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We study the coarsening of two-dimensional oblique stripe patterns by numerically solving potential and
nonpotential anisotropic Swift-Hohenberg equations. Close to onset, all models exhibit isotropic coarsening
with a single characteristic length scale growing in time as t1/2. Further from onset, the characteristic lengths
along the preferred directions x̂ and ŷ grow with different exponents, close to 1/3 and 1/2, respectively. In this
regime, one-dimensional dynamical scaling relations hold. We draw an analogy between this problem and
model A in a stationary, modulated external field. For deep quenches, nonpotential effects produce a compli-
cated dislocation dynamics that can lead to either arrested or faster-than-power-law growth, depending on the
model considered. In the arrested case, small isolated domains shrink down to a finite size and fail to disappear.
A comparison with available experimental results for electroconvection in nematics is presented.
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I. INTRODUCTION

Domain coarsening of uniform phases in systems locally
in thermal equilibrium has received a lot of attention over the
past decades �1,2�. After quenching a system below a transi-
tion point, ordered regions of the lower symmetry phase
form, and their characteristic length L grows slowly, usually
as a power law at large times, L� tn. A number of theoretical
schemes based on the dynamical scaling hypothesis and on
the study of the relaxation of topological defects have been
proposed to infer coarsening exponents and address their
universality �2–7�.

Less understood is the phase ordering kinetics in systems
driven out of equilibrium, in particular those forming dissi-
pative structures like regular patterns. The basic nonequilib-
rium structures are the modulated phases �stripes� of well-
defined periodicity that appear above an instability threshold
in thermal convection of fluids, in driven chemical reactors,
or in electroconvection of nematic liquid crystals �8–11�.

A body of numerical results �12–25� suggests that the or-
dering kinetics of stripe patterns following a quench is not
universal but model dependent, and even parameter depen-
dent. Modulated phases in isotropic systems actually exhibit
a rich variety of topological defects �dislocations, disclina-
tions, grain boundaries� not observed in uniform phases.
There might exist many mechanisms controlling the coarsen-
ing of stripe patterns: for instance, the annihilation of discli-
nation quadrupoles, as observed experimentally �26–28� in
block-copolymer melts with cylindrical mesophases �leading
to n=1/4�, or grain boundary motion in the Swift-Hohenberg
model close to onset �n=1/3� �17,19,20,24�.

For a given system, the growing length scale may even be
nonunique and the dynamical scaling hypothesis not satis-
fied. Different defect-based definitions of the size L of the
ordered striped domains can lead to different coarsening ex-
ponents �14,16,21,22�. This effect seems to be more pro-
nounced far from the onset of stripe formation. In this re-
gime, the growth of order often becomes very slow or

arrested �15�, in particular due to pattern-induced pinning
effects acting on defects �17,19,24�.

In addition, unlike equilibrium phases, the dynamics of
nonequilibrium patterns is a priori not driven by the minimi-
zation of a free-energy functional but better modeled by non-
potential �nonrelaxational� equations �8,10,11,29�. Recent
simulations of the Boussinesq equations for Rayleigh-Bénard
convection �22� suggest that multiple length scales must be
defined to characterize the coarsening of nonpotential stripe
patterns. Adding nonpotential terms to potential models
�14,30� �or, similarly, taking into account hydrodynamics in
the order parameter description of block-copolymer melts
�25�� can noticeably increase some coarsening rates and lead
to qualitative changes in the structure of the defected pat-
terns.

In this context, systems forming anisotropic patterns have
recently attracted particular attention �31–35�. An example
are the oblique phases, composed of stripes that make a fixed
angle � or −� with respect to some x̂ axis. Domain coarsen-
ing in these systems has been studied in detail experimen-
tally in electroconvection of nematics �31–33�. Anisotropic
stripes may be regarded as topologically simpler than isotro-
pic ones because of their finite number of orientations. How-
ever, some challenging difficulties mentioned above for iso-
tropic systems still remain, such as the presence of various
sorts of defects and nonpotential effects.

The experimental studies of Refs. �31,32� on oblique
stripes report that chevron grain boundaries and dislocation
arrays �the domain interfaces along the x̂ and ŷ directions,
respectively� have very different mobilities. After a quench,
their respective densities have different power-law decays
with time, both with unusually small exponents. These re-
sults remain largely unexplained theoretically. A first numeri-
cal study �34� based on a potential anisotropic Swift-
Hohenberg equation for oblique stripes �36� reproduced the
decay of the dislocation density but predicted a much faster
ordering in the y direction than observed experimentally.

We reconsider this problem by introducing in Sec. II non-
potential versions �never considered before, to our knowl-
edge� of the anisotropic model used in �34�. The wave num-
bers selected in these models are comparable to the*boyer@fisica.unam.mx
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experimental ones. In Sec. III, we define an orientational
order parameter, its correlation lengths along the preferred
x̂ and ŷ directions, and the defect densities �chevron and
dislocations�. In Sec. IV, we find two robust coarsening re-
gimes at moderate quench depths, independent of the poten-
tial or nonpotential nature of the models: an isotropic regime
very close to onset and an anisotropic one �in partial agree-
ment with experiments� at intermediate quenches. One-
dimensional dynamical scaling relations hold in the latter
case. In Sec. V, we show that, up to moderate quenches, the
problem can be approximately reduced to model A �3� in a
stationary, spatially modulated external field. Far from onset,
nonpotential effects can lead to arrested or very fast domain
growth, depending on the model. In the arrested case, small
domains shrink down only to a finite size. Conclusions are
presented in Sec. VI.

II. BASIC MODELS AND THEIR FIRST-ORDER
AMPLITUDE EQUATIONS

An electroconvection setup consists of a doped nematic
liquid crystal confined between two plates with planar align-
ment. When an ac transverse electric field is applied, normal
or oblique stripes �among other patterns� can form depending
on the frequency �37–40�. Some time ago, Pesch and Kramer
�PK� introduced a phenomenological Swift-Hohenberg-like
model that exhibits a transition from normal to oblique rolls
�36�:

�t� = r� − �4��2 + k0
2�2� −

c

k0
4�y

4� +
2�

k0
4 �x

2�y
2� + N��� ,

�1�

where ��r� , t� is the local order parameter, N���=−�3, c and
� are dimensionless anisotropy parameters, k0 is a character-
istic wave number, � �set to 1/k0 in the following� is the
coherence length, and r is the main control parameter. In
electroconvection of nematics with planar alignment, x is the
coordinate in the direction parallel to the undistorted director.

Linear stability analysis of the uniform state ��r� , t�=0 of
Eq. �1� against small periodic perturbations ���r� , t�
=��0 exp�ik� ·r�+�t� gives the dispersion relation

��p,q� = r −
1

k0
4 ��4k0

4�k0
2 − p2 − q2�2 + cq4 − 2�p2q2� , �2�

where k� = px̂+qŷ. Maximizing �2� with respect to p and q and
looking for the values of r for which �=0, one finds that
some modes of finite wave number become marginally un-
stable when the control parameter r exceeds the critical value
rc

�n� or rc
�o�:

rc
�n� = 0, �pc

2 = k0
2, qc

2 = 0�, normal stripes, �3�

rc
�o� =

− �2

c + 2� − �2 � 0, �pc
2 =

c + �

c + 2� − �2k0
2,

qc
2 =

�

c + 2� − �2k0
2	, oblique stripes, �4�

where we have assumed that c	0. The marginally unstable
wave vectors in the oblique case make an angle � or −�, with
respect to the x axis, where �=arctan�
� / �c+���. These two
degenerate oblique modes, denoted as k�c

+ �zig� and k�c
− �zag� in

the following, are observed for �	0 only. The model Eq. �1�
actually reproduces the transition from normal to oblique
stripes when � is tuned from negative to positive values.

In the following, we define the reduced control parameter
as


 = r − rc
�o�. �5�

Numerical solutions of Eq. �1� with random initial conditions
for the field � lead to the formation of oblique stripes if c
	0, �	0, and r	0 �i.e., 
	 �rc

�0���. Normal stripes were
never observed close to onset for the parameter values used
in this study.

Domain coarsening in anisotropic oblique stripe patterns
was recently studied with Eq. �1� �34�. This model has a
potential structure, as it can be written as �t�=−�F /��, with
F a Lyapunov functional given by

F =
1

2k0
4� dr��k0

4�− r�2 + �4/2� + k0
4�4��k0

2 + �2���2

− 2���x�y��2 + c��y
2��2� . �6�

We propose here two nonrelaxational extensions of �1� by
replacing the −�3 nonlinearity by terms that do not derive
from a functional. We consider the cases

N��� = − �3 −
c1

k0
2�����2 +

c2

k0
2�2�2�, model I, �7�

N��� =
c3

k0
4�2�����2 +

3 − c3

k0
2 ��i���� j����i� j��, model II,

�8�

where c1 ,c2 ,c3 are constants and �i , j�= �x ,y�. These terms
were previously considered in the isotropic Swift-Hohenberg
model of Rayleigh-Bénard convection �41� �see also �14��.
Expressions �7� and �8� are nonpotential when c1�−c2 and
c3�2. We set c1=c2=1 and c3=3 in the following.

As shown in the next section, all the above models with
random initial conditions lead to the formation of polycrys-
talline configurations like the one shown in Fig. 1. Their
large time evolution is controlled by the motion of grain
boundaries separating domains of perfectly oriented zig and
zag stripes. To describe patterns containing grain boundaries,
we look for general solutions of the model equations of the
form �29,42�

��r�,t� = A+�r�,t�eik�c
+·r� + A−�r�,t�eik�c

−·r� + c.c., �9�

where k�c
±= pcx̂±qcŷ, with pc and qc positive and given by Eq.

�4�; c.c. means the complex conjugate. Solutions of the form
�9� describe polycrystalline states of zig and zag domains
with wave vectors close to the marginal ones. A+�0 and
A−
0 within a zig domain, and vice versa. The amplitudes
A+ and A− are both nonvanishing in the vicinity of a grain
boundary.
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In the limit 
�1, the multiple-scale formalism �29,36�
can be applied to the three models �1�, �7�, and �8�. We find
that, at first order in 
1/2, the dynamics of A+ and A− is
described by two coupled Ginzburg-Landau equations

�tA
+ = 
A+ +

4

k0
4 �pc

2�x
2 + 2�1 − ��pcqc�x�y + �1 + c�qc

2�y
2�A+

− 3��A+�2A+ − 6��A−�2A+, �10�

�tA
− = 
A− +

4

k0
4 �pc

2�x
2 − 2�1 − ��pcqc�x�y + �1 + c�qc

2�y
2�A−

− 3��A−�2A− − 6��A+�2A−, �11�

where � is a constant parameter whose expression depends
on the model considered,

� =�
1, potential PK model,

1 +
c1 + 3c2

3
� c + 2�

c + 2� − �2� , model I,

� c + 2�

c + 2� − �2�2

, model II. �
Equations similar to �10� and �11� were proposed as reduced
models of oblique patterns in electroconvection �43,44� and
thermoconvection �45� of nematics with planar alignment

close to onset. They can be recast as �tA
+=−�FGL /�Ā+ and

�tA
−=−�FGL /�Ā−, where FGL is a Lyapunov functional given

by

FGL =� dr��− 
��A+�2 + �A−�2� +
4

k0
4 ��pc�x + �1 − ��qc�y�A+�2

+
4

k0
4 ��pc�x − �1 − ��qc�y�A−�2 +

4�

k0
2 ���yA

+�2 + ��yA
−�2�

+
3

2
���A+�4 + �A−�4� + 6��A+�2�A−�2� , �12�

where Ā is the complex conjugate of A. Close to onset
�
�1�, the amplitude equations of anisotropic oblique
striped domains are identical for the three models �1�, �7�,
and �8� up to the multiplicative constant � �which can be
absorbed in the amplitude, time, and space scales�. The am-
plitude equations have a potential structure even when deriv-
ing from a nonpotential model. We therefore expect that very
close to onset oblique stripe patterns exhibit a generic order-
ing dynamics, independently of the potential or nonpotential
nature of the system. The amplitude Eqs. �10� and �11� will
be used to discuss some aspects of the coarsening process
close to onset in Sec. V A. For a more detailed description of
defect dynamics far from onset, higher order contributions
�O�
2�� would be needed in the derivation of the amplitude
and phase equations �8,29�.

III. NUMERICAL METHOD

Equation �1� with the nonlinear term �7� or �8� is numeri-
cally solved by using a semi-implicit pseudospectral method
and a time integration procedure described in �46�. The two-
dimensional space is discretized on a square grid of mesh
size �x=1 with 1024
1024 nodes. The characteristic wave-
length is set to �0=2� /k0=8 �x. The time integration
scheme is stable for large values of the time step �t. We set
�t=0.5 for all the values of the quench depth studied. The
initial condition for � is a random field with Gaussian distri-
bution, of mean ���=0 and variance ��2�=
. Numerical re-
sults are averaged over ten different initial conditions for
each model and value of 
.

Given relation �5� and the fact that a random initial
Gaussian field will evolve toward oblique patterns only if
r	0, we choose the parameters in Eq. �1� such that the
smallest possible quench �
min=−rc

�o�� is small compared
with unity. We set c=12 and �=0.5 in all the calculations,
corresponding to −rc

�o�=0.0196 and �=11.31° �k�c
± /k0

=0.9901x̂±0.1980ŷ�.
A typical configuration of oblique stripe domains is dis-

played in Fig. 1�a� at t=500 in the case of model I for a
moderate quench. As observed in electroconvection experi-
ments �31,32� and previous numerical simulations of �1�
�34�, interfaces separating zig and zag stripes are mainly of
two kinds: horizontal chevron boundaries where stripes
change their orientation from � to −� without any phase
singularity, and slightly curved boundaries composed of ar-
rays of dislocations with an orientation close to the vertical
direction. Close to onset, isolated dislocations are scarcely
observed within domains and do not seem to control the
ordering dynamics. Note that isolated dislocations in aniso-
tropic patterns are analogous to superfluid vortices, which

FIG. 1. �a� Oblique stripe pattern at t=500 obtained by numeri-
cally solving Eq. �7� �model I� with 
=0.4118, c=12, �=0.5, and
c1=c2=1; �b� domain configuration of the stripe pattern in �a�; �c�
chevron boundaries of �a�; �d� dislocations of �a�. We show a frac-
tion of 400
400 nodes from a total discretized system of size
1024
1024.
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are known to have a diverging energy �47�. This is due to the
fact that, unlike those of isotropic stripes, the spatial deriva-
tives in the first-order amplitude Eqs. �10� and �11� can be
recast into a Laplacian form after an axis rotation.

Zig and zag domains can be identified by means of a
�scalar� orientational local order parameter �d, defined as

�d�r�,t� = �+ 1 if ��x����y�� � 0 �zig� ,

− 1 if ��x����y�� � 0 �zag� .
	

The orientation field �d of the pattern of Fig. 1�a� is shown in
Fig. 1�b�.

Due to the anisotropy of the problem, we measure the
growth of order along the x̂ and ŷ directions separately. For
this purpose we introduce an orientational structure factor,
defined as

S�q� ,t� � ��̃d�q� ,t��̃d�− q� ,t�� , �13�

where �̃d is the two-dimensional �2D� Fourier transform of
�d and the angular brackets indicate averages over different
initial conditions. We define the one-dimensional structure
factors along x̂ and ŷ as

Sx�qx,t� = �
−�

+�

S�q� ,t�dqy �14�

and

Sy�qy,t� = �
−�

+�

S�q� ,t�dqx, �15�

respectively. It can easily be shown that �14� and �15� are the
1D Fourier transforms of the equal time correlation functions
along the directions x̂ and ŷ, respectively,

Cx�x,t� =� ��d�r��,t��d�r�� + xx̂,t��dr��, �16�

Cy�y,t� =� ��d�r��,t��d�r�� + yŷ,t��dr��. �17�

We define the correlation lengths in the x̂ and ŷ directions
from the inverse width of the curves Sx�qx , t� and Sy�qy , t� in
Fourier space:

Lx�t� = ��−�

�

�qx�Sx�qx,t�dqx

�
−�

�

Sx�qx,t�dqx �
−1

, �18�

Ly�t� = ��−�

�

�qy�Sy�qy,t�dqy

�
−�

�

Sy�qy,t�dqy �
−1

. �19�

As in isotropic systems, the defect densities should be related
to the correlation lengths defined above if dynamical scaling
holds. In the case of oblique stripe domains, we investigate

separately the evolution of chevron ��ch� and dislocation
��dis� densities. Chevron boundaries are identified as the lat-
tice nodes �x� ,y�� where

��d�x�,y� + 1,t� − �d�x�,y�,t�� = 2. �20�

The chevron density is defined as the fraction of such
nodes, marked in black in Fig. 1�c�. We do not consider as
belonging to a chevron boundary isolated horizontal clusters
of nodes satisfying �20� that are shorter than half the stripe
period. Dislocations are identified by using the filtering pro-
cedure described in �15�. A typical configuration of disloca-
tions is shown in Fig. 1�d�, corresponding to the pattern of
Fig. 1�a�. We define numerically �dis as the fraction of area
occupied by the black regions in Fig. 1�d�.

IV. RESULTS

A. Wave number selection

Before investigating domain growth, we address the issue
of wave number selection at short times, as it can play an
important role in the subsequent defect dynamics
�14,22,30,40�. The wave number k of the background stripes
at time t is numerically obtained by averaging the modulus
of the four wave vectors where the order parameter structure

factor ��̃�q� , t��̃�−q� , t�� is maximum ��̃ being the Fourier
transform of ��.

As for isotropic potential equations �8,9�, the selected
wave number k in the PK model �1� is the one that minimizes
the Lyapunov functional �6�. After a short transient k reaches
an asymptotic value that is independent of 
, as shown in
Fig. 2, and given by the marginal wave number maximizing
the growth rate �2�,

kc = 
pc
2 + qc

2 =
 c + 2�

c + 2� − �2k0. �21�

Nonpotential models of isotropic patterns generally ex-
hibit nontrivial wave number selection far from onset, with
k�kc. The value of k depends on 
 and is not determined by
any minimization principle �14,22,30,48,49�. We observe
similar behavior for the nonpotential anisotropic models. The

0.88

0.92

0.96

1.00

1.04

0.0 0.2 0.4 0.6 0.8

k
/

k c

ε

PK model
Model I

Model II

FIG. 2. Selected wave number as a function of 
 for the three
models studied.
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selected wave number in the nonpotential models I and II is
very close to kc sufficiently close to onset. As 
 is increased,
the differences between the three models become more pro-
nounced. For the nonpotential models I and II, k decreases
with increasing 
 �see Fig. 2�, in qualitative agreement with
electroconvection experiments far from onset and below the
Lifshitz point �40�. This aspect further justifies the use of
nonpotential equations for modeling electroconvection. The
dependence of k on 
 is weaker for model I than for model
II, though. In model I, k remains close to the marginal value
��k−kc� /kc�0.03� even for quench depths as large as 

�0.6.

B. Correlation lengths

The time evolutions of the correlation lengths Lx�t� and
Ly�t� are shown in Figs. 3 and 4 for different values of 
 and
for each nonpotential model.

Close to onset �
=0.0392�, the coarsening rates are well
fitted by the power laws

Lx�t� � t1/zx, Ly�t� � t1/zy . �22�

For both models I and II, we find 1/zx=1/zy �0.45 in the
intermediate time regime. Finite size effects become impor-
tant at large times. These results are similar to those obtained
for the PK potential model �34�, where exponents close to

1/2, the value typical of curvature driven growth, were re-
ported near onset. In Sec. V A below, we present analytical
arguments showing that the three models proposed can be
approximately reduced, close to onset only, to model A for a
nonconserved order parameter �3�.

At intermediate values of 
, comprised at least in the in-
terval �0.2,0.4� in the case of model I, the growth of both
correlation lengths is well fitted by power laws with two
distinct exponents 1 /zx�0.33 and 1/zy �0.45, as shown in
Fig. 3. Similar results were obtained for the potential PK
model �34�. These features are also observed in model II, but
in a smaller interval of values of 
. For 
=0.1176, the scal-
ing laws Lx� t0.33 and Ly � t0.45 hold until t
104; see Fig. 4.
This two-exponent regime observed at intermediate
quenches in all models indicates that Ly grows faster than Lx.
However, as shown in Fig. 5 where both lengths are plotted
together for model I, domains are on average longer along x̂
than along ŷ at short times. Therefore, there is a characteris-
tic time t� such that Lx�t��=Ly�t��. When t	 t�, domains be-
come longer along ŷ than along x̂. A qualitatively similar
behavior is reported in electroconvection experiments in
�31�, where domains are more elongated along x̂ than along ŷ
at short times, although the growth along ŷ is faster.

For deep quenches, the growth rates of Lx�t� and Ly�t�
become extremely slow in model I, as shown in Fig. 3 for

=0.8039. The transition to such arrested dynamics is rela-
tively abrupt, since, for 
=0.6078, Ly and Ly are still well
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FIG. 3. Correlation lengths along x̂ and ŷ vs time for model I at
different values of 
. The curves have been displaced from their
original position for clarity.
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FIG. 4. Correlation lengths along x̂ and ŷ vs time for model II at
different values of 
.
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described by the laws t1/2 and t1/3, respectively. Similar fro-
zen states observed in the potential PK model were explained
by the presence of pinning effects acting on defects at large
quenches �34�. However, as discussed in Sec. V B, freezing
probably has a different origin in the nonpotential case.

Whereas the ordering dynamics in model I is similar to
that of the potential case for a wide range of values of 
, the
nonpotential terms of model II have dramatic effects at large

. For 
=0.2157 and 0.3137, the correlation lengths grow
faster than a power law at intermediate and large times; see
Fig. 4. Only at short times �t�103� can an apparent scaling
regime with 1/zx�1/3 and 1/zy �0.45 be observed. A sec-
ondary bifurcation from oblique to normal stripes actually
occurs in model II close to 
�0.4, preventing the study of
oblique domain coarsening for larger quenches.

C. Defect densities

The results presented above are further supported by
studying the decay rate of defect densities. Assuming that
scaling holds, the total length of chevron boundaries in a
system of area A can be estimated as LxA / �LxLy��1/Ly.
Similarly, the dislocation density should scale as 1/Lx.
Therefore, one should expect

�dis�t� � Lx�t�−1, �ch�t� � Ly�t�−1 �23�

or

�dis�t� � t−1/zdis, �ch�t� � t−1/zch, �24�

with the defect exponents obeying zdis=zx and zch=zy.
Figures 6 and 7 show the time evolution of �dis�t� and

�ch�t� for different values of 
 in both nonpotential models.
Close to onset �
=0.0392�, the time evolution of disloca-

tion and chevron densities is well fitted by power laws with
1/zdis�1/zch�0.45, as shown in Figs. 6 �model I� and 7
�model II�. This result further suggests that defect dynamics
is isotropic close to onset, in agreement with the arguments
exposed below in Sec. V A. Deviations from the laws �24�
are observed at late times �104� t� and are due to finite size
effects �see below�.

On increasing 
, the defect dynamics becomes anisotropic
and different laws are observed for the two types of defects.
Chevron boundaries become quickly pinned and remain
practically immobile, whereas coarsening is dominated by
dislocation gliding along the horizontal direction. The reduc-
tion of the length of a chevron boundary can occur by the
motion of the slightly curved dislocation arrays of opposite
Burgers vectors located on its sides �see Sec. V�. This
mechanism was also identified experimentally in electrocon-
vection �32�.

In an intermediate range of values of 
, the relations �23�
are still satisfied, despite the pinning of the chevron bound-
aries. As shown in Fig. 6 for model I, for 
=0.2157 and 

=0.4118, �dis�t� and �ch�t� decay as power laws with two
different exponents zdis�3 and zch�2. These are the same
values as observed in the previous section for zx and zy,
respectively. Model II leads to the same two exponents for

=0.1176 and t�104; see Fig. 7.

Figure 8 shows the evolution of the defect densities ob-
tained from two system sizes 1024
1024 and 512
512,
with 
=0.2157. As expected, corrections to scaling occur
sooner for the smaller system �at t�7000�, when the corre-
lation lengths become comparable to the system size.

Note that the t−1/3 decay rate for the dislocation density
agrees well with the experimental results reported in �32�.
However, in this intermediate quench depth regime, our nu-
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merical results predict a much faster decay of the chevron
density �as t−1/2� than observed experimentally �t−1/5 �32��. It
is worth noticing that no coarsening laws with exponent 1/2
were ever observed in electroconvection experiments.

At large quenches, dislocation gliding becomes very slow
in model I, as shown in Fig. 6 for 
=0.8039. For t	2000 the
defect density saturates to an almost constant value, indicat-
ing freezing. As shown below in Sec. V B, the single defect

dynamics in model I presents some interesting nonrelax-
ational features at large quenches, which prevent the annihi-
lation of small domains.

In model II, defect annihilation is on the contrary accel-
erated at large quenches, and densities decay faster than in-
verse power laws, as shown in Fig. 7 for 
=0.2157 and
0.3137. These results confirm those of Sec. IV B regarding
the correlation lengths. As for the other models, pinning ef-
fects might slow down defect motion at short times �up to
t
1000�, as dislocation and chevron densities decay more
slowly than t−1/3 and t−1/2, respectively. However, nonpoten-
tial effects dominate dislocation motion when t	1000 and
the oblique stripe pattern quickly reaches fully ordered con-
figurations. In Sec. V B, we show that single defect dynam-
ics is quite different in models I and II far from onset.

Note that coarsening rates faster than a t1/2 law for oblique
stripes have been reported in electroconvection experiments
�50�. These fast coarsening laws were observed when the
background wave number is small, a property also shared by
model II �see Fig. 2�.

D. Dynamical scaling

In the case of the potential model close to onset �34�,
dynamical scaling properties of the structure factor were in-
vestigated along the directions parallel to the wave numbers
k�c

+ and k�c
−. As shown above, chevron boundaries and disloca-

tions have very different mobilities further from onset.
Therefore, it sounds more natural to test one-dimensional
scaling relations along x̂ and ŷ separately. The dynamical
scaling hypothesis implies that the structure factors �14� and
�15� should obey the ansatz

Sx�qx,t� = Lx�t�fx„qxLx�t�… , �25�

Sy�qy,t� = Ly�t�fy„qyLy�t�… , �26�

where Lx�t� and Ly�t� are the characteristic length scales pre-
viously defined through relations �18� and �19�; fx and fy are
functions independent of time.

Since the ordering dynamics of the oblique striped do-
mains close to onset can be approximately reduced to the
dynamics of model A �see Sec VA�, one should expect that
dynamical scaling holds along any direction in Fourier space.
Figure 9 shows that the ansatz �25� and �26� holds over two
time decades for model II close to onset �
=0.0392�. The
same results are observed for the PK potential model and
model I �not shown�. However, in the region near k=0, the
scaling functions in the three models decay rapidly �see Fig.
9� and differ noticeably from that of model A, which is qua-
dratic for small k �51,52�. This unusual behavior may indi-
cate that, given a random initial condition, oblique patterns at
early times form different large scale domain structures than
in model A.

As 
 is increased, isotropic dynamical scaling breaks
down because coarsening is characterized by two growing
lengths scales with distinct exponents in the x̂ and ŷ direc-
tions. Nevertheless, Fig. 10 �top� shows that the one-
dimensional scaling relation �25� in the x̂ direction �where
zx�zdis�3� holds over two time decades for model II. In
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this regime, where zy �2, a similar scaling behavior is also
observed along ŷ �not shown�, for all three models. Devia-
tions from dynamical scaling are observed in the large
quench depth regime; see Fig. 10 �bottom�.

We verify that the tails of the structure factors obey the
well-known Porod’s law �2�, as illustrated in Fig. 10. If
the one-dimensional correlation functions obey a scaling
form at short distances, one expects that Sx,y�qx,y , t� /Lx,y�t�
�1/ �qx,yLx,y�t��d+1 at large qx,y, with d=1 here.

V. DISCUSSION

A. Mapping to model A in an external field
for low-to-moderate quenches

The numerical results obtained very close to onset show
that the coarsening of oblique stripes is characterized by a
single exponent zdis�zch�zx�zy �2. This result can be ex-
plained by the following weakly nonlinear arguments. The
amplitude Eqs. �10� and �11� can be used to describe the
dynamics of grain boundaries separating zig and zag do-
mains close to onset �
�1� in all models. In the absence of
grain boundaries, the stationary uniform amplitudes in a zig
domain are

a+ =
 


3�
, a− = 0, �27�

and vice versa in a zag domain. In the vicinity of a grain
boundary, the amplitudes change continuously from one uni-
form solution to the other along the normal coordinate. Fig-
ure 11�a� displays the stationary numerical profiles a+�x� and
a−�x� of solutions of Eqs. �10� and �11� close to onset for a
vertical boundary �dislocation array�. The sum a++a− and
difference a+−a− are also plotted in Fig. 11�b�. We observe
that a++a− remains close to the constant bulk value �
 /3��1/2

in the boundary region, while a+−a− changes continuously
from +�
 /3��1/2 �zig domain� to −�
 /3��1/2 �zag domain�.
For any polycrystalline configuration, we define the local
order parameters �+�A++A− and �−�A+−A−�

 /3��d,
which redefines the orientational order parameter field �d.
Based on Fig. 11�b�, we approximate �+ to a constant, even
in configurations containing many interfaces:

�+�r�,t� 

 


3�
. �28�

To find an equation for the local orientational order pa-
rameter �d, we substitute the new fields into �10� and �11�.
By making the change of variables

-2 -1 0 1 2

S
x(

q
x,

t)
/L

x(
t)

qxLx(t)

−

−

−

−

1 10
7

2 10
7

3 10
7

4 10
7

−

−

−

−

1 10
7

2 10
7

3 10
7

4 10
7

−

−

−

−

1 10
7

2 10
7

3 10
7

4 10
7 t = 200

t = 400
t = 1000
t = 2000
t = 5000

t = 10000
t = 20000

-2 -1 0 1 2

S
y(

q
y,

t)
/L

y(
t)

qyLy(t)

−

−

−

1 10
7

2 10
7

3 10
7

−

−

−

1 10
7

2 10
7

3 10
7

−

−

−

1 10
7

2 10
7

3 10
7

t = 200
t = 400

t = 1000
t = 2000
t = 5000

t = 10000
t = 20000

FIG. 9. Dynamical scaling along the x̂ and ŷ directions for
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X = � c + 2� − �2

c + �

�1/2

x, Y = � c + 2� − �2

�1 + c��

�1/2

y ,

�29�

we obtain

�T�d =
3

4
�d +

4

k0
2�2�d −

3

4
�d

3, �30�

where T=
t and �2=�X
2 +�Y

2. This isotropic equation is easily
recast into the well-known model A for a nonconserved order
parameter �2,3,7�: �t�d=�d+�2�d−�d

3. Hence, as previously
suggested �34�, the coarsening of oblique stripes close to
onset is isotropic �after the coordinate change �29�� and
driven by curvature, with a length scale increasing as t1/2.
Such a regime has never been observed experimentally in
electroconvection, despite the fact that the amplitude Eqs.
�10� and �11� should a priori describe this system correctly
close enough to onset �43–45�.

Further from onset, at intermediate values of 
, the hori-
zontal �chevron� grain boundaries become pinned in the
three models considered. In pattern forming systems, defect
pinning often arises from the coupling between the ampli-
tudes varying slowly in space and the short period modula-
tions of the local order parameter �19,42,53�. This coupling
generates “nonadiabatic” terms in the amplitude equations,
which oscillate with the spatial coordinates and create peri-
odic energy barriers for defects. The simplest generalization
of model A that incorporates similar pinning effects for hori-
zontal interfaces is

�t�d = �d + �2�d − �d
3 + p cos�kpy� , �31�

where the periodicity of the pinning potential, of magnitude
p, is smaller than the interface width �2� /kp�1�. The above
equation describes the ordering kinetics of a nonconserved
scalar order parameter in a stationary, spatially modulated
external field.

As discussed in �34�, chevron boundaries pin at interme-
diate values of 
 while dislocations are still mobile. This
effect can be explained by the fact that the magnitude of the
pinning potential of chevrons �p� is orders of magnitude
higher than that of dislocation arrays. A detailed calculation
showing this and further supporting the reduced model �31�

will be presented elsewhere. Model A is recovered close to
onset because pinning potentials tend to zero very rapidly as

→0, independently of the interface orientation �19,42�.
Equation �31� can also be modified by replacing p by a term
proportional to ��d�2�y�d, so that the external field acts
mostly on horizontal boundaries and not in the bulk.

B. Nonrelaxational defect dynamics far from onset

Some qualitative insights into domain coarsening for
models I and II far from onset can be gained by numerically
studying the shrinking dynamics of an initially rectangular
zag domain embedded in a zig surrounding. The background
wave number is initially fixed to the value kc.

Figure 12�a� shows the results obtained by solving model
I with an embedded domain of vertical width Dy =20�c and

=0.2157. At this moderate quench, the dynamics is ap-
proximately driven by the decrease of the energy �12�
through the reduction of total interface length. As mentioned
in the previous sections, chevron boundaries are pinned and
the reduction of their length is achieved by the motion of the
curved lateral dislocation arrays. When colliding, disloca-
tions of opposite Burgers vectors annihilate, as also observed
experimentally �32�.

Figure 12�b� shows the evolution of the same initial do-
main further from onset �
=0.6078�. In this case dislocation
motion is not restricted to reducing the chevron length. The
boundaries exhibit a more complex dynamics instead and the
domain shape breaks its initial axial symmetry.

To study the transition between these two dynamical re-
gimes for model I, we report in the upper panel of Fig. 13 the
evolution of the area Ad�t� of an embedded domain. At mod-
erate values of 
, Ad�t� continuously decreases in time at a
rather constant rate as the zag domain shrinks. However,
above a critical value, 
c�0.6 for a domain of width Dy
=32�c, Ad�t� tends toward a finite value at large times, sug-
gesting that dislocations effectively repel each other. The
transition between the two regimes is fairly abrupt. This situ-
ation is reminiscent of dislocation motion modes observed
experimentally, where walls of oppositely charged defects
can approach within some distance and then move apart �32�.
The results above provide a picture of the arrested growth of
order observed far from onset in model I. The same single-
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domain calculation using the PK potential model with 

=0.6078, a value close to the above 
c, shows that the do-
main completely shrinks �the bullet symbols of Fig. 13�.

We therefore conclude that, unlike in potential models,
the arrested ordering kinetics in model I is primarily due to
nonpotential repulsion effects among dislocations, and not to
dislocation pinning induced by nonadiabatic effects �al-
though these might also be present�.

The lower panel of Fig. 13 shows that, for model I, the
critical value 
c defined above depends on the domain verti-
cal width. Interestingly, 
c seems to tend toward a constant
value ��0.5� as Dy→�, meaning that below this parameter
value all domains shrink �coarsening regime�. For 
	0.5,
large enough domains do not shrink �disordered regime�.
This diagram suggests that model I undergoes a transition to
arrested coarsening as 
 crosses a critical value.

Figure 12�c� shows the evolution of a shrinking domain in
model II, for 
=0.2157. An effective dislocation repulsion is
also observed, leading, in contrast to model I, to the emission
of pairs of oppositely charged dislocations. This mechanism
gradually reduces the average domain width. For this value
of 
, the ordering kinetics of polycrystalline configurations is
faster than a power law. Dislocation emission by shrinking
domains at large quenches could be responsible for the very
fast coarsening laws observed in model II.

VI. SUMMARY AND CONCLUDING REMARKS

We have studied the coarsening of two-dimensional ob-
lique stripe phases by using two nonpotential Swift-
Hohenberg-like equations. The results have been compared
to previous ones obtained in the potential case �34�.

Close to onset �
�1�, the patterns can be described in all
cases by two coupled amplitude equations that can be re-
duced approximately to model A for a nonconserved scalar
order parameter. Consequently, the coarsening process close
to onset is self-similar, and domain growth is characterized
by a single length scale growing as t1/z with z�2.

At intermediate values of 
, a second regime is observed
in both potential and nonpotential models, where chevron
boundaries become pinned, and domain growth is driven by
the horizontal motion of curved dislocation arrays. The one-
dimensional correlation functions along the x̂ and ŷ direc-
tions still obey dynamical scaling relations, but the corre-
sponding correlation lengths grow at different rates: Lx�t�
� t1/zx and Ly�t�� t1/zy, with zx�3 and zy �2. In this regime,
the system should be well described by a model A equation
in an external modulated field �Eq. �31��.

The nonpotential equations studied here reproduce quali-
tatively the observed selected wave numbers in electrocon-
vection experiments �40�. The unusual but apparently robust
t1/3 law for Lx also agrees with experimental data �32�. How-

FIG. 12. Defect field of an initially rectangular zag domain surrounded by zig stripes, for model I with �a� 
=0.2157 at t=200, 600, 1800,
and 3600, and �b� 
=0.6078 at t=200, 600, 1800, and 12000; and �c� for model II with 
=0.2157 at t=200, 600, 1800, and 2400.

J. R. GOMEZ-SOLANO AND D. BOYER PHYSICAL REVIEW E 76, 041131 �2007�

041131-10



ever, no 1/2 exponents were ever observed experimentally.
When 
�O�1�, a third regime can be identified, where

the defect dynamics differs noticeably in potential and non-
potential models. In the potential and nonpotential I cases,
coarsening rates become very slow at late times, the system
remaining in macroscopically disordered states. Whereas
freezing is due to dislocation pinning in the potential case
�34�, in model I nonrelaxational effects dominate, leading to
a complex dislocation dynamics �quite similar to the experi-
mental observations of Ref. �32�� that prevents small do-
mains from shrinking. The study of the relaxation of single
domains suggest that this transition to arrested coarsening in
model I is abrupt. This result is surprising, as it is generally
accepted that nonpotential effects enhance coarsening
�14,25,54�. For model II, nonpotential effects also affect dis-
location dynamics but lead to the opposite macroscopic be-
havior: defect densities decay in time faster than a power law
and the system orders very quickly.

A better understanding of the transitions between the dif-
ferent coarsening regimes far from onset requires a system-
atic study of the dynamics of shrinking domains and its role
in wave number selection. In this spirit, a study of grain
boundary motion in nonpotential stripe patterns was recently
performed for isotropic systems �30�. We hope that the study
of defect motion in nonpotential systems far from onset will
motivate new experiments.

Finally, recent experiments �33� studying the impact of
noise on the coarsening rates of oblique rolls could also mo-
tivate future research.
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