA’M,l(w)
X e X Cy()Co (@), (30)

where Cy,, | (w)=(exp(iwA 7)), Cs, (w) (exp(iwdy)), and
C(gj (w)= <exp(lw5ﬂ)> le{l1,2}. Smce all variables A7, are
identically distributed, as are all the variables A, ,, we can
write Cp, =Ca,  and Cy,, =Cy, (see Ref. [15]).

The characterlstlc functlons C; 1(w) and C;,(w) have al-
ready been found in Ref. [15] and will be used in what fol-
lows.

In [15] we find that the distributions of the variables &, f;
(i € {1,2}) are well approximated by Gaussian functions,

S, 41— O, 2
p( ( s.f1 23, lm) >, (31)
20'S’f

for which the characteristic function is

1
5 ( ﬂ) /—e

V2o 7

7
C5 (w)—exp(zw ﬂm)exp< w_;ﬁ) (32)

Here, we have denoted averaged quantities by & 7, =(J; ),
and the dispersions by o2 =08 = (& ). The identity of
the distributions P (&)= Ps, ,(=0,1) and Pj (85)= Ps, (
—-d,,) leads to the 1dent1ty 0f the standard deV1at10ns 01
=0y and 0=0y.

Using short designations Cy,, (@)= P and Can, (w)=P'
for convenience, and also utlhzlng the equation

M
E a"=(1-a""/(1-a),
m=0

and the propertles of the characteristic functions (see [15])
Cs, (w) C5 (w), and Cs, (w) Ca (w), we can rewrite the
expressmn 28),

PP’
1- PP’

A 2 _ * *
(|BL(@)]) =N +Re N(Caﬂc,sfl + Céﬂcaﬂ)

i . AA,I—(IA’IA”)N/Z
~2Re) (Cy,Cy, +C,Ci YR —————

(1-PP')?
. P
-Rey (N-1)Cs Cs ———
7 - pp
s, 1= (PP)?
+2Re) Cy, c(S pPp——
/! (1-PP')?

PHYSICAL REVIEW E 76, 041138 (2007)

-Rey) (N- l)C,;ﬂC:;ﬂT

- PP’
e A 1_ [A)[A)/ NI2
+2Re C(gﬂC(sﬂPP'z(—AA)z . (33)
(1-pPP")

The last expression includes elements proportional to [1
—(PP")¥2]/(1-PP")%. These elements yield Dirac delta
functions in the power spectrum in the limit N—o. The
elements proportional 1/(1—PP’) give the background in the
power spectrum.

To calculate the power spectrum, as defined in Eq. (18),
we need a representation for the time interval 2L. It is easily
seen that, in the limit of large L, the time interval can by
approximated as

=%,<7'1 D+ <71 2)
= A+ () + (5 + S (,2) + (5. + ()
= (A )+ A, (4

The average values (A7, ;) and (A7, ,) can be calculated via
the following characteristic functions

~ 1
Plw) =
(w) ) wT’
cos — —ia, sin —
2
B (0)= 1 (35)
= ol . T’
cos — —ia, sin —
2 2
which are found in [15], leading to
dCy, () T
A _ L1 —a -,
( 7]1,1> l do et ap2
dCy, () T
A - —— N2 o —.
(A7) l do o a‘qz

Finally, the time interval is

N T
2L = E(ap + aq)E.

The parameters @, and «, are the mean times (Any 1) and
(A7, ,) measured in units of the half period 7/2. The @, and
@, can be defined as

041138-5



NIKITIN, STOCKS, AND BULSARA PHYSICAL REVIEW E 76, 041138 (2007)

l+p l+gq 0= I 2 4x?
o, =, q,= . w=lm —F—————
L 7 1-¢g b N—w T (e, + a,) w?

X | 1+2Rey (Cs. C cc*)ﬁﬁ,

+2Re 5,Cs, TCs Cs ~

1 0F1 RO _ ppr

The parameters p and g are the probabilities of remaining
in states 1 or 2 in the period 7. They can be found as . P . P
solutions of Eq. (4) with the approximations (5) and (6) _Cﬁﬂcﬁﬂ—AA,_Cﬁﬂcﬁﬂ A - (36)
of the rates. We find p=exp(—\27Ws mudl;) and ¢ I-prp I-rpP
:exp(— V’%WZI maxng)'

Then, using Eq. (33), the background in the power spec-  Finally, using Egs. (35) and (32) the spectral background in
trum can be written as the N—cc limit can be written as

8X>2

(e, + a,) »’

0,(w) = {1 - K‘l{[exp(— w’0},) +exp(- 0’0) (1 + )

(1)2 w
- exp(— ?( o+ o‘%))cos(w(ﬁﬂm — Opom))cOS TT[Z(I +apa,) — (a, + aq)z]

2
w . . oT
+ exp(— ?( f1 + 0772‘2)>51n(w(5f1m - 5f2m))51n T(QP - aq)(l + apaq)}:| ’ (37)
where
T T
K=(1+ apaq)2 sin® w? +(a, + aq)2 cos? w? (38)
The peaks of the power spectrum can be found by using expression (33):
_ 2 4x*| 2 . . A 1=(PPHN2 | 2 o s 1= (PPYV?
0,(w)=lim ————————|-—Re|[Cs C;5 +C5 Cs |PP'——————— (+—Re| C5 C5 P°P'——F—
N—x 7TT(lep+aq) w N o 2 n (l_PPI)2 N 20 (1_PPI)2
2 s, 1= (PPV?
+—Re) Cy Cj PP’2# (39)
N s (1 _ PP/)2
which, in the N— o0 limit, leads to
o3~ 0m)
a, = — O+ O o
gx2\ "o flm .f2m> 4X2
=— Sw) + lw-nQ)——=
Qp(w) - (a,, + aq)sz (w) n=_x2’n#0 (w—n )7r2(ap + aq)2n2
2
w
X [exp(— wzq?l) +exp(— wz(Tchz) + (=112 eXp(‘ 7(0_,%1 + 0?2)>C05(w(5f1m = Opm)) | (40)
|
where 4(-) is the Dirac function. Clearly, the Q,(w) can be 0(w) = 0(w) + 0, (w). 41)
represented as
0, (0)= S 0,8w-nW). III. RESULTS AND DISCUSSION
- In this section we present a detailed study of the power
where Q,, is the power of the nth peak. spectral density (PSD) of the bistable system (1) with the
Finally, we sum Egs. (37) and (40) to obtain the complete  two-state filter, Eq. (3). Equations (37) and (40) are the main
expression for the power spectrum results of this paper.
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FIG. 2. (Color) The power spectral density (PSD) for parameters
(a) X=1.0, a=1.0, b=1.0, A=0.34, D=0.0039, 0=0.001, ¢=0, (b)
¢=0.005, and (c) ¢=0.01. The theoretical results are shown by the
black lines for the backgrounds and black circles for the peaks. The
results calculated by computer simulation are shown by the red
lines.

In the symmetric case (c=0) Egs. (37) and (40) simplify
to

4X*  (a, - Dsin*(wT74) + 1 — exp(- 0’07,)

Q)= 77'Tapw2 1+ (afi, — 1)sin*(wT/4)
(42)
and
- 4x2
0,(w)= >, —5—— exp(— 2n+1)20%¢%)
’ o ﬂ'zaﬁ(Zn +1)? N
X w—-12n+1)Q), (43)

where, due to symmetry considerations, the following pairs
of parameters are equal: a,=a,, oj%]=o?2, and &y, = Spop-
These expressions agree with those obtained by Stocks [8]
and, thus, confirm the validity of the calculation.
Theoretical and experimental (i.e., numerically obtained
by Monte Carlo simulation) PSDs are shown in Fig. 2 for
different values of the asymmetry, c¢. The agreement between
the theoretical PSDs and their numerically obtained counter-
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parts is excellent, this further validates our results. Further
discussion of the structure of the PSDs will now concentrate
on the behavior of the background and the delta peaks sepa-
rately.

A. Delta peaks of the power spectrum

An analysis of Eq. (40) shows that, in contrast to the
symmetric case, Eq. (43), Eq. (40) contains the oscillating
function, cos(w(&,,— dp,n)), Whose period in the frequency
domain is 27/ (8~ 6p,,) > €. It is easy to see that the
period becomes infinite when the system is symmetric, since
we have &fy,,= 5y, in this case. In the asymmetric case, the
period is finite and the peak heights of the harmonics not
only decrease with growing number, n, but also oscillate.
Moreover, the oscillations of the peak heights for odd and
even harmonics are in opposite phases: In the low frequency
domain the odd harmonics are more powerful than the even
harmonics; the reverse is true in the high frequency domain
(see Fig. 2 in which the envelopes of the odd and even har-
monics are shown by the dashed lines).

To further analyze the delta-peak components of the PSD
it is useful to consider Eq. (40) in the limit of weak noise
intensity. Then the parameters oy, 0, and (& —6p) are
vanishingly small [15]. Using the Taylor series representa-
tions cos(k)=1-«> and exp(k)=1+«, we obtain the ap-
proximations for the strengths of the odd and even harmon-
ics,

8X” fau
0,= 7§[2 -’00}, + 03,)]. (44)

where ne(1,3,5,...), and
Q,=2Xfo (8 — ) [2 - n*Q*(0F, + 07)].  (45)

where n € (2,4,6,...). Here, the inequality n292(0?1+a'§2)
<1 is used (see Appendix D), and the average switch fre-
quency, f,,=2/(a,+a,)T, is introduced. The latter quantity
can be defined, via the average period T,, (the average return
time, see [15]), as f,,=T,,. In turn, the average period T,
can be represented as the sum T,,=(7,,)+{7,,), where {(7,,)
and (7,,) are the average residence times [15].

Equation (44) shows that the power of the odd harmonics,
Q,, decreases as n~? (the same behavior was recently ob-
served in an experiment [24]). In contrast to the odd harmon-
ics, the even harmonics are only weakly dependent on n [see
Eq. (45)] and, hence, their power varies slowly over a wide
range of n. Since the power in the even harmonics is propor-
tional to (8 —&p)* they are weak in comparison to the odd
harmonics at small n, and disappear altogether in the sym-
metric case, c=0.

Equations (44) and (45) lead to an estimation of the num-
ber n at which the peak height envelopes, corresponding to
the odd and even harmonics cross [this is evident in Fig.

2(0)]:
2

nCrOSS = e o M (46)
Q|8 - 8pl

ie., Neross & |5f1 - 5j2|_1'
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Now, for weak noise intensity and weak asymmetry, we
have shown [15]

2
Oim = — Wiz max 01

VLG VGt ( Avl) D
== expl-— ' 72
2w D ] |Ax||AQ
AU())( AXOC)
==bD -— N\1-—7) 47
0 exp( D D ( )

where bo=|V" (x|t )V" (x.,.1")|/ (27 Axo|AQ?). Hence the
difference (8fy,,— Opp) is

AU
5f1m - 5f2m = b() eXp(— ?O)ZAXOC, (48)

i.e., the difference is proportional to ¢ and depends exponen-
tially on the noise intensity. This immediately leads to the
result 7,05 <.

When n=1, the term n2Q*( f1+a'j22) of Eq. (44) is suffi-
ciently smaller than 2 that it can be neglected. In this case we
obtain the following simple expression

72

0, = 16X2$. (49)
Hence the dependencies of the power of the first harmonic
0, on the parameters D and c is governed by the dependen-
cies of the square of the normalized average switch fre-
quency fiV/ 0?2, ie., Q, decreases with increasing asymmetry
and Q; increases with the noise intensity up to a saturation
value [see Figs. 3(a) and 4(a)]. The saturation value is ap-
proximately obtained when 27f,,=(}, i.e., when the system
is fully synchronized to the periodic drive and, hence, is
switching every half period (note that full synchronization
cannot happen for all values of ¢). The experimental depen-
dence Q, on the noise intensity has a weak discernible maxi-
mum [see Fig. 3(a)]. Further, it is seen [Fig. 3(a)] that the
dependencies on D for the higher odd harmonics show a
more prominent maxima than that of the first harmonic. The
even harmonics have a more prominent maxima in the Q,
versus D curves than the odd harmonics; this is true for
results obtained via computer simulations as well as theoreti-
cally [see Fig. 3(b)].

In contrast to the dependence of the odd harmonics on the
asymmetry c, the dependence of the even harmonics has a
maximum—this is shown in Fig. 4. The power of the even
harmonic Q,, is proportional to (y,,— &p,,)* and 12 [see Eq.
(45)]. Also, the difference |8y,,— &p,,| increases with the
asymmetry [see Eq. (48)], and the average switch frequency
fiv decreases with increasing asymmetry. The interplay of
these processes leads to the non-monotonic dependence of
the power, for the even harmonics Q,, on the asymmetry c.

B. Spectral background

Examples of the spectral background are shown in Figs. 5
and 6. Clearly the most significant feature is the oscillatory
nature of the background. At small noise intensities these
oscillations take the form of discrete peaks and dips—the
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FIG. 3. (Color) Dependence of Q, on the noise intensity D.
Figure (a) corresponds to the odd harmonics and (b) corresponds to
even harmonics. The theoretical results [obtained via expressions
(40)] are shown by the red solid curves, and the results obtained via
numerical simulations of the original system are denoted by sym-
bols (the black dashed lines are guides to the eye). The parameters
are A=0.34, 21=0.001, X=1.0, a=1.0, b=1.0, and ¢=0.1.

peaks occur at approximately odd integer multiples of the
driving frequency and the dips occur at even multiples. As
the noise intensity is increased the peaks and dips broaden
until eventually they disappear. Physically, the oscillations
(i.e., dips and peaks) occur only when the system is not fully
synchronized to the periodic driving, i.e., when the system is
not switching approximately every 7/2 periods. The origin
of the dips and peaks will be discussed in more detail later,
first we discuss their structure.

1. Dips in the background of the power spectrum

For weak noise intensity D (see Fig. 5) the background
component of the spectrum has an oscillatory form: It con-
tains dips that occur near even multiples of the driving fre-
quency (). The dips can be characterized by their width,
depth, and the location of their minima. To estimate the
depth of the dips it is useful to introduce the average spectral
background,
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FIG. 4. (Color online) Dependence of Q,, on asymmetry c. Fig-
ure (a) corresponds to the odd harmonics and (b) corresponds to
even harmonics. The theoretical results [obtained via expressions
(40)] are shown by the red solid curves, and the results obtained via
numerical simulations are denoted by symbols (the black dashed
lines are guides to the eye). The parameters are A=0.34, Q
=0.001, X=1.0, a=1.0, b=1.0, and D=0.003.

8X?

—_—, 50
mT(a, + ozq)a)2 (50)

Qulw) =

which can be obtained by removing all the components, that
are relevant to the oscillation properties of the background,
from Eq. (37). The approximation (50) is shown by the
dashed line in Fig. 6(a). It is easy to see that the approxima-
tion (50) is a good estimate of the average of the spectral
background. As shown in Appendix A, in the weak noise
limit the sum (&, +a,) is proportional to ), i.e., 7' and the
expression (50) becomes independent of the driving fre-
quency ). Equation (50) shows that, on average, the spectral
background of the symmetric system decays (in the weak
noise limit) according to the simple law, const X 2. These
conclusions, for the asymmetric system under consideration
here, are in good agreement with the corresponding conclu-
sions obtained [14] for the symmetric system.

Now, the depth of the dips can be introduced as the dif-
ference,
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FIG. 5. The background of the power spectrum. Figure (a) is
plotted for weak noise intensities, D €[0.001:0.003], and (b) is
plotted for larger noise intensities, D € [0.003:0.0064]. The param-
eters are X=1.0, a=1.0, b=1.0, A=0.34, 1=0.001, and ¢=0.01.

d= Qav(wmin) - Qb(wmin) s (5 1)

where w,;, is the frequency of the dip minimum. The depen-
dence of the depth d of the first dip on the asymmetry c is
shown by the solid lines in Fig. 7(a). It was obtained by
using Eq. (37) for which the minimum ,,;, was evaluated
numerically. The resulting w,;, vs ¢ behavior is shown in
Fig. 7(b) by the solid lines.

The quantity w,,;, can be replaced by the sum of the fre-
quency n{), near which the dip is located, and the shift
Aw,,in, Which is less than the driving frequency, Aw,;, <{1,
i.e., the frequency of the dip minimum iS @, =nQ+Aw;,.
To analyze this shift, the parabolic approximation of the
background near its minimum is used,

0y(®) =Ag+A (0 —nQ) +Ay(w-nQ)?, (52)

where the parameters Ay, A, and A, are defined in Appendix
C. The parabolic approximation is shown in the inset of Fig.
6(a), and gives following expression of the shift of the back-
ground minima (see Appendix C):
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FIG. 6. (Color) (a) The background contribution to the power
spectrum for noise intensity D=0.0015 and asymmetry ¢=0.01. The
solid black line shows the theoretical result obtained from Eq. (37),
and the dashed red line represents the approximation of the back-
ground by the simple law w2 [see Eq. (50)]. The parabolic approxi-
mations are illustrated in the windows of (a). (b) The background
contribution to the power spectrum. The jagged green line shows
the result (via computer simulations) from which the periodic com-
ponents are removed, and the theoretical results are shown by
smooth black lines. The dashed red line represents the approxima-
tion of the background by the simple law w2 [see Eq. (50)]. The
parameters are X=1.0, a=1.0, b=1.0, A=0.34, 1=0.001, and D
=0.0015.

n_‘(lz (ap - aq)(éflm - 5f2m)
21T a,a,

. (53)

Awpin = O —nd =
Equation (53) shows that the shift is proportional to the dif-

ference (8fy,,— 6p,,) and also the difference (a,—a,). We can
write the following obvious equation

2 T T
(a[,—aq)z}(apz—aqz)
P

_T(< 7]1>—<A772>)

= ()= (n), (54)

PHYSICAL REVIEW E 76, 041138 (2007)

(a)

2.000 :
0.000 0.005 0.010 0.015

T T T 7 14
0.15 © x x Y T
D=0.0015,7 /7

—_—— -

FIG. 7. (Color online) (a) The depth d, (b) the frequency wy;, of
the minimum, and (c) the width G, of the first dip of the spectral
background vs the asymmetry c¢. The results obtained via the ex-
pression (37) are shown by solid black lines. The approximate so-
lutions (53), (56), and (59) are shown by dashed red lines. The
parameters are A=0.34, (1=0.001, X=1.0, a=1.0, and b=1.0, and
the noise intensities D=0.0015, 0.0014, 0.0013, and 0.0012.

which is valid for weak noise intensity only. Equation (54)
implies that the shift is proportional to the difference of the
residence times. In turn, this difference has been shown
[15,16] to be proportional to D2 exp(AU,/D) and ¢ [see
also Eq. (B4)], where AU, is the potential barrier height in
the symmetric case, i.e., when ¢=0.

Then, collecting the results (B2), (B3), and (48), we ob-
tain

? 2AUO)
Awpyin = dy b exp( D ) (55)
where d, is given by Eq. (C14), i.e., the shift Aw,,, is pro-
portional to the square of the asymmetry ¢, and increases
with the noise intensity D. Let us note that for large noise
intensities the expression (55) describes the nonmonotonical
dependence of the shift on D, however, it is incorrect (see
Fig. 8), since we are only using the weak noise intensity in
Eq. (55). Figure 8 illustrates the dependence of the shift
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FIG. 8. (a) Shift of the first minimum of the power spectrum
background as a function of ¢ and (b) as a function of D. The results
obtained by using Eq. (37) are showed by solid lines. The simplified
solutions (55) are shown by dashed lines. In the insets we show
expanded segments of the results for better viewing. The parameters
are A=0.34, 1=0.001, X=1.0, a=1.0, and b=1.0.

Aw,,;, on the parameters ¢ and D; the approximate results
obtained via Eq. (55) are shown in the insets of this figure.
We see that the shifts obtained using Egs. (37) and (55) are
in good agreement for weak noise intensity and asymmetry.
Note that the shift occurs to the right, i.e., Aw;, =0 for any
value of the asymmetry and noise intensity.

The parabolic approximation to the background lets us
estimate the width G of the dips. We approach this estimate
via the width of the paraboloid on the average background
level Q,.(wyi,) [see the inset of Fig. 6(a)]. The width of the
paraboloid can be found from the equation Q,(wpi,)
=Q,(w), where Q,(w) is the parabolic approximation to the
background. It is easy to see that, for weak ¢ and D, the shift
satisfies the inequality Awp;,<<{) so that we can approxi-
mately write down Q,,(®nin)=0a(nQ+Awpi,) = 0, (n€)).
Then the solution of the equation Q,,(n€))=0,(w) is

Qa,+«

— =p 79
wl,z_wminiﬂ_ a.o )
P—q

and the width G is expressed as
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Q
Layptay (56)

w apaq

G=2

From Egs. (B1), (B3), and (B5), the dependence of the width
G on the weak parameters ¢ and D (for the condition
|Axqc/D|<1) can be found in the form G ocyDexp(
—~AUy/D)[1+(Axyc/D)?*], which shows that the width G in-
creases with the asymmetry and the noise intensity. This con-
clusion is confirmed by Fig. 7(c) where the results obtained
from Eq. (56) are shown by the dashed lines.

As remarked earlier, the oscillatory form of the spectral
background occurs at weak noise intensity. In turn, this
means that the escape times from the potential wells are
much longer than the period of the applied force, i.e., a,
>1 and ,>1, and (1+a,a,)=a,q,. It is easy to check
that, in the low frequency limit (we can verify this over the
frequency range 0<w<5 (1), the inequality wz(a'}ﬁo‘%z)
<1 is true, and the approximations exp(—w2(aj?1+o§2)/ 2)
=1-w ﬂ +o‘22)/2, exp(—wzo'%l) =1-o’ %, and exp(
—wzo'j%z) =l-w 0'?2 are valid. Then the power spectral den-
sity of the background can be rewritten as

P —
@)= (e, + aq)w2
[1- wz((rlzc1 + 0'%2)/2]

a,z,afl sin?(wT/2) + (a, + cvq)2 cos*(wT/2)

x| 1=
X L2a,a,+ (alz, + as)cos(wT/Z)
+(a, - a,) a,a,0(5, - §f2m)sin(wT/2)}] . (57)

Comparing Egs. (53) and (56), it is easy to find that
Awni,<G. This means that the approximation Q,(®pyin)
=,(nQ)), where n=2,4,..., can be used for the estimation
of the level of the minima (i.e., the ordinate of their location)
and the depth of dips. The equations sin(w7/2)=0 and
cos(wT/2)=1 correspond to this approximation. The level of
the minima in the low frequency limit can be obtained from
Eq. (57). It is

. G
wT(a, + a,)

0(nQ) = (07, +07). (58)

The expression (58) is independent of 7, i.e., the number of
the dip. Equation (58) shows that the level of the background
minima is proportional to the sum of the dispersions a',zc1 and
0?2, i.e., the depth of the dips is bordered by the phenomenon
of the smearing of the transition times due to noise. We note
that the same conclusion was stated in [13], but only as a
hypothesis, which has been, rigorously, confirmed in the
present work.

Finally, the estimate of the depth d of the dips can be
found as the difference of the average background Q,,(n{})
and the level of the minima Q;(n{}):
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4x? 2
mT(a, + a,) [nzm - (o 0?2)}
(59)

where n is even. From Eq. (59) it follows that the depth d
decreases with increasing n. The results obtained by using
Eq. (59) are shown in Fig. 7(a) by the dashed lines and
compared with the results of Eq. (51). We observe good
agreement between Eq. (51) and its estimate Eq. (59).

d= de(nQ) - Qb(nQ) =

2. Peaks in the spectral background

From Fig. 6 it can be seen that the spectral background
also contains peaks positioned approximately at odd integer
multiples of the forcing frequency (we discussed the peaks of
the spectral background in [17]). The peaks only occur in the
asymmetric case, ¢ # (0. Each peak can be characterized by
the height &, the width E and the location of the maxima
®nax Oon the frequency axis. The height of the peak can be
introduced as

h= Qb(wmax) - Qav(wmax)- (60)

The height and location of the first peak, obtained numeri-
cally from Eq. (37), are shown by the solid lines in Figs. 9(a)
and 9(b). We note that the shift wy,; of the peak maximum
from the nearest frequency n{), defined as wy,if;= Wma—1L2,
is negligible (wg;¢ <<€2). This enables us to redefine the peak
height as

h=0Q,(nQ) - Q,,(n€), (61)

where 7 is an odd integer. This expression is useful for cal-
culating the peak heights when the spectral background is
obtained numerically using the fast Fourier transform (FFT).
The results for the peak height, obtained numerically, are
shown in Fig. 9(a) as circles.

It is easy to check that, in the low frequency limit [see Eq.
(57)], the height h of the peaks corresponding to the fre-
quency n{) can be found as

8x2 20)2 VRY)
h = D z(l—n (O'JZCI+O'J%2)>_L€(Q a)z.
mT(a, + a,)n"Q 2 (a, + a,)
(62)

This predicts that the height & of the peaks is proportional to
n~2, i.e., it decreases with increasing peak number.

The locations, w,,y, of the peaks occur at, approximately,
(2m+1)Q where (m=0,1,...). However, these maxima are
shifted to lower frequency with increasing asymmetry [see
Fig. 9(b)]. To analyze this shift we use the parabolic approxi-
mation of Eq. (37) near the maxima in the low frequency and
weak noise limits:

0,(w) = By + B(w—nQ) + B(w—nQ)?, (63)

where |w—n{)| <), and we have introduced the parameters
Bo=K,(1+K;K;),  B,=—K,(K,K;K;+K,), and  B,=
-K,K53K,K;, where K|, K>, K5 and K, are introduced in Ap-
pendix C, and K;=(a,—a,)*.

The location of the maxima w,,,, can be found from the
equation dQ,(w)/dw=0, which for the parabolic approxima-
tion (63) has the solution
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FIG. 9. (Color online) (a) Height 4 as a function of the asym-
metry c. (b) Frequency wy,, of the first maximum of the spectral
background vs c. (c) Width of the peaks vs c. The height and loca-
tion of the first peak, obtained numerically from Eq. (37), are shown
by the solid black lines in figures (a) and (b). The circular data
points are from digital simulation. The approximations for A, w,,y,
and E given by Egs. (62), (64), and (65), respectively, are shown by
the red dashed lines. The parameters are X=1.0, a=1.0, b=1.0, A
=0.34, D=0.0015, and 2=0.001.

Q (e, + a,)’

®max = 1) —
* nr alad

y ( 1 1 (a, + aq)2>
IS 220X + o) (ay— )
(64)

Equation (64) shows that the shift wg,q of the maxima occurs
to the left (wgy;;<<0) and is proportional to n7!, i.e., it de-
creases with increasing peak number. The shift of the spec-
tral peaks has a non-monotonic dependence on the asymme-
try c [see Fig. 9(b)], i.e., there is a value of the asymmetry ¢
when the shift from the nearest frequency n{) is minimal.
The parabolic approximation of the background enables
us estimate the width = of the peaks. We approach this es-
timate (analogous to the procedure employed for the dips)
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via the width of the paraboloid on the average background
level Q. (wma) [see inset in Fig. 6(a)]. The width of the
paraboloid can be found from Egs. (50) and (63) as the so-
lution of the equation Q)(w)=0Q,,(wn.)- However, a simpler
solution can be found by assuming that wg,,=n{) and
Qay(@0pay) = 0y (n€2). This gives

Qa,+
2o % (65)
m apaq

It is easy to see that Egs. (56) and (65) are the same, i.e., the
widths of the peaks and the widths of the dips are identical.
The approximations for h, wy,, and = given by Egs. (62),
(64), and (65), respectively, are shown in Fig. 9 by the
dashed lines.

3. Regime of synchronized switching

The expression (37) contains terms that are proportional
to such functions as exp(-w 02 ), exp(-w? ), and
exp(— w2(0?1+0'%2)/ 2), and describe the oscillatory form of
the background. The dispersions a'?l and a'2 characterize the
smearing of the transition times and govern the rapidity of
the decay of the background oscillations. Increasing the
noise intensity leads to an increase in o7 and 0%, ie., an
increase in the rapidity of the decay of the background os-
cillations.

For larger noise intensity (i.e., D comparable to the po-
tential barrier height) the oscillatory form of the background
disappears. This phenomenon occurs in the stochastic syn-
chronization regime, characterized by the coincidence of an
average switching frequency of the state point, with the driv-
ing frequency at the input [25]. This implies that the resi-
dence times are approximately one-half the period of the
periodic force, i.e., the parameters a;,~1 and a,=1, so that
the expression for the background spectrum can be simpli-
fied as

2

4 1
7)"((»2 [1 - E[exp(— wza'qu) +exp(— w? ﬂ)]] .

Qb(w) =

In the low frequency regime, the last expression can be re-
written as

2

0y(w) = 4ﬁ)b——u—2#u4— ¢®]
4x?
= E(O}ZFI + 0'?‘2), (66)

which coincides with the lower limit of the spectral back-
ground [see Eq. (58)]. Equation (66) shows that Q,(w) is
proportional to the dispersion of the transition smearing and
is independent of the frequency w. The real background (see
Fig. 5) depends on w but varies very slowly.

4. Spectral background in the high frequency regime

In the high frequency limit, i.e., w 0'2 >1 and w20'2 >1,
we can assume that the exponential functlons are zero, exp(
-w 02) 0, exp(-w? 2) 0, and exp(-w (02 +02 5)12)
=0. Then the expression (37) can be approx1mated as
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7T(a, + ozq)a)2 ’

Op(w) =

i.e., the background density Q,(w) coincides with the aver-
age spectral background [see Eq. (50)]. The background
Q,(w) is proportional to 1/w?, and decreases with growing
frequency w. It is easy to see that Eq. (67) is correct for weak
and strong noise intensities.

C. Discussion

The expression (37) describes the spectral background
and its peaks very well, however, it does not offer an insight
into the origin of the peaks. Accordingly, in this section, we
discuss the origin of these peaks. To this end, we first note an
exact solution of the Eq. (4) that has been obtained in [10]
wherein the general structure of the autocorrelation function
and the power spectrum have been described.

In [10] it was shown that the autocorrelation function
W(7)=(y(t+7)y(2))) (here the double brackets denote the
ensemble and time averages) can be written as the sum
W(7)=W,(7)+W¥,(7), where W ,(7) is a periodic function
which corresponds to & peaks in the power spectrum, and
W, (7) corresponds to the background of the power spectrum;
it can be written in the form

V(1) = e Mlx(n), (68)

where (W)y=T"'[{[W,,(t)+W,,(1)]dt and x(7) is a periodic
function. Since the autocorrelation function must be symmet-
ric, W(7)=V¥(-1), the function x(7) expanded in a Fourier
series contains only cosines:

0

X(7) = Xo+ 2 X cO8(mQ7). (69)
m=1
The power spectrum can be found as the Fourier transform of
the autocorrelation function, i.e., the background is Qp(w)
=[{ W, (7)cos(wT)d7. Using Egs. (68) and (69), we obtain

< E Xm|: <W>

00 =Xty 7 W+ m+ o

(W) ] 0)

T mO—w)? |

This result shows a structure of the spectral background that
is consistent with the findings in Ref. [10]: The background
is the sum of contributions centered at zero frequency, the
drive frequency, and its harmonics. Unfortunately, a detailed
analysis of Eq. (70) cannot be carried out because the coef-
ficients y,, cannot be found analytically in the strong forcing
regime. However, for Eq. (70) to be consistent with the
known properties of the spectral background it must follow
that the coefficients y,, with odd indexes m are positive and
those with even indexes are negative. The positive coeffi-
cients correspond to the peaks and the negative coefficients
correspond to the dips in the background. We emphasize that
the peaks and dips are present (in the background) only in
the strong forcing limit; this explains why they were not
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predicted in [10] wherein only the weak forcing limit was
considered.

We consider first the case of the symmetric potential, i.e.,
¢=0. In [17] it has been shown that x(7) contains only even
nonzero harmonics, x,,, cos(2m{)7). This means that in the
symmetric case the power spectrum background contains no
peaks, but has dips only, in accordance with experiments
[12] and previous analytical work [8,14].

In asymmetric case the odd harmonics of y(7) are nonzero
leading to the presence of peaks in the background. The peak
height is proportional to y,, [see Eq. (70)], but the widths of
all the peaks (and dips) are approximately identical and pro-
portional to (W).

IV. CONCLUSIONS

In this paper the analytic expression of the full power
spectral density of the asymmetric two-state system driven
by noise and a periodic (time-sinusoidal) force has been ob-
tained. A detailed theoretical analysis of the PSD shows the
following features.

(i) The following periodical alternation is seen in the peak
heights in the PSD: At low frequencies, the odd harmonics
have greater spectral amplitude than the even harmonics.
With increasing frequency, a crossover occurs with the even
harmonics having the greater spectral amplitudes, and with
even higher frequency, another crossover occurs with the odd
harmonics again having greater amplitude than the even
ones, and so on.

(ii) At low frequencies, the power in the odd harmonics,
Q,, decreases as n~2. In contrast to the odd harmonics, the
power in the even harmonics is proportional to (8 —&p)%
they are quite weak, and disappear in the symmetric case,
c=0.

(iii) In contrast to the monotonic dependence of the odd
harmonics on the asymmetry ¢, the dependence of the even
harmonics has a maximum.

(iv) In the limit of weak noise intensity the background
contains dips that occur near even multiples of the driving
frequency (). For the symmetric case (c=0) the minima of
the dips coincide with even multiples of the driving fre-
quency. When the system is rendered asymmetric (¢ #0),
however, the minima shift to the right on the frequency axis
(wgir>>0) and it is linear dependent on n, i.e., the shift from
the frequency 4 () is double the shift from 2 ().

(v) Finite width peaks arise in the spectral background of
the asymmetric system only. The peaks are evident not only
in the model with the two-state filter but also for the filterless
model (see Fig. 10), i.e., the presence of the peaks in the
power spectrum appears to be a general feature in nonlinear
systems. For the asymmetric case, the peak maxima shift to
the left (wgy;<<0); the shift is proportional to n7!, i.e., it
decreases with increasing peak number. The dependence of
the peak height on the asymmetry is nonmonotonic, and has
a maximum. The peak height is proportional to n72, i.e., it
decreases with increasing peak number.

(vi) All dips and peaks in the spectral background have
the same width—this width is independent of the peak (or
dip) number.
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FIG. 10. The PSD for the parameters (a) X=1.0, a=1.0, b
=1.0, A=0.34, D=0.0015, 0=0.001, ¢=0.0, and (b) ¢=0.01. The
results were calculated by computer simulation of the model (1)
without the use of the two-state filter (3).

(vii) The shift of the spectral minima, as well as the width
of the dips and the peaks, increase with the asymmetry and
noise intensity.

(viii) The depth of the dips monotonically decreases with
growing asymmetry, but the dependence of the depth d on
the noise intensity D is nonmonotonic, i.e., there is a maxi-
mum in d. This follows from the fact that, for weak noise
intensity, the depth increases with noise, but the dips disap-
pear for large noise intensity. One can show that the expres-
sion (50) is not a good estimate of the average of the spectral
background for large noise intensity, i.e., the definition of the
depth Eq. (51) in this case, has a small error. Clearly, a gen-
eral calculation of the depth of the dips requires a more uni-
versal definition of the depth, and would be a subject for a
future calculation.

The last point deserves some additional comment. For
very small asymmetry the peaks in the spectral background
are very narrow and only resolvable by an FFT having suf-
ficient frequency resolution. This has implications for studies
of stochastic resonance (SR), for example. Such studies often
define the output signal-to-noise ratio (SNR) to be the inte-
grated area of the fundamental spectral component to the
integrated area of the spectral background. However, unless
care is exercised, the peak in the spectral background will be
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experimentally indistinguishable from the fundamental com-
ponent (which, although theoretically a delta function, al-
ways has finite width set by the length of the observation). In
turn, this could lead to a systematic overestimation of the
SNR at small noise intensities and asymmetries, precisely the
regime of interest for many real-world applications, e.g.,
weak magnetic field detection [18,19] and the detection of
magnetic fields at nanometer scales [20] via occurrence of
even harmonics of the periodic force [21].

We close this paper with a few sweeping comments. The
results presented here, are valid for any form of the bistable
potential, but they are calculated for a (binary) filtered out-
put. They can be applied to any situation wherein the system
is very strongly nonlinear i.e., the periodic signal amplitude
is far greater than the noise intensity; in particular, they
should apply to the case of a signal that is just barely sub-
threshold and also to one that is just barely suprathreshold
(the situation of interest in some practical applications [19]).
Hence they are not applicable to the (somewhat popular be-
cause of ease of calculation) linear response limit wherein
the signal is very weak (usually subthreshold) and the noise
relatively large.

Having obtained the response power spectral density, it is
logical to enquire about the signal-to-noise ratio (SNR) mea-
sured at one of the peaks in the PSD. It can be shown that the
SNR can be expressed in terms of six parameters of which
four are obtained from the residence time distribution and the
remaining two from the return times distribution [15]. We do
not go into details here, preferring to leave the SNR to an
upcoming paper.
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APPENDIX A

We define the spectral density function via the finite Fou-
rier transform [5],

0(w) = lim (S,,(.L). (A1)

where the expectation value is denoted by the angular brack-

ets, and the function Sy, (w,L) is introduced:

11 .
Syy(,L) = ———%,(0)j (o). (A2)

2mw2L

Here, the hat denotes the Fourier transform which is taken
over an interval of time 2L,

L
Vilw)= J y(t)exp(- iwt)dt. (A3)
-L

Equation (A2) can be rewritten in the following form:
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11 (* . L ‘
Syy(w’L) = ;Ti . y(t)e"”’dtf_Ly(T)e_“‘”dT

11

L (L
o —iw(r-t)
= t dtdr. (A4
%uLﬁﬂmm 7. (A4)

At this point, it is useful to introduce a new variable A=7
—t, so that

1 0 1 2L
S (w,L)=— — Dyt + A)dr |e ™ MdA
w(o,L) 2Wf_2L[2LJZAy()y( +A) t]e

RS '
+ E Zf y(@)y(t+ A)dt |e7"NdA.
0 0

(AS)

Then, using the definition of the correlation function
R(t,A)={y(t)y(t+A)), we can write the following:

1 2L 1 2L-2A
S . (w,L)y=— — R(t,N)dt |e " NdA
(Syy(@,L)) 2Wf—2L[2Ljo (¢ )t}e

1 (1 .
=— — f R(t,A)dt |e7NdA

2w | 20y

2L
f R(t,A)dr |e7NdA.

1 (°
+— —
2m) 5| 2L op 04
(A6)
Substituting Eq. (A6) into Eq. (A1) yields

Q(w)=nm(Syy(w,L»:ZL f R(A)e™NdA, (A7)
L—o T _w

where Ié(A) is the correlation function averaged over all val-
ues of time ¢. If the distribution of the stochastic process y(z)
is a periodic function of time, P(y,)=P(y,t+T), then the
correlation function that can be calculated,

. 1 (7
R(A)=;f R(t,A)dt,
0

is equivalent to an average of the correlation function over
the initial phase ¢ of the periodic force, A cos(Qr+ ).

APPENDIX B

The parameter p (introduced in Sec. II) can be approxi-
mated, in the weak noise limit, as

(=1)"
n!

p=exp(=1))= >, ~1-1,
n=0

where /,= VETWIZ maxOf1 and I, <1. Then, the parameter «,

2+1, 2 2

=———. (Bl
Il \/;TWD max‘stl

Assuming |Axyc/D|<1 and using Egs. (7)-(10), we can
write
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[
2027 Ax,|A AV,
@, = / P N (T /_ex ey
\|V:rx('x1’t )V;cx(xxl’t )l\'D D

a AU Axyc
= ,—iexp(—o><1+—0), (B2)

\D D D
where the time 7' =0 corresponds to maximum of the peri-
odic force, the parameters x;=x,(¢') and x],=x,,(¢') are the
locations of the minimum and maximum of the potential, the
potential barrier is AV, =V(x!,,t')-V(x{,t'), and Ax,
= Axl|r=0= x:I _x”r:()’ AU(): AV1|C=O’ ao
=200 271 Ao A/ [V (x] VWV Gl o) ecor

Similarly, the approximation of «, for small ¢ and D is

ag (AU())(l A)C()C>
= ——=eXp| —/—— - .
“=Tp "\ b D

From Egs. (B2) and (B3) it follows that the difference
(a,-a,) is

(B3)

ap AUO 2AX0C
ap—aqz @CXP(T)T, (B4)

which depends, linearly, on the asymmetry c. The sum (e,
+a,) is given by

2(10
a, + @, = —= exXp

/

AU0>
\ |

D (B5)

which, in the limit of small ¢ and D, is independent of the
asymmetry c.

APPENDIX C

Using the approximations w=n{)+Aw (where n is even),
Aw<n(), and sin(wT/2)=sin(nQT/2+AwT/2)
=sin(AwT/2)=AwT/2, and cos(wT/2)=1, w=n{), we can
write the background (57) as

8X? 1
mT(a, + a,) (n) + Aw)?
y { - 2002 + 0%)12]

T2 24 200 2
a,a Ao T°/4 + (a, + @)

Qb(l’lQ + Aw) =

X{(a, + aq)2 +nQa, - a)a,a,

X (Spim — 5ﬁm)AwT/2}:| : (C1)

Then, assuming (nQ+Aw)’=(n’Q’+2nQAw), (1
+200/n0) ' =(1-2A0/nQ), and [l+a,a,A0’T*/4(a,
+ aq)z]‘] =[1- aﬁagAw2T2/4(ap+ aq)z], it is easy to obtain

8X? 1
mT(e, + a,) (n*Q% + 2nQAw)
<1 [1- nzﬂz((r?l + 0'%2)/2]
(a, + aq)2

Qb(l’lﬂ + A(D) =

1

1+ af,aiszTz/H(ap + aq)z]

{(a, + aq)2
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+nm(a, - a,)a,a,(5,, - 5f2m)Aw}:|
N 8X (1 2Aw>
B (e, + a/q)nzﬂ2 n{)

y {1 [1-720%0}, + 03,)12]

2
(ap + aq)

2 2A 24D
a - Aw T
% 2
X(1_4(a +a)2){(ap+aq)
pT Qg

+nm(a, — a,)a,a,(5, — 5f2m)Aw}} (C2)

or
0,(nQ) + Aw)
=K,(1 - KAw)[1 - K;3(1 - K, Aw?){Ks + KiAw)]
= K,(1 - K3Ks) + K| (K>K3Ks — K3Ks — Ky Aw
+ K, (KK, K5 + K, K3 Kg) Aw?
+ K, (K5K K¢ — Ko, KK Ks)Aw® — K KL KK KgAw® .

(C3)
Here, we have introduced the parameters
X 8X2
e (e, + aq)n292 ’
Ky=—:,
S'To)
P [1-n*Q%(07, + 07)/2]
3 (a, + cvq)2 ’
2 209
a,a. T
K4 — _L‘]_Z ,
Ha,+ ay)
Ks=(a,+ aq)z,
Ko =nm(a, - a,)a,a,(5,, — Sp)- (C4)

The parabolic approximation can, then, be obtained by
neglecting the terms with the small parameters Aw® and Aw*
in Eq. (C3):

0p(®) =Ag+A (0 —nQ) +Ay(w—-nQ)?, (C35)
where we introduce the parameters
Ag=K\(1 - K3K5),
A = K\(KyK3Ks - K3Kg - Ky) = — K K3KG,
A2=K1(K3K4K5+K2K3K6) = K1K3K4K5. (C6)
Then, the equation
Op(@) = Qyy(n€D) (C7)

has the following solutions
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-A* V/A% —-4A,(A)-K))
24,

Ks <K6

w1,2=nQ+

(C8)

or

w,=nl+ n—Qz(aP = ) (81 = o) . Qa,+ @y

v a,,aq ko apaq

(C9)
The width of the paraboloid is defined as

ga2+ @,
b

a apaq

E=|w2—w]|=2 (ClO)
and the minima of the dips can be found as the solution of
the equation

dQy(w)

= -,

» (C11)

which, in the parabolic approximation, yields for the shift

Aw... = nQZ (ap - aq)(éflm _ 5f2m)
e o a,a, ’
Then, using Egs. (B2)—(B4) and (48), we can rewrite the
last expression as

(C12)

C2 ( 2AUO>
Aw, i =dy—T7—= - s C13
Wnin 0\’/5 €xXp D ( )
in which d, is introduced as
nlV! (x], V" (x.t [Ax,
b= | xx( 1 ) xx( sl )|\ 0 (C14)
2A07\27A
APPENDIX D

In the weak noise limit the value of onﬁl becomes so
small that Q%07 <1. Then, introducing the variable «
=QZO'§1 we can write
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exp(n’x) = 1+nx (D1)

when 7 is small. Now we would like to estimate a minimal
value n,,;, | for which Eq. (D1) becomes invalid. By relaxing
the condition (D1) we may write the new condition n’k
<0.5, i.e., n%;, k=0.5 corresponding to an approximation

error less than 10%. Then we have

1 1
Rpin | = T7—— = (D2)
min 1 \’,2|%| \"290}1
In [15] we found that
or
0% = —, D3
M1+ R] (B3)

where, in the weak noise limit the parameter R;==
—Wi2 maxOf1. Making the substitutions Eq. (9) into Eq. (D3)
and Eq. (D3) into Eq. (D2) we obtain

W2 o 172
12 a] ’ (D4)

A
Nin 1 = |:|x1(f) _xs(t)|5+ 20?2

where t=mT and m is an integer. We can readily obtain the
analogous expression corresponding to the condition 920?2
<1,

W%l max‘|l/2 (DS)

A
Mmin 2 = |:|x2(f) —x5(1)|5 + 20?2

where r=(m+0.5)T.

Obviously, to obtain a critical number, 7., for which the
weak noise approach is valid we need to choose a minimal
number from the set {1, 1>7min 2}» 1.€.,

ne.= min(nmin 1> min 2) . (D6)

Since |5f.1—5f2| <oy and |5-f1_5f2| <0p,, the following ap-
proximations are always valid:

COS(nCQ(5f1 - 5f2)) =1- n?QZ(b‘ﬂ - 5f2)2
and

Sin(ncﬂ(éfl - 5f2)) = an(‘Sf] - 5_f2)-
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