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Emergence of order in quantum extensions of the classical quasispecies evolution
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We study evolution equations which model selection and mutation within the framework of quantum me-
chanics. The main question is to what extent order is achieved for an ensemble of typical systems. As an
indicator for mixing or purification, a quadratic entropy is used which assumes values between zero for pure
states and (d—1)/d for fully mixed states. Here, d is the dimension. Whereas the classical counterpart, the
quasispecies dynamics, has previously been found to be predominantly mixing, the quantum quasispecies (QS)
evolution surprisingly is found to be strictly purifying for all dimensions. This is also typically true for an
alternative formulation (AQS) of this quantum mechanical flow. We compare this also to analogous results for
the Lindblad evolution. Although the latter may be viewed as a simple linear superposition of the purifying QS
and AQS evolutions, it is found to be predominantly mixing. The reason for this behavior may be explained by
the fact that the two subprocesses by themselves converge to different pure states, such that the combined

process is mixing. These results also apply to high-dimensional systems.
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I. INTRODUCTION

We consider evolution equations familiar from various
fields such as chemistry, biology, population dynamics, or
financial mathematics. The basic question is whether, in the
course of time, the system evolves toward a pure state char-
acterized by a minimum value of the entropy S, or toward a
mixed state with a large (or possibly even maximum) value
of S. As a measure for this tendency we use the quadratic
entropy, which vanishes for pure states, and which ap-
proaches (d—1)/d for the fully mixed state. Here, d is the
dimension of the probability space.

Various models for such evolutions have been proposed
[1,2]. Recently, we have considered the—arguably—simplest
model for such a dynamics [3], the so-called quasispecies
equation introduced by Eigen and Schuster [1,4]. In the bio-
logical context, a quasispecies is an ensemble of similar ge-
nomes, which are formed by an evolutionary mutation-
selection process modeled according to chemical reaction
kinetics [5,6]. As shown below, these evolution equations,
which are purely classical, are formulated in terms of a ma-
trix « of rate constants, whose elements are assumed to be
strictly positive a;;> 0 but possibly very small. Here, a does
not depend on time and represents a static environment.
Since we are interested only in the general features and not
in the individual evolution of a particular system, the matrix
elements are taken to be equally distributed random numbers
with a specified upper bound. The upper bounds may differ
for the elements belonging to the three parts spanning the
matrix space, namely, the diagonal matrices (DMs), the up-
per triangular matrices (UTMs), and the lower triangular ma-
trices (LTMs). It is concluded in Ref. [3] that the matrices a
taken predominantly from one of these three subalgebras
(with the matrix elements from the two other subalgebras
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being negligibly small) give a predominantly purifying dy-
namics. If, however, the mixed-in amount from another part
exceeds a certain threshold, the dynamics becomes predomi-
nantly mixing. Various variants of this classical model have
been studied extensively in the past, both in static [7-10] and
fluctuating [11] environments.

In this paper we extend these considerations to the
quantum-mechanical setting where the state corresponds to a
density matrix. The physical system we have in mind is a
quantum system that models, for example, kaon decay or the
decay of a radioactive substance. The Hamiltonian describ-
ing the time evolution is extended to a non-Hermitian opera-
tor representing the decay. As for the classical evolution, the
basic growth term is linear and conservation of probability is
restored by a quadratic term corresponding to a normaliza-
tion. This distinguishes the quasispecies approach from other
master equations, for which the growth term is already
strictly nonlinear [12].

There is also the alternative to imbed the system in a
larger but still finite system [13,14] and extend the evolution
to a Lindblad equation, which has the advantage that it can
be obtained in an appropriate scaling limit. Below we discuss
the asymptotic behavior of the entropy for the quasispecies
and Lindblad equations and observe that they behave quite
differently.

To provide a comparison with the classical case, we first
specify in Sec. II the classical model and summarize our
results of Ref. [3]. A quantum-mechanical generalization of
the quasispecies equation is given in Sec. III, which defines a
time evolution both forward and backward in time. We ana-
lyze the convergence properties for the general solutions and
find that the dynamics is (almost) always purifying. In Sec.
IV we present an alternative formulation of this quantum
dynamics, for which the time evolution is defined only for
positive time. Again, we conclude that the modified dynam-
ics is generally purifying. These findings apply to all dimen-
sions d and vastly differ from the classical case. In Sec. III
we illustrate our general result for the simplest two-
dimensional case, both theoretically and by computer simu-
lations.
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The corresponding Lindblad dynamics is treated in Sec.
V. This dynamics may be viewed as a linear combination of
the two versions of the quasispecies evolution discussed in
the previous sections. From the physics point of view, the
advantage of this model lies in the fact that it can be justified
as the limit of a time evolution of a subsystem suitably em-
bedded in a larger system. It constitutes the most general
form of a quantum dynamical semigroup [15,16]. Its advan-
tage from the mathematical point of view lies in the fact that
it is a linear equation and, therefore, the evolution can be
characterized by its eigenvalues and eigenfunctions. We con-
centrate on this fact and characterize the possible eigenvalues
and asymptotic solutions, theoretically and by computer
simulations. In Sec. V A we illustrate our results for the two-
dimensional case. Numerical examples for dimensions up to
eight are provided in Sec. V B. We conclude in Sec. VI with
a summary of our results.

II. CLASSICAL EVOLUTION

Classically, the state of a system is described by the
d-dimensional positive vector

p={pi

which evolves according to the so-called quasispecies equa-
tion [1,5]

Ospisl; i:l,z,...,d,

dp d d d
d_l = 2 aijpj_piz E D (1)
I g =1 k=1

The coefficients «;; are elements of a d X d matrix « and are
assumed to be strictly positive random variables. From the
general solution

()= M 2

> [exp(an)p(0)];
i=1

it follows that the vector p is constrained to the simplex S,
d

E pi=1 (3)
i=1

provided the initial point is also contained in S, =< p.(0)
=1. The state p may then be regarded as a d-dimensional
probability distribution. One can easily show [3] that for
strictly positive matrix elements «;; the stationary asymptotic
solution p=lim,_,,, p(¢) is stationary and unique, i.e., nonde-
generate, and is determined by the eigenvector associated
with the maximum eigenvalue of .

The motion equations are linear in « and of second order
in p. Other models also discussed in the literature are of third
order in p [2]. Here, we restrict ourselves to the simpler case
of Eq. (1).

The quadratic entropy S [17]
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d

S=2Pi(1 - ). (4)

i=1

provides a convenient measure for the purifying or mixing
tendency of Eq. (1) [3]. Classically, a pure state is not de-
composable and corresponds to a point measure in phase
space. S vanishes for a pure state, it is (d—1)/d for the com-
pletely mixed state and it is in between otherwise. It is
readily obtained for the asymptotic state p(°).

To understand the general behavior, it is useful to separate
the matrix space for « into three parts, the DMs, and the
UTMs and LTMs, respectively. The rates «;; are taken to be
equally distributed random variables with upper bounds
which may differ for DMs, UTMs, and LTMs. For each
choice of upper bounds, one obtains an ensemble of matrices
a and, hence, asymptotic states, from which a normalized
distribution of entropies 7(S) may be constructed.

The following general picture emerges for the classical
case [3], which persists also for large dimensions: If the dy-
namics of the system is dominated by the elements of only
one of the three subalgebras (which means that the upper
bounds of the elements belonging to the other two parts are
still positive but negligibly small), the normalized entropy
distribution for the asymptotic states develops a maximum
near or at S=0 and the evolution is predominantly purifying.
If, however, the upper bound for the elements belonging to
any of the other subalgebras is raised beyond a few percent,
the entropy distribution exhibits peaks somewhere in the al-
lowed interval 0=S=(d—1)/d away from zero and possibly
near the mixing limit (d—1)/d. The evolution becomes
mixing.

III. QUANTUM PURIFICATION FOR THE
QUASISPECIES DYNAMICS

In the quantum mechanical setting, the distribution p(7) in
Eq. (1) is replaced by a density matrix p(z), which evolves
according to

dp()/dt = hp(1) + p(t)h" = p(0) T hp(r) + p(DAT].  (5)

h is a sort of Hamilton operator which, generally, is not
Hermitian, and /" is its Hermitian adjoint. The general solu-
tion of this equation is almost the same as in the classical
quasispecies case

) S(0pO)exp()

= Trfexp(hn)p(O)exp(rhh]’ (©)

but now the noncommutativity of the operators has to be
observed. The map h—h+cl does not change p(r), thus we
may assume Trh=0. The quadratic entropy, which in quan-
tum information theory is also known as the linear entropy,
becomes

8@0) =Tr{p(1)[1 - p(1)]}. (7)

Now a pure state is a projection onto a general vector in
Hilbert space. As in the classical case S=0 indicates a pure
state and S=(d—1)/d a completely mixed state. In the fol-
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lowing, S always refers to the asymptotic limit #— o if not
stated otherwise.

We now show that—in contrast to the classical case—the
quantum quasispecies dynamics is generally purifying. Let
{liy:i=1,....d} be an orthonormal basis in Hilbert space,
such that the unity is decomposed according to

1=20;, 00;=8,0. 0/=0:

where Q,=|i){i| projects onto |i). The classical dynamics is a
special case, for which p=2,p,0; and hQ;=2, ;0. With
these properties, the classical quasispecies Eq. (1) is recov-
ered from Eq. (5), and the dynamics is purifying if p con-
verges to any particular Q;. In quantum dynamics, however,
any pure state |S8) is a superposition of the states |i), and
purification is already achieved, if p converges to any (much
moge general) one-dimensional projector Pgz obeying Pg
=P,=P,

In the following we use a generalization of Hermitian
matrices, which is more convenient for our purpose. It is the
class J of d X d matrices A, which are diagonal in the Jordan
form and, therefore, have eigenvectors forming a linear ba-
sis. This class is (i) dense, (ii) setwise invariant under simi-
larity transformations A— MAM™', and (iii) invariant under
the transformation A+cl, c€C. J has the following proper-
ties. (1) If ¢; denotes the eigenvalues and |¢;) the correspond-
ing eigenvectors of A, for which (¢;| ¢;)=1, there exists an-
other basis |:,Z/j>, which generally is not normalized, such that
A=3L ale)Xy] and (¢]y)=5;. (2) The quantities P
= |@;)(y;| are projectors P;P;=&,;P; which are not necessarily
Hermitian. They decompose the unity X,P;=1. Their trace is
unity, TrP,={i;|@;)=1. Therefore, TrA=2(Al¢;). (3)
Since A?=3; ja;a;| @) @ )}w;|==ia; @)y, it follows for
any analytic function f

d d
f(A) =2 fla)P= 2 fla)| o). (8)
i=1 i=1

To illustrate this construction, we give a simple two-
dimensional example: Let A, with eigenvalues a; and eigen-
vectors |¢;), be given by

€] 1
A= ; ai=¢€, i=1,2,
O €

o) el
|QDI>_ 0 > |QD2>_ 6 — € CY,

where a=/1+(€,—€)?, then the vectors |#;) and the projec-
tors P; become

_( 0 ) .
i) = e )

(o)
0=\ e 0y
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For the following we consider operators / from this class 7,
whose eigenvalues a; are all different (which is true for a
dense set). Since Eq. (8) applies, the time evolution of the
density matrix Eq. (6) becomes

d
3 et )y p(O) il
pl) =5 o

Tr, 0| @ )i p(0)| )il
J.k

For large ¢, this sum is dominated by the term with the ei-
genvalue a;, for which aj+a;.‘ is maximal. Thus,

p()— @)Xl (10)
and the density matrix projects onto the corresponding eigen-
vector |qoj>. The dynamics is purifying.

In the exceptional case where this term coincides for dif-
ferent eigenvalues, we remain with a density matrix that
changes periodically in time. We have to consider also the
case that the set of eigenvectors do not form a basis. This
may happen if det(h—al)=0 has degenerate solutions. Con-
sidering such an operator as a limit of operators from the
class J, this corresponds to the fact that different |qoj>’s con-
verge to the same vector, whereas the corresponding |z,//,>s
diverge. However, the details of convergence are of no im-
portance because of the meliorating influence of the norm in
the denominator. Typically, the limiting density matrix is
|¢;){@,| and the system is purifying.

One notices that p(0)— p(f) is a one-parameter group of
positive maps. Thus, one may ask what happens for negative
t. For t——, the P ; for the eigenvalue with the maximum
real part is replaced by P;; belonging to the eigenvalue a;r
with the minimum real part. Attractors are replaced by repel-
lors and vice versa.

One may look at the quasispecies dynamics as a descrip-
tion of decaying states. If, for example, there is some distri-
bution of uranium isotopes at present, the isotope with the
longest lifetime will dominate in the far future, whereas in
the far past there must have been a domination by the isotope
with the shortest lifetime. Both limiting states may be con-
sidered to be pure.

Quasispecies dynamics in two dimensions. We illustrate
the general results for the quasispecies dynamics by restrict-
ing ourselves to quantum states in two dimensions (qubits).
In this case, the density matrix for any mixed state may be
written as

1

(=21 + 0 n(0)] (1+“ m”@> (1)
N==[1+o -nt)]=- ,
P = T =S viny  1=ny

where we have used the notation
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3
g-n= 2 T Mg
a=1

{0 )

are the Pauli matrices, and the Bloch vector n={n,n,,ns} is
a real vector taken from R> such that n2=<1. As required,
Trp=1. The quantity

Here,

M(1) = eleh' (12)

is always Hermitian even if & is not. Therefore, it may be
represented as

M@)=c@)[1+0-m)], (13)

where m={m,,m,,m5} is a positive vector from R? such that

m*>=1. c is a factor which drops out in the expression for the

entropy

_ T Mp(0)Mp(0)]
{TMp(0)]}

With the help of Egs. (11) and (13), this expression may be
cast into

S(t)=1-Trp*(r) =1

11 =m*(0)][1 = n*(0)]
2 {1+[m@) - n(0)]}

Whenever m? approaches unity, the dynamics is strictly pu-
rifying and independent of the initial conditions n(0). How-
ever, for a mixing dynamics, for which m?<1, the entropy
also depends on the initial conditions. This seems to be a
serious deficiency.

For the computation of m(f) we note that any non-
Hermitian Hamiltonian / (with Trh up to a multiple of unity)
may be represented as

S(1) (14)

h=o-(r+ij), (15)

where r and j are three-dimensional vectors €R>. Note that
the dynamics Eq. (1) is not affected by a multiple of unity in
h. In the next sections we shall encounter evolutions, where
this is not true any more. It follows from Eq. (15) that

W =r =2 +2i(r- j) = o, (16)

where w=\w?’ is given by

Lo . . i .
0= Sl7 =)+ = 7440 )P+ = (7= )
v v

[ " .
2= PP air .
Furthermore,

e B

h
e"=1+ht+—+—+ -+ =cosh(wt) + —sinh(wt)
2 6 w

=cosh(wt)(1 + o -v), (17)

where because of Eq. (15) the (complex) vector v becomes
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B tanh(wt)

v (r+ij). (18)

If this expression is inserted into Eq. (12), one obtains
M) =c'[1+(o-v)][1+(c-v7)]
=c'{{l+@w-v)]+0o-(v+v"+iv Xv")},
where for the second step the identity [18]
(0-a)(oc-b)=a-b—io-(a XDb)

has been used. All common factors are included in a constant
¢’. Casting this expression into the canonical form of Eq.
(13), we obtain after some manipulations

o-(v+v +iv X v
14+ (v-v"

M()=c| 1+

As already mentioned before, the common factor ¢ does not
concern us here. A comparison with Eq. (13) provides an
explicit expression for the vector m(z):

+v" +iv X v*
m(t)=w- (19)
1+(@-v"

Together with v and w given above, this equation may be
used for the numerical computation of the entropy, Eq. (14).
Extending the general vector identity

(a X b)?=a’h*-(a-b)
to complex vectors, one further obtains
(1-v)(1-v")

[1+ @ -v"]?

From Egs. (16) and (18) we infer v>=tanh?(w?) and (v-v*)
=|tanh(wt)/ w|*(r*+?), and we finally get

m*(t)=1- (20)

1-v? |?

1+@-v"
|sinh(wn)|*(* + %) ]-2
V(2 =% +4(r-j)?

1 -m?(t) =

= {|cosh(wt)|2

21

We are actually interested in the asymptotic solution for #
— oo, For r=0, the Hamiltonian /4 is anti-Hermitian, w is
purely imaginary, and the cosh function in Eq. (21) is peri-
odic. However, the factor of sinh becomes unity and, as a
consequence, m?()=0. It follows from Eq. (14) that the
entropy becomes constant in agreement with the fact that e”
is unitary for an anti-Hermitian 4.

If j=0, h is Hermitian, and o is real. According to Eq.
(21), m*(%)=1, and the entropy vanishes asymptotically. The
system is purifying.

In the general case, for which the vectors r and j in the
representation of the Hamiltonian do not vanish, it follows
from Eq. (21) that m>(¢) asymptotically approaches unity:
The system is strictly purifying. This is demonstrated in Fig.
1, where we show the time-dependent entropies for 100 re-
alizations of the Hamiltonian 4 according to Eq. (15). The
components of r and j are selected from uniform random
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S(t)

FIG. 1. (Color online) Quasispecies dynamics in two dimen-
sions. Time dependence of the entropy for 100 realizations of the
Hamiltonian & of Eq. (15), where the components of the three-
dimensional vectors r and j are randomly selected from a uniform
distribution 0<r,<R=1, 0<j,<J=1, a€{1,2,3}. The respec-
tive initial conditions p(0) are obtained from Eq. (11), where the n,
are uniformly distributed random numbers such that 0<<n,(0) <1,
ae{1,2,3}, and Eani< 1. They correspond to mixed states for
which 0<S(0)<1/2. Starting at time t=0, the quasispecies Egs.
(5) are integrated both forward in time (positive ¢) and backward in
time (negative t).

distributions and are bounded according to 0<<r,<R and
0<j,<J, ae{1,2,3}. In Fig. 1, R=1 and J=1. The evolu-
tion Egs. (5) for d=2 are directly integrated for uniform ran-
dom initial conditions p(0) representing mixed states 0
<n,(0)<1, a€{1,2,3}, such that 33_n’<1 [see Eq.
(11)]. Starting from the same initial conditions, the integra-
tion is performed both forward and backward in time.
Clearly, pure states act as attractors for the dynamics regard-
less of the direction of time.

The convergence to a pure state may be slow, if the com-
ponents of r are small and the Hamiltonian is “nearly” anti-
Hermitian. To be independent of the initial conditions, we
demonstrate this by computing the normalized distribution
mm?(t)] of m? at fixed times >0 for an ensemble of ran-
dom Hamiltonians similar to that used for Fig. 1, but with
upper bounds R<1 and J=1. In the top panel of Fig. 2,
distributions 7[m?(¢)] for various R are shown for the fixed
time r=10. For R=1, the system has enough time to reach a
pure state as is indicated by the distribution resembling
8(m*-1). This is in full agreement with Fig. 1. For smaller
bounds R, however, the distributions are peaked for smaller
values of m? indicating still partial or even full mixing. In the
lower panel of the figure, the same distributions are shown at
a time =10 000. For R=1073 we already find pure states,
whereas mixed states still persist for smaller R. According to
the general considerations of Sec. III the distributions 7(m?)
become & functions at unity and the dynamics is strictly pu-
rifying.

IV. ALTERNATIVE QUASISPECIES EVOLUTIONS

In Eq. (5) we used an additive generalization of the dy-
namics to preserve the Hermiticity of the density matrix. As
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FIG. 2. (Color online) Quantum quasispecies dynamics in two
dimensions. Probability distributions 7[m?(¢)] at fixed times ¢, for
random Hamiltonians represented by Eq. (15). r, and j, for
a€1,2,3 are random numbers, equally distributed between 0
<r,<R and 0<j,<J=1. Distributions for various R are shown,
where R is displayed on a logarithmic scale. Top panel: 7=10; bot-
tom panel: =10 000. The slow convergence to the pure state char-
acterized by m*=1 is apparent. Distributions are clipped at 7=30.

a consequence, the quasispecies dynamics is purifying both
forward and backward in time. Alternatively, we consider

dp(t)/dt = hp(t)h" — p(t) Tr[hp()h']. (22)

This equation is not invariant under A+ h+cl, but under
h+>¢'"h, yER. To control conservation of positivity and of
the trace, we write p(1)=C(t)/TrC(z), where C() is a solu-
tion of the linear part

dC(f)/dt=hC(t)h'. (23)

Since hC(1)h"=0, C(t) remains positive for positive times.
Analyzing the time evolution for C, we may take advantage
of the fact that it is linear in C. We consider the operators C
as vectors in a linear Hilbert space equipped with the Hilbert-
Schmidt norm

(CIDy=Tr C'D. (24)

Operators on this extended Hilbert space are linear combina-
tions of operators A ® B acting as
A ® B|C)=|ACB"), (25)

where BT is the transpose of B. With this notation and with
ATf=A, Eq. (23) becomes
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d _
ZlO=hoiC). (26)

With

d
h=2 ale) (v, (27)
k

where, as before, a; and |¢,) denote the eigenvalues and
eigenvectors of &, respectively, we obtain

d .
LlO= > aa)| e ® @ X ® ¢|C) (28)
k,l

or, using Eq. (8) again,
[CN =2 el ® o) ® Y10 (29)
k.l

After normalization, the dominating term for large ¢ is |¢
® @)=/ @)@y for that particular k, for which |a,| is maxi-
mal. Written as a density matrix in the original
d-dimensional Hilbert space, one explicitly obtains

p(1) = X ewi'Pp(0)P, | 2 Tre® i Pyp(0) P,
k1 k,l

and

p(t)_)tﬁoo|‘Pk><¢k| (30)

if aza; is maximal. Since |¢)(¢;| corresponds to a projector,
it follows that also in this evolution, for almost all %, the
density matrix converges to a pure state. However, the map
p(0)— p(z) is only a semigroup and remains positive only for
positive times, as one also sees in the simulation.

An exception occurs, if a;a;=a,a; for some pair (ay,a;) of
eigenvalues of s, which happens if a,=e'%a;, where vy is
some angle. Then the evolution leads to a mixed state, al-
though 7 is not degenerate.

Different from the previous cases, there is also the possi-
bility of a further variation by considering several Hamilto-
nians A acting simultaneously, such that the evolution
equation becomes

dp()/dt = 25 hp(0)h'" - p(r)Tr(E h<“>p(r)h<“”) .

(31)

Again we can solve this equation in the extended Hilbert
space. However, we lose the easy passage from the represen-
tation of / to the evolution operator. Due to linearity we can
still conclude that almost surely the density matrix will con-
verge, but in general not to a pure state.

Alternative quasispecies dynamics in two dimensions. As
an illustration we show the purifying properties of the alter-
native quasispecies Eq. (22) in the top panel of Fig. 3. There,
100 realizations of Hamiltonians 7 € J are used to compute
time-dependent entropies by numerical integration of Eq.
(22). The elements of & are taken as complex random num-
bers, where the real and imaginary parts are uniformly dis-
tributed between zero and unity. Initial conditions p(0) were
constructed from Eq. (11), where the random vector compo-
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FIG. 3. (Color online) Alternative quasispecies dynamics in two
dimensions. Time evolution of the entropy S(7) for 100 realizations
of h. Top: All elements of & are random complex numbers, where
all real and imaginary parts are uniformly distributed between zero
and unity. Bottom: / is computed from Eq. (15), where the compo-
nents of the three-dimensional vectors r and j are randomly selected
from a uniform distribution between zero and unity. For both panels
the initial conditions p(0) are the same and are obtained from Eq.
(11), where the n, are random numbers uniformly distributed be-
tween zero and unity. They correspond to partially mixed states for
which 0<S5(0) < 1/2. Starting at time =0, the alternative quasispe-
cies [Eq. (22)] are integrated both forward in time (positive 7) and
backward in time (negative 7).

nents of n are assumed to be uniformly distributed between
zero and unity. The integration is performed both forward
and backward in time. For negative ¢ the nonpositivity of S is
apparent, stressing the semigroup nature of this dynamics.
For positive times, the entropy asymptotically vanishes, in-
dicating strict purification as required by Eq. (30).

In the bottom panel of Fig. 3 we consider the exceptional
case |a;|*=|a,|? for the eigenvalues of &, which, according to
the general treatment, gives a mixing dynamics. In two di-
mensions, Hamiltonians with a vanishing trace such as given
in Eq. (15) have this property. 100 random realizations of 7,
where the real and imaginary parts of the complex vector r
are uniformly distributed between zero and unity, and with
initial conditions p(0) identical to those for the top panel,
yield time-dependent entropies, which do not converge to
zero and, hence, indicate partial mixing for positive times.
Clearly, adding to & a multiple of unity gives purification
again.
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V. LINDBLAD DYNAMICS

A consistent description of a dissipative quantum system
is provided by the Lindblad dynamics [19-22], which is
commonly written as [16]

dp(D)1dt = D, B9 p()h' @ -

a

- l[H,p],

1 :
52 (TR 4 ph(@ ()

where H=H" represents an inner Hamiltonian, whereas all
the other terms containing h(“), a=1,2,..., are due to a cou-
pling to the surrounding. In the following we consider only a
single coupling Hamiltonian, which makes the upper index a
superfluous. Furthermore, we neglect any internal dynamics
H=0 such that the Lindblad equation becomes

1.
p=hph' - z(h'hp+phTh), (32)

which is used in the following.

Equation (32) may be viewed as a linear combination of
two quasispecies evolutions, namely, the alternative qua-
sispecies (AQS) equation (22), from which a term (QS)
resembling the original quasispecies dynamics Eq. (5) is
subtracted:

1
dp(t)/dt = AQS - EQS’

AQS = hp(t)h" - p() Tr[hp(t) ], (33)

QS =h'hp(t) + p(t)h"h — p(t) Te[h hp(1) + p(t)h'h].
(34)

In addition, the operator & in QS has been replaced by an
operator h'h, such that the normalization terms of AQS and
QS containing the trace cancel and the Lindblad Eq. (32) is
recovered. The Lindblad evolution is linear in p. It generates
a semigroup [15], giving nonpositive p if followed for nega-
tive times. It is interesting to note that this is a consequence
of AQS, which has the same property, whereas for the qua-
sispecies dynamics QS the density operator and the entropy
remain positive both forward and backward in time (see Fig.
1). Considering the interpretation of the Lindblad evolution
in terms of a piecewise deterministic process [16], the alter-
native quasispecies term corresponds to the contributions
given by the quantum jumps, whereas the regular quasispe-
cies term is contributed by the deterministic time evolution
of this non-Hermitian process [23].
Similar to Eq. (26), we rewrite Eq. (32) according to

—=Lp (35)

dt

and represent the Lindblad operator £ in the d*>-dimensional
extended Hilbert space
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_ 1 _
£=h®h—5(mh®1+1®hhT).

Its eigenvalues \;, and eigenvectors |¢), k=1,...,d" char-
acterize the evolution. Of course, these are special operators
in the extended Hilbert space, which map the cone corre-
sponding to positive matrices into itself. We may apply Eq.
(8) also to £ and find

&2

L= M)l (36)
3

Since lim,_.. e“/|p)#0, there exist eigenvalues \, with
Re(\,) =0. Since ||e“p)| remains bounded, Re(\;) =0 for all
k. Since (1]e*'p)=1 for all ¢, there must be at least one van-
ishing eigenvalue, say Ay=0, which determines the
asymptotic time dependence. Its corresponding eigenvector,
normalized such that its trace in the original d-dimensional
Hilbert-space representation becomes unity, is the density
matrix for the asymptotic state. This forms the basis of our
numerical computations of the asymptotic entropy in Sec.
V B. All other eigenvectors satisfy

ey = ™1 ) = ("= 1| ) = (1] h) = 0

and correspond to traceless operators.

(37

A. Lindblad dynamics in two dimensions

In two dimensions, the Lindblad Eq. (32) can be explicitly
solved. Excluding the trivial case h=el,e const, for which
p=0, and choosing an appropriate basis and phase, the op-
erator i can be written

0 ¢/’

where {a,c}€C and b=0. With this A, the evolution equa-
tion for the density matrix becomes

dpi, N |a?] +|c?| + b? 2c—a ab
i G a— P12+b—2 P2~ P11

(38)

dpxn (abpzl +a'bpy o, )
——=—|————+b .
di B P22

If =0, “dephasing” occurs and the off-diagonal elements of
the density matrix decay exponentially, p;,(f)=e~B9p(0)
—,.0, where B=|a—c|*/2 and S=Im(ac®). The entropy
rises accordingly [24], and the system is mixing. The diago-
nal elements p,;(=1-p,,) and p,, are constant in time. Thus,
any diagonal density matrix is constant. For negative times
the off-diagonal elements increase exponentially with time,
and the positivity of p gets lost.

If »>0, we have convergence to a unique density matrix

li (t)—i li (t)—L
o PR = e PR T P b |

It commutes with /. For the asymptotic entropy one finds
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S(t)

FIG. 4. (Color online) Lindblad dynamics in two dimensions.
Time dependence of the entropy for 100 realizations of the Hamil-
tonian h of Eq. (15), where the components of the three-
dimensional vectors r and j are randomly selected from a uniform
distribution 0<r,<R=1, 0<j,<J=1, a€{1,2,3}. The respec-
tive initial conditions p(0) are obtained from Eq. (11), where the n,
are uniformly distributed random numbers such that 0<<n,(0) <1,
ae{1,2,3}, and Eani< 1. They correspond to mixed states for
which 0<<S(0)<1/2. Starting at time =0, the Lindblad Egs. (32)
are integrated both forward in time (positive 7) and backward in
time (negative t).

S(0) = Tr{p(*)[1 = p(>) ]} = 2 det p(=)
B 2|al?|c?
~(laF+ 07+ =[]

We conclude that the Lindblad dynamics in two dimensions
is purifying if and only if det & vanishes, that is, =0 and/or
¢=0. In the limit b—0 the system is maximally mixing
[S()=1/2], if |a|=|c|. However, in general, the two-
dimensional Lindblad evolution is partially mixing, S(e)
<1/2. We illustrate the time dependence of the entropy in
Fig. 4 for the same choice of Hamiltonians and for the same
initial conditions p(0) as in Fig. 1 for the quasispecies
dynamics.

The appearance of mixed states is also apparent in Fig. 5,
where in the top and middle panels we show the probability
distributions 7(S) of the asymptotic entropy for random ma-
trices h represented by Eq. (38). In the top panel all matrix
elements are assumed to be positive and uniformly distrib-
uted random numbers, where the diagonal elements are
bounded from above by D and the off-diagonal element by
unity. In the middle panel the diagonal elements are taken to
be complex and random, with positive real and imaginary
parts bounded by D, whereas for the off-diagonal element b
we still have 0<b<1.

In the panel at the bottom of Fig. 5 we consider a more
general case, where all four elements of /2 do not vanish and
are complex. The real and imaginary parts of the diagonal
elements are assumed to be positive and random and
bounded by D. Similarly, the off-diagonal elements are taken
as complex and random with an upper bound unity for their
real and imaginary parts.

We immediately infer from these figures that, whenever /
is dominated by the diagonal elements, a sharp peak at S

PHYSICAL REVIEW E 76, 041133 (2007)

(S) d=2; (D): (DI0), (U): (110), (L): (010)

0.001
10 0.01
5
0§ D
(a) s 7 100
(S) d=2; (D): (DID), (U): (110), (L): (010)
0.001
0.01
D
() d=2; (Y){(DID), (U): (111), (L): (111)
25
20
15
o ey 0.001
0.01
5 0.1
1
0 = T
S e 100
(c) s 0. 1000

FIG. 5. (Color online) Lindblad dynamics in two dimensions.
Entropy distributions for an ensemble of Hamiltonians h. (a) All
elements of /& are real with upper bounds for the DMs, UTMs, and
LTMs given by D, 1, and 0, respectively. (b) All elements of 4 are
complex with bounds for the real and imaginary parts for DMs,
UTMs, and LTMs given by D, 1, and 0, respectively. (c) All ele-
ments of & are complex with bounds for the real and imaginary part
for DMs, UTMs, and LTMs given by D, 1, and 1, respectively.

=1/2 emerges, indicating the appearance of maximally
mixed asymptotic states. There are, however, significant dif-
ferences between the various panels. Before we comment on
them we ask the question, how do these features survive in
higher dimensions? This is addressed in the following sec-
tion.

B. Lindblad dynamics in higher dimensions

In Sec. V we have shown that the asymptotic solution of
Eq. (32) is determined by the maximum (vanishing) eigen-
value of the Lindblad operator £ in the extended Hilbert
space Ay=0. The associated eigenvector, rewritten as an op-
erator in the original d-dimensional Hilbert space and nor-
malized such that its trace becomes unity, is the asymptotic
density matrix, from which the asymptotic entropy is
computed.
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FIG. 6. (Color online) Entropy distributions 7(S) for the Lind-
blad dynamics in four dimensions d=4. Top: All elements of & are
real with upper bounds for DMs, UTMs, and LTMs given by D, 1,
and 0, respectively. Middle: All elements of & are complex with
bounds for the real and imaginary parts for DMs, UTMs, and LTMs
given by D, 1, and 0, respectively. Bottom: All elements of & are
complex with bounds for the real and imaginary part of DMs,
UTMs, and LTMs given by D, 1, and 1, respectively.

In the following we consider ensembles of operators h
from the class J of Sec. III and compute asymptotic entropy
distributions 7(S) for such ensembles. Each distribution is
constructed from two million points. Similar to the classical
case in Ref. [3], the matrix elements of /& are separated into
three parts, the DMs and the UTMs and LTMs. The real and
imaginary parts of all elements are positive uniformly dis-
tributed random variables bounded from above as specified
below.

We first consider the four-dimensional case. If all ele-
ments of i are considered to be real, uniformly distributed
random numbers with upper bound D for the DMs, unity for
the UTMs, and zero for the LTMs, we obtain the entropy
distributions shown in the top panel of Fig. 6 for various D.
If all elements are complex with upper bounds for the real
and imaginary parts of DMs, UTMs, and LTMs equal to D,
unity, and zero, respectively, the entropy distributions in the
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FIG. 7. (Color online) Lindblad dynamics in eight dimensions
d=8. (a) All elements of & are real with upper bounds for the DMs,
UTMs, and LTMs given by D, 1, and 0, respectively. (b) All ele-
ments of 4 are complex with bounds for the real and imaginary
parts for DMs, UTMs, and LTMs given by D, 1, and 0, respectively.
(c) All elements of h are complex with bounds for the real and
imaginary part of DMs, UTMs, and LTMs given by D, 1, and 1,
respectively.

middle panel are obtained. Finally, if the real and imaginary
parts of the lower triangular elements are also bounded by
unity, the resulting distributions are shown in the bottom
panel of this figure. The general appearance of these curves
closely resembles that of the two-dimensional case of Fig. 5.

Finally, in Fig. 7 we show analogous distributions for the
eight-dimensional Lindblad system. Again, in the top panel &
is assumed to be real, and the upper bounds for DMs, UTMs,
and LTMs are given by D, unity, and zero, respectively. For
complex elements with the upper bounds for the real and
imaginary parts of DMs, UTMs, and LTMs given by D,
unity, and zero, respectively, the distributions in the middle
panel are obtained. And for the most general case, where also
the real and imaginary parts of LTMs are bounded by unity
instead of vanishing as before, the distributions in the lower
panel are obtained.

In all cases, if different upper bounds for the real and
imaginary parts of the elements are used, nearly identical
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distributions are obtained by interchanging the bounds for
the real and imaginary parts of DMs, UTMs, and/or LTMs.
Furthermore, interchanging the bounds for UTMs and LTMs
also leaves the distributions unaffected.

In spite of differences in detail, a comparison of Figs. 5-7
reveals striking similarities. For purely real Hamiltonians
and with vanishing elements below (as is assumed for all the
top panels in the figures) or above the diagonal, the systems
are strictly purifying, as long as the diagonal elements are
much smaller than the off-diagonal elements in UTMs (or
LTMs if the roles of UTMs and LTMs are interchanged).
However, if the diagonal elements start to dominate, the sys-
tem becomes mixing with asymptotic entropies distributed
over the whole allowed range 0=S=(d—-1)/d. A spike at
S=0 still remains. If we consider a more general case, where
the DMs and one of the triangular submatrices either above
or below the diagonal are complex, the probability for strict
purification becomes small for large DMs. This may be in-
ferred from the middle panels of Figs. 5-7. If all matrix
elements are allowed to contribute to the evolution, as is
shown in the bottom panels of these figures, strict purifica-
tion is almost completely lost even for very small elements
of DMs.

C. Lindblad dynamics with normal operators

In Ref. [20] it was observed that for = Aa@p@?
=h@Th(@ the entropy is monotonically increasing in time.
(This was actually shown for the entropy S=-Trp In p, but
the proof can easily be carried over to our entropy.) There-
fore, it is natural to look, what are the eigenvalues and eigen-
operators of £ in this situation. We start with a single &
=3,a;| ) #]. The evolution equation becomes

d | N
E|¢k><¢l| =h|g)lh" - E(hTh|¢k><¢1| + | ) pi|h"h)

1
- i = S+l s
= (8y = Deul o bl

Therefore, the | )| are time invariant density matrices,
whereas | ¢ ){(¢,|, with k# [, are eigenoperators of £, whose
eigenvalues have a strictly negative real part, such that their
contributions to the density matrix p(r) tend to zero. Strict
periodicity cannot occur.

If we have several Hermitian operators K@, then the
Lindblad operator £ in the extended Hilbert space is also
Hermitian. Therefore we can find its eigenvectors with a
variational principle: the eigenvectors have to be also eigen-
vectors of the individual £(®. It follows that the time invari-
ant density matrices have to commute with all h®_ which in
general will reduce the possible solutions to p=ﬂ, the maxi-
mally mixed state.

VI. CONCLUSION

In this paper we ask the question if order may emerge
accidentally in dynamical evolution equations which model
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selection and mutation. As an indicator for order we use the
quadratic entropy S and say the system is purifying if S tends
to zero, and mixing if it tends to its maximum value. The
system is said to be partially mixing if § approaches a value
between these two extremes. This paper extends our previous
work on the classical quasispecies dynamics to the quantum-
mechanical setting, where the probabilities are now given by
a density matrix p. For its time evolution we start with a
straightforward generalization of the classical evolution
equations, which incorporate mutation and selection and are
determined by a rate matrix a. “Accidental” means that not a
single fixed matrix, but a whole ensemble of matrices is con-
sidered, and the dynamics is solved for each member of the
ensemble. In this way we ignore exceptional cases and ask
whether, typically, mixing or purification prevails.

Here we meet a first surprise. Whereas, as is shown in
Ref. [3], the classical system is mixing unless order is bru-
tally enforced, the corresponding quantum generalization is
strictly purifying. This means that the quantum quasispecies
evolution freezes anything completely within a few time
units (which may correspond to a few nanoseconds in real-
ity). This is independent of the dimension of the system.
Even a variation of that quantum-mechanical quasispecies
dynamics, which for lack of a better term we refer to as
alternative quasispecies dynamics, is generally purifying.
Only a negligible subclass of Hamiltonians gives partial mix-
ing in the latter case. The mathematical reason is the minimal
entropy principle. Every density matrix p gives a probability
distribution p={p,} for any observable Q with projections Q;,
such that p;=Tr[pQ;]. According to this principle, S(p)
=miny S(p;). Thus, the entropy of p is the minimum of the
entropy as it appears to different observers. Our result says
there is always one observer to whom the final state appears
as pure.

In order to gain some physical insight, we compare these
models with the Lindblad equation, which describes the dy-
namics of a system interacting with its surrounding in a limit,
where the interaction proceeds on a much faster time scale
than the dynamics itself. The Lindblad equation turns out to
be the linear superposition of the two models treated previ-
ously, namely, the quasispecies equation and its alternative
formulation. Each of the two subprocesses have been shown
to be purifying by itself but, in combination, the Lindblad
dynamics turns out to be mixing. The explanation for this
second surprise is found by noting that the two subprocesses
will generally tend to different pure states and, hence, their
combined effort gives a partially mixing evolution.
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