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The emergence of synchronization is a phenomenon that is ubiquitous in a wide variety of natural systems.
Such behavior is also often robust: systems subject to large stochastic fluctuations and which possess a range
of internal time scales are capable of exhibiting sustained correlated dynamics. Here we study model chemical
reactions and genetic networks that have stochastic oscillatory dynamics, and discuss microscopic mechanisms
through which two or more such distinct stochastic processes can be coupled so as to result in the phase
synchronization of their dynamical variables. We also consider the effect of time delay in the interaction and
show that for suitable choices of the delay parameter, in-phase or antiphase synchronization can occur.

DOI: 10.1103/PhysRevE.76.041136

I. INTRODUCTION

The concerted dynamical behavior of different stochastic
processes can be of considerable importance in a variety of
situations. The emergence of synchronization even in the
presence of large fluctuations is a phenomenon that is both
familiar and important in nature. Examples can be drawn
from a number of areas of study [1]: coupled weather sys-
tems, coupled populations [2], coupled neurons [3], or
coupled chemical reactions, particularly at the cellular level
[4,5] all offer instances of systems which while being indi-
vidually stochastic, nevertheless can respond synchronously.
In the last cited example, in particular, the synchrony can be
crucial: within the cell, individual genetic networks each re-
sult in stochastic oscillations, but in spite of the large number
of such networks in a typical cell and the very different mo-
lecular species involved, the patterns of temporal variation of
the various products fall into a relatively small number of
groups [4,5]. Such synchronization results in robust internal
clocks which are accurate time keepers of biological events
although they are all based on processes that are intrinsically
random.

The manner in which two or more independent (or unre-
lated) stochastic phenomena can become temporally
synchronized—and indeed the sense in which stochastic sys-
tems can be said to be synchronized—forms the subject of
this paper. Our present results apply to systems which are
dominated by fluctuations and whose evolution is properly
described by a master equation. We study the microscopic
dynamics of small systems and examine general, minimal,
mechanisms for coupling them so that the variables show
correlated temporal variation, namely synchrony.

Some comments are necessary in order to set this study in
context. The nature of synchronization in deterministic non-
linear dynamical systems can be well defined. This phenom-
enon has been extensively studied in the past few decades
[6], especially chaotic dynamical systems [7]. When two sys-
tems synchronize, the simplest situation that can occur when
the systems are identical is that the variables coincide. This
is the case of complete synchronization. Beyond this, when
the systems are not identical, there can be a variety of forms
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of synchrony—phase, lag, or general synchronization—and
these have been described in detail [6]. The coupling mecha-
nisms and topologies that give rise to these various forms of
synchronization have also been extensively studied [6]. Early
studies that addressed the phenomenon of synchronization in
extended systems include those by Kuramoto and co-workers
[8,9] who examined ensembles of coupled phase oscillators,
and the paradigmatic studies of Mirollo and Strogatz [10]
who considered coupled integrate-and-fire or pulse-coupled
oscillators models.

Robustness is of particular importance when addressing
issues relating to experimental observation of synchroniza-
tion, and in this respect, the effect of additive external noise
has been examined by analyzing the role of additive stochas-
tic terms in the coupled equations [11-14]. The role of mul-
tiplicative noise has also been studied earlier by Goldobin
and Pikovsky [15] and more recently by Nakao et al. [16]
among others and the conditions under which systems re-
main synchronized with additive or multiplicative noise have
been explored to some extent. Indeed, it is also known that
ensembles of nonlinear systems undergo synchronization
when subjected to identical noise, and this is a phenomenon
that is reasonably well understood [17]. Systems subject to
noise also display stochastic resonance [18] and under some
circumstances, this can also serve to synchronize them.

Our approach in contrast, is to consider systems at the
microscopic level and study them through simulations of the
corresponding master equation [20,21]. The fluctuations that
arise are inherent, in the sense that they are a consequence of
the manner in which the state of the system evolves [22] and
cannot be (externally) switched off. In specific limits or
through specific approximations, one can derive correspond-
ing coupled Langevin equations or coupled kinetic equa-
tions, but these are often not appropriate when dealing with
the dynamics of small systems wherein the fluctuations can
be large. In order to study finite systems for finite times
therefore, we analyze synchronization by considering the
master equation for the coupled system and introduce cou-
pling schemes at the level of the elementary processes. Such
mechanisms may be more germane when the systems are
intrinsically different, when finite-size effects are significant,
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and when the processes that are involved occur at spatially
widely separated locations.

In the present paper we have focused on systems with
oscillatory stochastic dynamics. This motivation arises in
part from observations that suggest synchronizationlike be-
havior in intracellular dynamics [5]. Microarray gene-
expression data from yeast that interrogates a large fraction
of the total number of genes suggests that the dynamical
behavior of sets of genes can be very similar. Although these
observations [5] are over a relatively short time (so that the
number of oscillations is small) it is striking that genes that
are produced in distinct pathways, with very different char-
acteristics, should have the same time variation. A stochastic
description is appropriate, for instance, in considering the
dynamics of molecular species within individual cells or in
genetic circuits.

The model systems of chemical and biochemical oscilla-
tors that we consider here, the Brusselator and a circadian
oscillator system, are described in Sec. III. A discussion of
how such systems can be coupled is given in Sec. II where
we present a general master-equation formalism for the treat-
ment of coupled stochastic systems. The bulk of our results
are presented in Sec. III where we describe the settings in
which stochastic synchronization results for a variety of cou-
pling scenarios and topologies. The Gillespie method [23] is
employed to simulate the evolution of the coupled system.
Equivalently, the corresponding chemical Langevin equation
(CLE) can be deduced from the composite system and the
system can be studied as a stochastic differential equation
[24]. Techniques that are useful in detecting phase synchro-
nization in chaotic oscillators [25-27] can also be used to
show phase synchronization in stochastic systems. The case
of time delay in the coupling between subsystems and its
effect on the phase properties of the synchronizing dynamics
is also studied here.

In Sec. IV we consider the limit when the evolution is
described through corresponding rate equations (typically a
set of coupled differential equations). Knowledge of the sce-
narios in which synchronization is known to occur in deter-
ministic dynamical systems give some guidelines as to what
elementary processes are likely to play a similar role in sto-
chastic systems. We conclude the paper in Sec. V with a
discussion and a summary of our results.

II. COUPLING MECHANISMS

Consider a system specified by a set of elementary pro-
cesses, symbolically written as a set of “reaction” channels,

m

X+ X+ =X+ X+ o0, (1)

where X represents the number of molecules of different
chemical species (represented by the subscript), and there-
fore is a non-negative integer and c,, is the rate for the mth
such channel (of which there may be several). A configura-
tion of the system C is a specification of the values of the
variables, (X;,X,,...,X,,...). A master equation for the evo-
lution of configurational probabilities [20] can be written as
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where in standard notation [21], P(C,) is the probability of
configuration C at time ¢ and {W} are the transition probabili-
ties. For a given realization, one starts from some initial con-
figuration and examines the history of the system; the con-
figurations that are realized as a function of time give a
probabilistic description of the system as it traverses the state
space of the problem.

Such a system can be studied by using stochastic (Monte
Carlo) simulation techniques [23]. The so-called Gillespie
algorithm is consistent with the master-equation formalism
and gives a numerical method to study the time evolution of
different chemical species. In order to compute observable
quantities it is necessary to study an ensemble of histories
and also to examine stationary quantities such as probability
densities. Each individual realization even if started with the
same initial configuration will be distinct. Alternately one
can obtain the chemical Langevin equation for the system
[24]. The CLE provides an approximate description under
certain assumptions [24,28].

The dynamics of the system, Eq. (1), is stochastic. This
noise is often termed internal as its origin is in the very
mechanism of the evolution of the state of the system [22].
The strength of the noise depends on the volume of the sys-
tem and the reaction propensities, and is not always small
enough to be treated perturbatively.

Our concern can be formulated as follows. Consider two
such identical but independent stochastic systems with the
variables of the two systems being denoted by unprimed and
primed quantities, say. Starting with configurations C and C’,
the subsequent evolution of each of the subsystems will typi-
cally be unrelated. How can the subsystems be coupled so as
to synchronize? Since complete synchronization is not pos-
sible in stochastic systems, we look here for the case of
phase synchronization.

When the dynamics of the subsystems is specified by a set
of differential equations, for instance, then a number of cou-
pling scenarios are known which will bring about synchro-
nization. Indeed, this is the framework within which the phe-
nomenon is generally understood, namely by introducing
coupling terms in the dynamical equations specifying the
evolution of the two subsystems [6,9,11-14,18,19]; weak lin-
ear perturbations have long been known as a mechanism for
effecting synchronization in linear [6] as well as nonlinear
systems.

Here, in contrast, we identify mediating processes—the
microscopic coupling mechanisms—by which two stochastic
subsystems will phase synchronize: while the variables of the
systems do not coincide, they however vary in unison. Fur-
thermore, such synchronization can persist even when fluc-
tuations are large, although it depends on the nature and
strength of the coupling.

In the mechanisms described below, for simplicity we
consider that the two subsystems, specified by the variables
{X} and {X"}, respectively, have similar channels. The corre-
sponding rates need not however be identical.
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FIG. 1. Phase portrait of single Brusselator model [Eqgs. (4)—(7)]
obtained using Gillespie algorithm. (a) Phase portrait in the low
noise limit. The parameter values are c¢;=5000, c,=50, c;3
=0.000 05, and ¢,=35. (b) Phase portrait in the high noise limit. The
modified parameter values are ¢;=4.5X5000 and c,=4.5X5.

(i) Exchange coupling. The simplest means of coupling
the two subsystems is to introduce an “exchange” process
whereby the variables X; and X, say, interconvert. This in-
troduces additional channels

c

X=X/ (3)

that serve to couple the subsystems, and depending on the
rate of interconversion (governed by ¢ and c¢’), the other
variables X; and X j’ show synchronization. When the rates of
exchange are equal, in the limit c=c" — o, this reduces to the
following case.

(ii) Direct coupling, where the variables X; and X; are
identical. This is essentially a “master-slave” coupling sce-
nario, very similar to the strategies introduced by Pecora and
Carroll [7] for deterministic dynamical systems. Thus, the
two subsystems share a common variable (or drive) and con-
sequently the dynamics of the remaining variables rapidly
becomes highly correlated.

Both the above forms of coupling are easily realized in
practice. In the case of direct coupling, effectively one spe-
cies X; is common to two reaction schemes, a not uncommon
occurrence in chemical and biochemical systems. Similarly,
in the exchange scenario, the species X; and X; can be con-
sidered as different forms (say by allosteric modification) of
each other. We discuss these in representative examples in
the next section.

III. APPLICATIONS

Here we present some simple examples of how the cou-
pling schemes discussed above can be implemented. We con-
sider a model elementary chemical reaction system, the so-
called Brusselator [29] as well as a circadian (genetic)
oscillator system [30].

A. The Brusselator model

The stochastic dynamics of the Brusselator model, which
has been studied extensively [29] derives from consideration
of the following “chemical” reactions [23]:
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FIG. 2. (Color online) Species Y and Y’ as a function of time for
the coupled Brusselator system. The parameter ¢,=50 differs from
cy=co+5. The other parameters are c;=c;=5000, c3=c;
=0.000 05, and ¢;=c;=5. c¢| and ¢, are taken as 2 times the given
value in the case of direct coupling. (a) Stochastic simulation results
for Y and Y’ using direct coupling. (b) As in (a), but for the case of
exchange coupling, Eq. (11) with ¢=c¢’=0.6. (c) Results obtained
from the chemical Langevin equation [see Eq. (29)] with noise
amplitude 0.01 for direct coupling. Parameter values are the same
as in (a). (d) As in (a), but in the high noise limit. The modified
parameters are c;=c;=16X5000 and c¢;=c;=16X5. Note that the
in case (d), the deterministic equations asymptotically lead to a
fixed point. In all of the cases, the volume is taken to be unity.

€1

A—X, “4)
%)
A2+X—>Y+A3, (5)
€3
2X + Y—3X, (6)
€4

In the thermodynamic limit, when fluctuations are negligible,
one can derive (see Sec. IV) a set of deterministic reaction-
rate equations for the average concentrations of species X
and Y,

3

X=c|—Cx+ Exzy—c4x, (8)
. c
V=Cox — §x2y. 9)

For a suitable choice of parameters, Egs. (8) and (9) give a
limit-cycle solution. Simulations of Eqgs. (4)—(7) give orbits
that describe a noisy limit cycle [23] as shown in Fig. 1.
Another Brusselator system (denoted by similar equa-
tions, but with primed variables and parameters) would also
naturally give another, uncorrelated, noisy limit cycle solu-
tion, the characteristics of which would depend on the pa-
rameters of the problem. Thus, if the parameters {c;} and {c/}
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are different the evolution of the two subsystems will be
independent and uncorrelated.

Coupling the two systems through X and X' leads to syn-
chronization of species Y and Y’. For example, in the case of
direct coupling, the coupled system is represented by the
following chemical reactions:

‘1

A1—>X,

)

A2+X—)Y+A3,

3

2X+Y—3X,

cy

X—>A4,

N
]

A2+X—>Y,+A3,

dP(X,Y,Y',1)
dt
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o
2X+Y'—3X. (10)
With exchange coupling, the system is enlarged to

1 B

Al—>X, A]—)X,,

(&) Cy
A2+X—>Y+A3, A2+X,—>Y’+A3,
e J
2X+Y—3X, 2X'+Y'—=3X',
o e,
X—>A4, X,—>A4,
c
X=X". (11)

’
c

It is easy to see that the master equation corresponding to the
case of direct coupling is given by

=¢[PX-1,Y,Y,0)-PX, Y, Y )]+ ,[X+ )PX+1,Y,Y + 1,1) - XP(X,Y,Y',1)]

+ol(X+1DPX+1,Y,Y' +1,0) - XP(X,Y,Y' 0]+ %[(X— DX-2)Y+1)PX-1,Y+1,Y +1,1)

~X(X-1)YPX,Y,Y',0)] + %é[(x- DX=-2)(Y + DPX=1,Y+ L,Y +1,6) = X(X = )Y'P(X,Y.,Y',1)]

+e[(X=1DPX+1,Y,Y,1) - XP(X,Y,Y',1)]

which, in the infinite volume limit, leads to the following
kinetic (mass-action) equations:

!

c c
x=c—(cy+cy)x+ §x2y+33x2y'—c4x, (13)
c
y'=czx——3x2y, (14)
2
C/
)}’:céx—fxzy', (15)

namely, a set of coupled deterministic equations (see Sec.
V).

Similarly, the exchange coupling has the following set of
mass-action equations:

C
x=c1—c2x+fxzy—c4x+C(X’—x), (16)

(12)
[
C
y=c2x—53x2y, (17)
ro_ ! ot C_é 2.1 o ' ’
A =epmopx + Y —ep ve (x—x"), (18)
C/
yr:céxr_fxdyr' (19)

Both direct as well as exchange coupling mechanisms effect
stochastic synchronization, although they differ in the details
of how they act. Figure 2 shows the variation of species Y
and Y’ as a function of time, from stochastic simulations as
well as the chemical Langevin approach. The numerical pro-
cedure employed in simulating the chemical Langevin equa-
tion is elaborated in Sec. IV; this effectively adds stochastic
noise to the deterministic dynamics [Egs. (13)—(15) and Egs.
(16)—(19)] [24]. Note that the nature of the dynamics in the
deterministic limit can be significantly different from that
obtained through master-equation simulations [31].
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FIG. 3. (Color online) Phase synchronization in coupled Bruss-
elators with parameters as in Figs. 2(a)-2(c). Phase difference as a
function of time for (a) direct coupling of species X and X', and (b)
exchange coupling, for different strengths. The inset shows the av-
erage frequency difference (Aw) which goes to zero with increasing
coupling strength.

Clearly the two concentrations vary in unison. However,
to judge the phase synchronization of two stochastic oscilla-
tors in a more quantitative fashion, it is necessary to first
obtain a phaselike variable [9] for a single oscillator. Earlier
work on chaotic oscillators [27] suggests that a suitable mea-
sure is provided by the Hilbert phase, obtained through the
analytical signal approach introduced by [25]. Given a signal
s(#), define the Hilbert transform,

1 o0
5(r) = —PVf ﬂdr (20)
s =T

PV denotes principal value. The instantaneous amplitude
A(t) and phase ¢(r) are then defined through the identity

A = 5(1) + i5(7). (21)

The difference in the Hilbert phases ¢ and ¢’ of the two
stochastic oscillators is shown in Fig. 3. When the sub-
systems are uncoupled, the phase difference A¢=|p—¢'| in-
creases linearly in time with average slope (Aw) since the
oscillators evolve independently. With coupling, the two os-
cillators phase synchronize and the phase difference fluctu-
ates around a constant value. One can use other phase defi-
nitions in the presence of noise [12], such as the natural
phase, linear interpolating phase, discrete phase, etc., de-
pending on the systems, but the Hilbert phase appears to be
the most appropriate when the signal exhibits irregularity.
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FIG. 4. (Color online) Synchronized behavior of 10 distinct
Brusselator systems, namely, where all the parameters differ. We
use a mean-field (all-to-all) coupling with ¢=0.9. (a) Temporal be-
havior after the coupling is switched on. (b) Hilbert phase differ-
ence of one of the oscillators with all others.

With exchange coupling, stochastic synchronization oc-
curs only above a threshold. The rate of increase of the phase
difference is shown as a function of the exchange rate in the
inset to Fig. 3(b) and the behavior is suggestive of a phase
transition; similar results have been seen earlier in the dy-
namics of coupled Langevin equations [32].

The scheme discussed above works for coupling an en-
semble of oscillators. Figure 4 shows the synchronized be-
havior for a large number of Brusselators where each oscil-
lator is coupled to every other oscillator via exchange
coupling.

B. The circadian oscillator

A second system we consider is a model genetic oscillator
that has been quantitatively studied in detail recently [30] in
the context of circadian rhythms. This system also serves to
make more concrete the nature of direct and exchange cou-
pling in mechanistic terms. Furthermore, such genetic cir-
cuits are experimentally realized in natural and synthetic bio-
logical systems [33-35] and therefore provide a natural
testing ground for the ideas presented here.

The biochemical network for two such oscillators with
direct coupling is shown in Fig. 5 (also see Table I). This is
a system of rwo genetic circuits that share a single activator
which binds to the two promoter sites for repressor proteins
R and S. For the case of exchange coupling, the genetic
circuit differs somewhat from Fig. 5: the circuit of Ref. [30]
is essentially doubled, and there is an additional activator A’.
The activators of the two circuits are allowed to interconvert
at a finite rate (in biochemical terms, the two activators could
be allosteric variants of each other).

Each individual circuit gives stochastic oscillations in the
number of repressor molecules. When the two systems are
coupled the stochastic oscillations of the two subsystems
rapidly phase synchronize. The temporal behavior of the two

041136-5



NANDI et al.

Br
O\m

NN\ My

o b foly

Dy Dg

F’ < OF’

FIG. 5. Biochemical network of the extended circadian oscilla-
tor model. D, and D} denote the number of activator genes with
and without A bound to its promoter, respectively, and D, Dy and
Dy, Dy refer to the two repressors driven by the common promoter
A. My, Mg, and Mg denote mRNA corresponding to the activator A,
and the repressors R and S. C and C’ corresponds to the inactivated
complexes formed by A and R, and A and S, respectively. The
constants « and «’ denote the basal and activated rates of transcrip-
tion, B denotes the rates of translation, & denotes the rates of spon-
taneous degradation, y denotes the rates of binding of A to other
components, and ¢ denotes the rates of unbinding of A from those
components. The values of the parameters are given in Table I. The
initial conditions are Dy=Dp=Dg=1 mol, D =Dp=D¢=M =My
=M¢=A=R=C=0, S=1, C'=1. The cell has a single copy of the
activator and repressor genes: Dy+D)=Dp+Dp=Ds+D¢=1 mol,
and the volume is assumed to be unity.

repressors and their phase difference for both direct and ex-
change coupling are shown in Fig. 6. The synchronization is
robust to parameter variation: we allow all the corresponding
parameters of the two subsystems to differ by as much as
10%; nevertheless, the variables of the two systems oscillate
in phase in a stable and sustained manner.

In (a) the two systems are initially uncoupled and there-
fore evolve independently. The direct coupling is switched
on for t=2000, leading rapidly to a constant phase differ-
ence, indicative of the phase synchronization [Fig. 6(b)]. The
exchange coupling results are shown in Figs. 6(c) and 6(d);
as in the case of the Brusselator, there is stochastic synchro-
nization above a threshold rate of interconversion.

C. Time-delay and “relay” synchronization

Given the two mechanisms above, it is possible to analyze
a number of situations that are likely to arise in natural sys-
tems. For instance, when considering synchrony in spatially
extended systems, it is necessary to include time delay in the
interactions [36]. This could, for instance, arise from diffu-
sion processes: when dealing with the coupling of biochemi-
cal networks in different cells, intercellular diffusion must be
taken into account [37]. In such situations, as a function of
the delay time 7, the nature of synchronization can itself
change, from being in phase to being antiphase (or out of
phase); the Hilbert phase difference in the latter case takes
the value 7 rather than zero.

PHYSICAL REVIEW E 76, 041136 (2007)

TABLE 1. Parameter values for the coupled circadian oscillator
shown in Fig. 5.

Parameters Values
ay, ag, Ba, 04 50 h!

o) 500 h~!
ag 0.01 h™!
ag ag+0.001 h!
ag a;e+5 h!
Br 5!

Bs Br+0.5 h™!
Sua 10 h™!
Sur 0.5 h™!
Sus Syr+0.05 h™!
54, 1 h!
YasYro Vs 1 mol™" h™!
5% 0.2 h!
S5 S+0.2 h™!
Yo Ye 2 mol~! h™!
Or, Os 100 h!

The time evolution of such systems can be studied
through appropriately adapted stochastic simulation tech-
niques [37,38]. (In the infinite volume limit, this will reduce
to a system of delay-differential equations.) Here we extend
the exchange process to include time delay, namely,

c

X;— X! with delay T, (22)

’
c

X/ —X; with delay 7. (23)

In our simulations we use a modification of the standard
Gillespie algorithm which takes into account the non-
Markovian nature of the dynamics when time delay is
present [38]. We find that both the Brusselator as well as the
circadian oscillator systems synchronize for appropriate
combinations of delay time and exchange rate. Apart from
in-phase synchronization, the coupled oscillators also exhibit
antiphase synchronization for specific combinations of (c, 7);
an example of this latter case is shown in Fig. 7.

A coupling topology that is of particular interest in pres-
ence of time delays is the case of one oscillator coupled to
two others as schematically shown in Fig. 8. Recent experi-
ments on laser systems [39] and electronic circuits [40] have
uncovered the phenomenon of zero-lag phase synchroniza-
tion: the two oscillators (denoted 1 and 3) which are time-
delay diffusively coupled to a third oscillator (marked 2), are
in phase synchrony even though they are not directly
coupled. Shown in Fig. 9 are results of such “relay” synchro-
nization in a system of three circadian oscillators coupled as
in Fig. 8. The repressors from the three subsystems are la-
beled R, S, and T, respectively (the circuitry expands Fig. 5
appropriately). Although each of the oscillators is distinct—
all the parameters of the systems differ—there is phase syn-
chrony between the repressor output from oscillators 1 and 3,
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FIG. 6. (Color online) Temporal behavior and the phase difference of the repressors in the circadian oscillator model. (a) The two
repressors are initially uncoupled and the coupling is switched on at time r=2000. (b) The corresponding Hilbert phase difference shows a
linear increase which becomes constant for 1=2000. (c) Time series of the repressors oscillating in unison for diffusive coupling with ¢

=¢'=0.55. (d) Phase difference for different values of c.

namely R and 7. For different combinations of delay time
and coupling, we find regimes where (i) oscillator 2 is out of
phase with the outputs of oscillators 1 and 3 which are in
phase as well as (ii) regimes where oscillator 2 is antiphase
to oscillators 1 and 3 which are in phase with each other, as
shown in Fig. 9. This strategy appears to be very powerful: it
is possible to make arbitrary numbers of oscillators synchro-
nize (in phase or out of phase) by suitably altering the cou-
pling topology and the delays.

IV. KINETIC ANALYSIS

Examination of the macroscopic dynamics offers some
clues as to how the stochastic oscillators synchronize. While
the master equation description is formally exact at the mi-

3000

1500 [~

| |
A A

300 400

T

t

FIG. 7. (Color online) When the two circadian oscillators are
coupled bidirectionally with time delay, the repressors R and S can
vary out of phase. The antiphase synchrony for time delay 7=10
and coupling strength ¢=c"=0.7 is shown. Results were obtained
by using the modified Gillespie method [38].

croscopic level, the kinetic equations that describe the sys-
tem at a macroscopic level can be derived as a limiting case,
from the master equation by using the generating function
technique, followed by a cumulant expansion [41] to give a
set of ordinary differential equations. Defining x;=(X;)/Q,
being the system size, the kinetic equation has the form

X:f(x,t)+0($>+0(é)+ (24)

In the large volume limit, then, these reduce to the mass-
action kinetic equations; the stochastic fluctuations appear as
corrections that depend inversely on the system volume ().

When two such systems are coupled at the level of the
microscopic processes, the above procedure yields a set of
coupled differential equations. The circumstances under
which these will phase synchronize have been studied to
some extent [6,13]. For example, taking the coupled Bruss-
elator system, Eqgs. (13)—(15), the master equation for the
coupled Brusselator system is given by Eq. (12). Setting ¢;
=c; in Eq. (12), the above analysis gives

e

FIG. 8. Schematic representation of the relay mechanism. Os-
cillators 1 and 3 are coupled bidirectionally to oscillator 2 with time
delay 7and coupling c. There is no direct coupling between 1 and 3.
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FIG. 9. (Color online) Temporal behavior of the repressors for
relay synchronization in three coupled circadian oscillators for time
delay 7=10 and coupling strength ¢=0.8. (a) Phase synchronization
between repressors R and 7 of circadian oscillators 1 and 3 coupled
to a third oscillator (with repressor S). (b) and (c) show “lag syn-
chronization” between the repressors R and S and repressors S and
T, respectively. Results were obtained by using the modified
Gillespie method [38].

k
Xx=k = 2k,x + fxz(y +y') —kgx+0(1/Q) + 0(1/Q%) + -+,

(25)
. ks 2
y=k2x—3xy+0(1/ﬂ)+0(1/ﬂ)+---, (26)
./ k3 2.7 2
y =k2x—3xy +0(1/Q) +0(1/Q%) + -+,  (27)

with appropriately defined rate constants, k; [42]. In the mac-
roscopic limit ) — oo, the difference variable z=y—y’ obeys
the dynamics

d ky
—z=-—xz. 28
dtZ 2xZ (28)

Direct coupling in the deterministic limit leads to dynamical
equations which are similar to (but not always identical with)
those that derive from the coupling scheme proposed by
Pecora and Carroll [7] for the synchronization of chaotic
oscillators. Although it is not possible to define Lyapunov
exponents for stochastic systems, analysis of the determinis-
tic limit gives indications of which coupling schemes could
be effective. In the present example making species Y the
common drive between the two Brusselator subsystems does
not serve to synchronize them but instead leads to the sto-
chastic analog of oscillator death.

Similarly, the exchange process, Eq. (11), results in diffu-
sive coupling [43] in the Kinetic equations for the species X
and X', namely, terms of the form ¢(x’—x). The conditions
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under which this form of the coupling leads to synchroniza-
tion have also been studied [43]. By coupling many oscilla-
tors through this mechanism, one can obtain the mean-field
limit [44].

One can also consider the appropriate CLE’s [24]. In gen-
eral, these will have the form

M

M
> via [ X(6)] + > Vjia,m[X(f)]Fj(t), (29)
J=1

j=1

dX,(t) _
dr

where vj; is the change in X; produced by the R;th reaction,
a[X(#)] is the propensity of reaction R;, and I';(#) is tempo-
rally uncorrelated, statistically independent Gaussian white
noise. Note that the X;’s are treated as continuous rather than
discrete variables. This equation is solved numerically by
evolving the variables through the equation

M
Xt +dt) = X,() + dt >, via[X(1)]

j=1
M

+ 2 v “[XOIN[(1)(d)"?, (30)
j=1

where N j(t) are normally distributed variables with zero
mean and unit variance [24].

When the system volume is large or the reaction propen-
sities are small, noise effects will be small. Goldobin and
Pikovsky [15] have studied coupled Langevin equations with
multiplicative noise terms and show that, if the deterministic
part of the Langevin equation has a stable limit cycle solu-
tion, and the deviation of the stochastic evolution from this
limit cycle is small, application of phase reduction method
leads to phase synchronization.

V. DISCUSSION AND SUMMARY

In the present work we have explored the nature of syn-
chronization in stochastic systems, and have identified some
of the simplest mechanisms through which such synchrony
can be effected. The emergence of synchrony in natural sys-
tems appears to be widespread and examples can be drawn
from a number of areas [45].

We have focused on the manner in which independent
stochastic systems can synchronize (or vary in concert) when
they are coupled through mediating processes. Such synchro-
nization is largely independent of the size of fluctuations and
has some similarity to the phenomenon of synchronization in
chaotic systems [7] or more generally, in dynamical systems
with and without added noise. There are also important dif-
ferences in that the mechanisms that we have described here
pertain to systems with intrinsic stochasticity, and are, in
some sense, in a nonperturbative limit.

The coupling schemes that we have proposed here can
find application in the design and control of synthetic bio-
logical networks where synchronous oscillation may be a
desirable feature. McMillen et al. [46] have shown that in-
tercell signaling via a diffusing molecule can couple genetic
oscillators and effect synchrony. The present results indicate
that such phase synchrony can emerge under very general
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conditions with high levels of ambient noise. In a related
vein, one can speculate that similar mechanisms underlie the
synchrony that is so dramatically evident in cellular pro-
cesses. As recent time-resolved microarray experiments of
yeast have revealed, the multitude of variable gene expres-
sion patterns classify into a small number of groups, all
genes of a given group having very similar temporal varia-
tion profiles [5]. We have observed that the above coupling
schemes are effective in synchronizing ensembles of stochas-
tic oscillators [44,47]. Other physical situations where such
mechanisms may be relevant are in the study of coupled
financial systems (markets), weather systems, or coupled

PHYSICAL REVIEW E 76, 041136 (2007)

ecosystems: the individual subsystems show stochastic dy-
namics, which however have phase synchrony [2].

Although we have discussed the explicit case of stochastic
oscillators, there is reason to believe that similar microscopic
intersystem couplings can bring about temporal correlations
in more general stochastic systems. Investigations of such
phenomena are currently under way [47].
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