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Nondiffusive decay of gradient-driven fluctuations in a free-diffusion process
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We report the results of an experimental study of the static and dynamic properties of long wavelength
concentration fluctuations in a mixture of glycerol and water undergoing free diffusion. The shadowgraph
method was used to measure both the mean-squared amplitude and the temporal correlation function of the
fluctuations for wave vectors so small as to be inaccessible to dynamic light scattering. For a fluid with a
stabilizing vertical concentration gradient, the fluctuations are predicted to have a decay rate that increases with
decreasing wave vector ¢, for wave vectors below a cutoff wave vector ¢, determined by gravity and the fluid
properties. This behavior is caused by buoyant forces acting on the fluctuations. We find that for wave vectors
above ~¢,, the decay rate does vary in the normal diffusive manner as Dg?, where D is the mass diffusion
coefficient. Furthermore, for ¢ =g we find that longer wavelength fluctuations decay more rapidly than do
shorter wavelength fluctuations, i.e., the behavior is nondiffusive, as predicted.
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I. INTRODUCTION

It is well established that single-component fluids sub-
jected to stabilizing temperature gradients develop spatially
long-ranged fluctuations whose mean-squared amplitude in-
creases with decreasing wave vector [1-21]. As a reflection
of this behavior, the structure factor S(g,w) describing the
spatial and temporal behavior of fluctuations in fluids is se-
verely modified by the presence of a gradient. The effect is
most pronounced for fluctuations having wave vectors ¢, ly-
ing in a plane perpendicular to the gradient. For a bulk
sample in the absence of gravity, the mean-squared ampli-
tude of such fluctuations is predicted to diverge as ¢~*, rather
than to be ¢ independent for small ¢, as it is for a fluid in
equilibrium. This effect was predicted by Kirkpatrick, Co-
hen, and Dorfman in 1982, using mode coupling and kinetic
theory [6—8]. Their initial calculations did not include the
effects of gravity or boundaries; however this was soon rec-
tified [11,12]. It was also realized that the same results could
be obtained more easily [9] using Landau’s theory of fluctu-
ating hydrodynamics [22]. This approach has allowed the
incorporation of both gravitational and boundary effects
[12,17-21,23] into the calculations, and has allowed such
realistic calculations to be extended to binary mixtures as
well [23-28]. Very recently a monograph has appeared on
the subject [29].

The effect of gravity on an unbounded single-component
fluid with a linear stabilizing vertical temperature gradient
[17], or upon an unbounded mixture with a linear stabilizing
vertical concentration gradient [24,25], is to introduce a
gravitational cutoff, resulting in a static structure factor
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(mean-squared fluctuation amplitude) that varies as
[1+(g/qc)*T"". The cutoff wave vector g, is given by ¢
=[agVT/(vDy)]"*, for a single-component fluid and by g,
=[BgVc/(vD)]"* for a mixture. Here a and S are the ther-
mal and solutal expansion coefficients, respectively, ¢ is the
concentration, v is the kinematic viscosity, and Dy and D are
the thermal and mass diffusivities, respectively. Physically,
velocity fluctuations couple to the thermal and/or concentra-
tion fluctuations, and this coupling results in large amplitude,
long wavelength fluctuations in the temperature and/or con-
centration. These fluctuations are predicted to be quenched
by gravitational forces for sufficiently small g, resulting in a
crossover from g~* behavior to g-independent behavior at
small ¢, in the absence of boundaries.

An attempt to extend the theory to fluid mixtures under-
going free diffusion has been made [25]. In this case, no
thermal gradient is present, but the concentration gradient,
and in principle the fluid properties, are dependent upon both
vertical position z, and time ¢, as the concentration profile
evolves. The predictions are very similar to those for fluids
with linear gradients, except that ¢ and S(g,w) are depen-
dent on both z and t.

The ¢~* divergence in S(g) has been studied experimen-
tally for single-component fluids [13,15,16,30] and for mix-
tures [25,30-35], both with linear stabilizing gradients, usu-
ally for wave vectors well above g.. Ultra-low-angle light
scattering, and/or shadowgraph methods have been used to
measure S(q) [25,36-40] for several mixtures undergoing
free diffusion during the dissolution of an initially sharp in-
terface, and during the transient period [33] after application
of a temperature gradient to a mixture near its consolute
critical point, where the Soret effect is remarkably strong. In
several studies, both the g~ divergence and the development
of a gravitational cutoff are evident in the data [25,32,34,36].

The effect of a gradient on the dynamics of the fluctua-
tions is also predicted to be dramatic. For a single-
component fluid or a mixture, both with a linear stabilizing
gradient, the primary effect is to convert the normally inde-
pendent viscous and either thermal or concentration modes
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into a pair of coupled modes. These coupled modes are pre-
dicted to behave diffusively, i.e., to have a decay rate pro-
portional to ¢, for g well above g [17,24], and this regime
has been studied in mixtures using dynamic light scattering
[13,15,30]. The fluctuations are predicted [12,41,42] to be-
come propagating for sufficiently small ¢, both in mixtures
and single-component fluids. This effect has been observed
for a single-component fluid with a stabilizing gradient, us-
ing a forced scattering technique [42].

The dynamics of fluctuations while heating from below
(destabilizing gradient) have been studied by Oh et al. [43],
using a shadowgraph, in a very thin layer (34.3 um) of near
critical SFg, below the onset of convection. By measuring the
reduction in S(g) caused by increasing exposure time, they
were able to deduce the decay rates of fluctuations, assuming
the decay to be exponential. (Increasing exposure time aver-
ages out the fluctuations to an extent dependent on the decay
rate.) They observed nondiffusive behavior for the decay
rate, which reached a minimum near the wave vector at
which convection rolls formed just above the onset of con-
vection, and then increased with decreasing wave vector,
much as we observe. Unlike the free-diffusion case we have
studied, gravity plays little role under the conditions of their
experiment; instead, the nondiffusive behavior is caused pri-
marily by the proximity of conducting boundaries that essen-
tially “short-circuit” long wavelength temperature fluctua-
tions, and cause them to decay much more rapidly than they
would in bulk fluid.

A theoretically challenging situation also prevails during
free-diffusion processes, as mentioned above. To our knowl-
edge, this situation has been treated theoretically only in
[25], and in order to make contact with experiment, they
were forced to make the strong simplifying assumption that
the fluctuations are uncorrelated in the z direction. For the
case of mixtures, both with linear stabilizing gradients [24]
and while undergoing free diffusion [25], theories predict a
very interesting effect, which might be termed nondiffusive
behavior. For wave vectors well above ¢, the spectral line-
width (decay rate), is predicted to behave normally, i.e., as
Dq?, while below ¢, but for wave vectors sufficiently large
that the fluctuations do not propagate, the decay rate is pre-
dicted to crossover to g2 behavior. That is to say, longer
wavelength fluctuations are predicted to decay more rapidly
than do shorter wavelength fluctuations in this intermediate
regime. Thus, the decay rate I', should have a minimum near
qc and actually rise at small g. Specifically, I" is predicted to
be well approximated by I'=Dg*[1+(gc/g)*], under the ap-
propriate conditions [25]. This nondiffusive behavior (not to
be confused with nonexponential decay of the correlation
function) is a direct manifestation of the effect of gravity on
the dynamics of long wavelength fluctuations in a mixture
with a stabilizing gradient. For free diffusion, with signifi-
cant z dependence of the gradient and/or fluid properties, I'
will however, be z dependent.

In this paper, we report the results of an experimental
investigation of the dynamics of fluctuations in a mixture
undergoing free diffusion. Our results pertain to the
intermediate-q regime, where the fluctuations behave nondif-
fusively but do not propagate, as they are predicted to do for
sufficiently small g. We have observed the predicted cross-
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over from the ¢ behavior of the decay rate at higher ¢, and
clearly observe a minimum in the decay rate vs g. The ex-
periments were carried out by injecting a mixture consisting
of 39% glycerol by weight in water beneath a layer of water,
and using the shadowgraph method to measure the correla-
tion function [Fourier transform of S(g, w) with respect to w]
of the fluctuations for wave vectors ranging from about
50 cm™! to over 500 cm™!. Use of the shadowgraph method
allowed us to access such small wave vectors, which are
inaccessible by even small-angle light scattering because of
stray elastically scattered light. In addition to the nondiffu-
sive behavior of the decay rate described above, we also
observed the correlation functions to decay exponentially at
sufficiently high ¢, and to exhibit nonexponential decay for
sufficiently small wave vector. We find that the decay rate (as
measured by the inverse of the time required for the correla-
tion functions to decay to e~! of their initial values) reaches
a minimum near the critical wave vector, as predicted. The
remainder of this paper consists of three sections. Section II
describes the experimental methods, Sec. III presents the re-
sults and analysis, and Sec. IV provides a brief discussion.

II. EXPERIMENTAL METHODS

The sample was confined within a cylindrical glass cell
(Hellma model 120-0S-20), 20 mm in inner diameter with
plane parallel windows 2.0 cm apart fused to its ends. The
cell windows were oriented horizontally. A silicone rubber
stopper on the side of the cell was fitted with two syringe
needles, one of which ended near the bottom of the cell, and
the other of which ended somewhat above the midplane. This
arrangement allowed the cell to be completely filled initially
with one fluid simply by inverting it while filling, and then to
inject a second, denser fluid, in a horizontal layer beneath the
first. The cell was originally filled with degassed water, and
the denser glycerol/water mixture was carefully injected be-
low the water to form an initially sharp, horizontal interface,
within 1 to 2 millimeters of the midplane of the cell, as
judged by eye. Both the water and the mixture were allowed
to equilibrate at room temperature with the cell for several
hours before use and were injected through 0.2 um pore di-
ameter cellulose acetate membrane filters. The resulting
sample was nearly homogeneous in temperature, but initially
contained a very strong, stabilizing concentration gradient.
The resulting interfacial region was not perfectly flat, which
is optically equivalent to having spurious very long wave-
length fluctuations. These perturbations die away in time be-
cause of gravity, and for this reason we did not use data
taken during the first 600 seconds after forming the interface.

The shadowgraph apparatus we used is shown schemati-
cally in Fig. 1. It employed a plane parallel monochromatic
beam of wavelength 680 nm, having a 1/¢*> diameter of
2.0 cm. The beam was formed by placing the 1 mW output
from a single-mode optical fiber coupled directly to a super-
luminous diode, one focal length from an achromatic doublet
of diameter 5 cm and focal length 20 cm. The beam was
directed vertically downward along the axis of the sample
cell after which it passed through a 5 cm diameter, 15.0 cm
focal length, achromatic doublet. A JAI model CV-M10-BX,
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FIG. 1. Schematic diagram of the apparatus showing the sample
cell (SC) and the shadowgraph arrangement. A clean diverging
beam with a nearly Gaussian profile exited from the monomode
fiber at F and was collimated by lens L1, with focal length 20 cm.
Mirror M1 redirected the beam vertically downward, where it
passed through the sample cell parallel to the concentration gradi-
ent. A second mirror, M2, together with lens L2, of focal length
15 cm, imaged the intensity distribution in the desired visualization
plane onto the CCD sensor S.

8-bit CCD camera, with 8.3 um square pixels, was placed
with its sensor approximately 21 cm from the lens. It was
possible to move this lens and the camera as a unit to vary
the distance between them and the sample cell. No additional
lens was used with the camera.

To determine the relationship between lateral distance in
the sample and on the sensor, we placed a pair of Vernier
calipers open to 1.00 cm in the plane that is imaged onto the
sensor by the second lens. (To do this we removed the
sample cell and moved the lens/camera block away from the
first lens and fiber.) We then determined the size of the image
(in pixels) corresponding to the opening of the caliper jaws.
As a result of this calibration we determined that the central
512X 512 pixel area of the sensor, which was used for the
data images, corresponded to side length W=1.132 cm. The
side length fixed the minimum ¢ value that could be resolved
at quin=27/W=>5.55 cm™!. The maximum possible g that
could be measured is theoretically 25612¢,,;,=~2000 cm™!,
based on the number of pixels used. In practice, we could not
obtain meaningful data for wave vectors above ~500 cm™,
because of the effects of photon shot noise and electronic
camera noise.

This optical arrangement is a bit unusual for a shadow-
graph, in that the plane imaged upon the sensor actually lay
on the entrance side of the sample rather than the exit side as
is customary, but this still resulted in excellent shadowgraph
signals (we will refer to this situation as having a negative
visualization distance). As an experimental check, we took
data using two different values for the visualization distance
7,=-48 and —-36 cm obtained by moving the lens/camera
unit so that the lens was either 5 or 17 cm beyond the center
of the sample, respectively. The results did not depend on the
visualization distance, except through the z-dependent shad-
owgraph transfer function [44], as expected.

The effect of fluctuations on the transmitted beam is to
introduce time-dependent spatial modulation of the optical
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phase of the emerging wave because of the coupling between
refractive index and concentration. As the beam propagates
beyond the cell, the phase modulation develops into an in-
tensity modulation, which can be digitized by the camera.
Each image was Fourier transformed spatially to separate the
contribution from fluctuations of different wave vectors. This
analysis method is justified by the physical optics theory of
the shadowgraph as applied to weak fluctuations [44]. The
intensity variations are the result of interference between the
transmitted beam and the electric field diffracted by the fluc-
tuations, and are proportional to the diffracted electric field
amplitude, rather than to its intensity.

The shadowgraph method has been used previously to
measure the mean-squared amplitude of fluctuations S(g), for
a single-component fluid (high-pressure gas) below the onset
of convection [45], and for mixtures undergoing free diffu-
sion [36-38]. It has also been used to determine the static
power spectrum of concentration fluctuations induced by a
linear concentration profile generated by the Soret effect in
suspensions of nanoparticles and polymer solutions [46]. In
addition, both S(g) and the temporal correlation function of
the fluctuations present in free diffusion have been measured
using either the shadowgraph [47] or a closely related
Schlieren method [48,49]. These methods can provide the
same information usually obtained by static and/or dynamic
light scattering, provided the system under study scatters
strongly enough. They have several experimental advantages
relative to small angle light scattering. First, they can access
wave vectors as small as a few cm™!, which correspond to
scattering angles of order millidegrees. Thus, they are well
suited for the study of very large length scale processes.
Second, they do not require accurate alignment; the angle at
which light is diffracted relative to the beam determines the
wave-vector component produced by interference with the
beam. (Of course, any Schlieren method does require excel-
lent control of the mask.) Third, they are relatively immune
to the effects of stray elastically scattered light, provided
only that the electric field of such light is small compared to
that of the beam. Fourth, rather good statistics can be ob-
tained in relatively short times. The reason for this is that
these methods provide simultaneous measurements for many
different wave vectors. The wave vectors range in magnitude
from g.,;,=27/W, where W is the side length of the area
mapped onto the sensor (assumed square), to a maximum of
M@ i/ V2. Here M is the number of pixels corresponding to
the distance W. The number of independent wave vectors
having magnitude ¢ is roughly equal to 7g/q,,;,, and for
azimuthally symmetric samples, the results (dynamic or
static) for all wave vectors having the same ¢ can be aver-
aged. This is not a significant advantage for g=gq,;,, for
which only two independent measurements are obtained, but
for higher ¢ values, the advantage can be very significant.

The primary disadvantage of the shadowgraph method is
the presence of the shadowgraph transfer function which,
under ideal conditions, is given by [44], T(q)
=sin’[¢%z,/(2k,)], where z, is the visualization distance, and
k, is the vacuum wave vector of the light. The transfer func-
tion can be made ¢ independent by using the Schlieren
method [48,49]; however, this requires maintaining ex-
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FIG. 2. Scaled difference of two shadowgraph images taken at
=600 s, using a nominal visualization distance of —48 cm. The
fluctuations are visible as the lighter and darker patches. The actual
amplitude of the intensity variations was about +4 gray levels, and
the image has been gray scaled so that +5 gray levels cover the
range from black to white.

tremely precise optical alignment. The shadowgraph transfer
function is observed only for sufficiently small wave vectors,
where a fluctuation of a given wave vector diffracts light
equally into positive and negative orders that are in phase
(the Raman-Nath regime). For sufficiently high ¢, there is a
crossover to the Bragg regime, where the fields diffracted
into positive and negative orders are not correlated. A similar
technique, which the authors refer to as “near field scatter-
ing” has been used in the Bragg regime, to study fluctuations
[48,50-53]. All the results presented in this paper are in the
Raman-Nath regime, however.

In order to measure the temporal properties of the fluctua-
tions, we took sets of N images, separated in time by a fixed
interval, 6r=0.22 s, chosen to result in significant correlation
between successive images. We used values of N in the range
200<N<1000. Such sets were taken beginning 10 minutes
after establishing the gradient and for various times up to
43.5 hours afterward. Each image was scaled by dividing it
by its own spatially averaged value to form a series of scaled
images i(x,ndt). Here x refers to lateral position in the
sample. The scaled images within one set were averaged to
form a background image corresponding to the intensity pro-
file of the beam, i (x), which was subtracted from each
scaled image in that set. A typical example of such a differ-
ence image is shown in Fig. 2. Roughly speaking, the light
and dark patches correspond to regions of larger and smaller
values for the vertically averaged refractive index.

We next Fourier transformed the difference images spa-
tially to obtain a sequence of g-space “images” i(¢,ndt) from
which we calculated two quantities that we shall refer to as
the measured structure factor

Su(q) = li(g,no0)*),, (1)

and the measured correlation function,
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Gu(q.pd1) = Re{(i(G,n )i [g,(n + p) &1]), }. (2)

Due to the shadowgraph transfer function, and because each
image contains additive noise, uncorrelated with the fluctua-
tions, the measured structure factor is related to that of the
concentration fluctuations S(g) by

Su(q) =AT(q)S(q) + B,(q)- 3)

Here A is a constant relating the concentration and intensity
fluctuations, B,,(¢) is a measurable noise background, due
almost entirely to electronic and shot noise in the camera,
and T(g) is the shadowgraph transfer function [44]. In writ-
ing Eq. (3), we have neglected any correlation between the
fluctuations and the noise. We have also observed that the
noise is not correlated from image to image within our abil-
ity to measure it. Thus, except for a time delay of zero, the
measured correlation function G, (g, 7) is directly propor-
tional to the normalized correlation function for the concen-
tration fluctuations G(g, 7),

AT(q)S(q)G(gq,7) (7#0),
Gulg,7) = (4)
Su(q) (r=0).
Because of the azimuthal symmetry of the system, all mea-
sured quantities are dependent only upon the magnitude of ¢,
and thus we averaged the data azimuthally. Because 7T(g) is
not time dependent, its only effect on the dynamics is to
change the amplitude of the signal. This effect was particu-
larly noticeable near the zeroes of the transfer function,
where the signals were very weak; however, if necessary, this
problem can be eliminated using a Schlieren method with
basically the same apparatus [48,49]. We normalized our re-
sults for G,,(¢g,7) by dividing by AT(¢)S(¢)=S,,(¢)-B..(q),
to obtain experimental results for the normalized correlation
function G(g,7) (7#0).

We should point out that the local intensity fluctuations
are proportional to the local beam intensity [44]; however,
we did not divide by the beam profile i (x), but instead sub-
tracted i,(x) from each normalized image. Because of this,
and because our data are limited to a measurement aperture
of size WX W, the result, after spatial Fourier transformation,
is a convolution of the desired data with the Fourier trans-
form of the product of the beam profile and the measurement
aperture. Both of these functions are sufficiently broad in
real space, so that the transform of their product is narrow
enough that it did not significantly affect our results.

We obtained S,,(q) by using the normalized images
i(g,ndt) in each sequence to compute it directly. We also
measured B,,(q) for both visualization distances after the dif-
fusion process was essentially complete (at 70 hours for z,
=-47 cm, and at 144 hours for z,=—36 cm), and subtracted
the result from the data for S,,(¢) to obtain AS(¢)T(q). The
noise background B,,(¢), was measured in exactly the same
manner as was S,,(¢). We used Eq. (4) to obtain data for the
normalized correlation function G(g,7), for 7#0 from the
results for G,,(¢,7). As a further experimental check, we
determined z, from the position of the zeroes in T(g) and
found values of —47 and —36 cm, in good agreement with the
results (=48 and —36 cm) obtained using geometrical optics.
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FIG. 3. Log-log graph of data for S(q)T(g) taken at 600
(squares), 20 760 (circles), 72 000 (triangles), and 156 600 (dia-
monds) seconds after establishing the gradient. The solid curves are
the result of fitting a simple function to the data (see text) to extract
values for the crossover wave vector gc. The effect of the shadow-
graph transfer function is evident for both the data and the fits. As
can be seen, there is relatively little change in the data between ¢
=600 s and =20 760 s, i.e., before the diffusing zone reaches the
boundaries. However, once the concentration at the boundaries be-
gins to change, at about 25000 s, the signal amplitude falls
dramatically.

The reader should note that the experimental transfer
function of a shadowgraph apparatus inevitably deviates
from the ideal form because of effects such as finite imaging
region, finite sized pixels, optical aberrations, etc. In the ab-
sence of a direct calibration to determine 7(g), this affects
the ability to measure S(g), but has no effect on measure-
ments of the shape of the correlation function. Of course, it
does change the signal amplitude; however, in normalizing
the measured correlation function to obtain G(gq,7), T(q)
cancels.

III. RESULTS AND ANALYSIS

A. Static properties

A total of 16 data runs were taken, beginning 600 s after
forming the gradient, and continuing to 156 660 s later. We
begin with a presentation of the results for S(g) obtained
from the data using Eq. (3), and the measured background
levels. Figure 3 is a log-log plot of our results for S(¢)7(g)
obtained for the runs taken at r=600, 20 760, 72 000, and
156 660 s (all for z,=—48 cm). During a long initial period,
the sample contained a decreasingly sharp gradient extending
over an increasing distance on either side of the initial inter-
face position, as the initially sharp interface broadened via
diffusion. During this initial period, the concentration near
the horizontal boundaries does not change significantly with
time. Until the concentrations at the boundaries begin to
change, the vertical average of the structure factor, which is
what we measured, is predicted [25] to be time independent
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FIG. 4. The crossover wave vector g vs time, deduced by fit-
ting static data of the type shown in Fig. 3. The solid curve is the
result of vertically averaging the theoretical result for S(g) to obtain
theoretical values for gc. As can be seen, the data are not consistent
with the theory. Because g, varies only weakly with the gradient
and fluid properties, we believe this discrepancy is significant.

for g<q. but to crossover to g~* behavior at a steadily de-
creasing wave vector, g, which should vary roughly as /8,
Once the diffusing layer reaches the boundaries, at about
25000 s in our case, and the boundary concentrations begin
changing, S(g) is predicted to begin decreasing at all ¢, and
in addition, g is predicted to begin falling more rapidly with
time.

As may be seen, there has been only a relatively small
decrease in the amplitude of the first peak near ¢=80 cm™!
by =20 760 s, but it begins decreasing rapidly after that.

In order to provide a more quantitative analysis, we fit the
function S(q)T(q)=S,T(q)/[1+(q/gc)*] to our data, adjust-
ing z,, Sp, and g for each data run, and using the ideal form
for T(g). The results of these fits are shown as the continuous
curves in Fig. 3. All runs were consistent with z,=—47 and
—36 cm, which agree quite well with the values we calcu-
lated using geometrical optics. The results obtained for the
effective crossover wave vector g- were not sensitive to the
data at higher g, and we are confident this is a robust param-
eter. We should point out, however, that use of the ideal form
for T(q) in fitting will result in values for g that are system-
atically small to some extent, because actual transfer func-
tions inevitably fall off more rapidly with increasing ¢ than
does the ideal form.

We may compare the results deduced experimentally for
gc with what would be predicted for our system, using its
known, concentration-dependent, fluid properties [B
=0.2246+0.1c-0.125¢%, v=0.01 exp(2.06c+2.32¢?) cm?/s,
where ¢ is the weight fraction of glycerol, and D=0.93
X 1075 cm?/s] [54], and this is done in Fig. 4. The solid
curve was obtained by numerically integrating Eq. (26) of
Ref. [25] over the vertical extent of the sample to find a
z-averaged S(g), and obtaining the value of ¢ for which the
result was one-half of the ¢— 0 limit. (The results for g,
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obtained in this relatively simple manner were practically
identical to those obtained by fitting calculated “data” points
in the same way the data were analyzed.) In carrying out the
integration, we calculated the local concentration and its gra-
dient using the value of the mass diffusion coefficient at the
mean concentration of 19.5 wt. %, because the diffusion co-
efficient varies little with concentration over the range of our
experiment (0—39 wt. % ). We made the calculation both us-
ing average values for v and S, and including their variation
with concentration, but found very little difference between
the two results. The effect of averaging over vertical position
was larger, reducing g. by about 10% over most of the
range. The comparison between theory and experiment pre-
sented in Fig. 4, does not involve any adjustable parameters,
and the discrepancy, which ranges from a few percent up to
nearly 20% at the earliest time, must be regarded as real. In
fact, g varies as only the 4]-‘ power of the gradient and the
fluid properties, so it would require a considerable error (of
order 60% or more) in the gradient and/or the fluid properties
to account for the difference. We think it is more likely that
the theoretical treatment will have to be refined if it is to
provide a more accurate description of the fluctuations
present during free diffusion.

B. Dynamic properties

We turn now to a discussion of the results for the dynamic
properties of the fluctuations as characterized by the normal-
ized temporal correlation function G(g,7), which we ob-
tained from our measurements using Egs. (3) and (4). Under
the appropriate conditions, theory predicts [25] that the non-
equilibrium portion of the spectrum of the concentration
fluctuations, at height z in the sample, S(z,q,w) is approxi-
mately Lorentzian and is given by

_ E|Ve(z)]? ( I'(z) )
1+ [gc@/gl*\ ? +T(2)?)°

where E is a constant, and the linewidth I'(z) is
given by T()=Dg*{1+[qc(2)/q]"},  with  qc(2)
={B(z)gVc(z)/[v(z)D]}"*. The equilibrium portion of the
signal is negligibly small for our conditions, and if one as-
sumes the fluctuations are uncorrelated in the z direction
[25], the vertical average of Eq. (5) may be compared to our
data. It should be noted that the vertical averaging process
results in a spectral shape that can be strongly non-
Lorentzian, as discussed below.

We should point out that the result given by Eq. (5) was
obtained assuming D/v<<1, and 48V c(z,1)/ (V’¢*) < 1. Al-
though the first approximation holds accurately for our sys-
tem at all times, the second fails for sufficiently small g
values in the region of maximum gradient. The g value for
which 48gV c(z,1)/(1*q*) exceeds 0.1 in the region of maxi-
mal gradient decreases with time, as the gradient relaxes. For
example, for =600 s, it exceeds 0.1 in that region for ¢
values below 90 cm™', while for our last data set taken at ¢
=156 660 s it exceeds 0.1 only for g <42 cm™'. Despite this,
we find that the exact and approximate spectra [Egs. (21) and
(25) of [25], respectively] averaged over the vertical extent

S(z.q,0) = &)
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FIG. 5. Predicted correlation functions for four wave vectors as
calculated for r=600 s. The correlation functions were calculated by
vertically averaging the theoretical result for S(¢,) and Fourier
transforming with respect to @ to obtain G(7). One can see imme-
diately that the theory predicts a smaller decay rate for g
=200 cm™! than it does for any of the other wave vectors, i.e., the
predicted behavior is strongly nondiffusive. One should also note
that the theory predicts nonexponential decay at the lower wave
vectors.

of the sample (with v and B concentration dependent) are
very similar in shape and differ by less than 5% in linewidth
for rather smaller ¢ values than those stated above. For ex-
ample, the effective linewidths (half-width at half-height)
agree to within 5% for ¢ values above 55 cm™! and 36 cm™!
for t=600 s and 156 660 s, respectively. Consequently, we
report data for those g values and times for which the vertical
average of the approximate and exact linewidths agree to
within 5%, even though 48gV c(z,t)/(1g*) exceeds 0.1 for
some of these data. Unlike the results of averaging the am-
plitude of the fluctuations, the effective linewidths obtained
for the averaged spectra were significantly different when v
and B were taken as concentration dependent.

As mentioned above, the vertically averaged spectra de-
part strongly from a Lorentzian shape under some conditions
(lower ¢ and earlier times). In order to relate these theoretical
results to the data for the measured correlation functions, we
Fourier transformed the calculated spectra numerically to ob-
tain corresponding theoretical correlation functions. Ex-
amples of such theoretical correlation functions are shown in
Fig. 5 for several different g values as calculated for ¢
=600 s. The plot is semilogarithmic, and thus exponential
decay results in a straight line. Inspection reveals that the
decay is predicted to be significantly nonexponential for the
lowest wave vector, and that the decay rate (slope) is pre-
dicted to be greater for wave vectors both above and below
the intermediate value of 200 cm™'.

Figure 6 shows representative experimental results for ¢
=600 s for G(7) for the same wave vectors for which the
theoretical results are shown in Fig. 5. The data reveal the
predicted nonexponential decay for g=50 cm™!, as well as
the predicted nondiffusive dependence of the decay rate on
the wave vector. The data presented in Fig. 6 all correspond
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FIG. 6. Measured correlation functions for the same wave vec-
tors as Fig. 5, obtained for r=600 s. We observe the predicted non-
diffusive behavior, and we observe curvature for the lowest wave
vector, much like that shown in Fig. 5. The slight curvature pre-
dicted for g=100 cm™" was not within our ability to detect.

to a visualization distance of —48 cm, but the results ob-
tained for G(7) with z,=-36 cm were indistinguishable in
terms of behavior and the quality of the fits.

To provide a more global comparison of theory and ex-
periment we determined decay rates from calculated correla-
tion functions, such as those shown in Fig. 5. As noted, the
calculated correlation functions are definitely not exponential
for the smaller g values, as they would be for a Lorentzian
spectrum, but become accurately exponential for sufficiently
large g. Rather than attempt to characterize such complicated
functions by any ad hoc fitting procedure for comparison
with the data, we instead determined an effective decay rate
as being the inverse of the delay time for which G(7) had
decayed to e~! of its initial value.

Figure 7 shows the predicted and experimental results for
the decay rate I'(g), as a function of ¢ for runs at ¢
=14 880 s (z,=—48 c¢cm) and t=15 420 s (z,=—36 c¢cm) which
were made close enough together in time to be considered
“simultaneous.” As can be seen, the prediction that the decay
rate should reach a minimum near g, is correct. Defining g
to be the value for which the data reach a minimum (see the
discussion preceding Fig. 9), we found values of g-=126.2
and 124.6 cm™! for r=14 880 and 15 420 s, respectively. The
solid line is the theoretical result for the decay rate. It was
obtained by finding the 1/e time for the Fourier transform of
the vertical average of Eq. (25) of [25] using the gradient
calculated at the mean time of the two runs, 15 150 s, includ-
ing the concentration dependence of both 8 and v. It should
be noted that this result was obtained without adjustment of
any parameters.

Figure 8 shows similar results, both experimental and the-
oretical (solid curves) for r=600, 3200, 19 000, and 72 000 s.
As can be seen the agreement with theory becomes progres-
sively better with increasing time, i.e., as the gradient be-
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FIG. 7. The decay rate I'(g) vs g for data taken at r=14 880 s
[z,=—48 cm (squares)] and 1=15420 s [z,=-36 cm (circles)]. As
can be seen, the decay rate reaches a minimum near g (Gc
=126.2 and 124.6 cm™" for r=14 880 and 15420 s, respectively).
The solid line is the theoretical result, obtained as discussed in the
text, including the concentration dependence of both 8 and v.

comes less sharp. In all cases, the predicted nondiffusive
behavior is evident, and the predicted and observed wave
vectors for the minimum decay rate agree reasonably well.
In order to provide a more general comparison with
theory, we calculated g for the dynamic properties as being
the value of g for which the theoretical decay rate reached its
minimum value vs g for each time. We found values for g,
by fitting the equation I'=Dg’[1+(gc/q)*] to the data, ad-
justing D and g. Figure 9 shows results for this dynamic g,
as a function of time, both for the vertically averaged theory,
using concentration-dependent fluid properties (solid line),
and for comparison, the results obtained by fitting the data,
as described above. The behavior is qualitatively similar to
that found for the static properties (see Fig. 4), with the data

10 ——————————

0.1 T
40 50 60 70 80 90100

q (cm'1) 200 300 400 500 600

FIG. 8. Experimental (symbols) and theoretical (solid curves)
results for I'(g) vs ¢ for data taken at r=600 (squares), 3200
(circles), 19 000 (triangles), and 72 000 (diamonds) seconds. The
theoretical results were obtained by vertical averaging, using
concentration-dependent fluid properties, as described in the text.
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FIG. 9. An effective dynamic cutoff wave vector equal to the
wave vector of minimal decay rate vs time for both data and theory.

lying below the theory, but in this case the disagreement is
less. Because the results for g obtained from the dynamics
are not affected by the transfer function, the comparison with
theory should be more exact in this case. We also note that
although the experimental values for g are somewhat de-
pendent on whether static or dynamic properties are used to
obtain them, there is no reason to expect them to be identical,
once vertical averaging is involved.

In fitting the data for the decay rate, to determine g, we
also obtained values for the diffusion coefficient. The result-

PHYSICAL REVIEW E 76, 041112 (2007)

ing values for D, over the time range 600—-97 800 s, have a
standard deviation of 8%, and an average value of D=1.03
X 1073 cm?/s. This result is 11% above the literature value,
certainly well within what one would expect considering the
vertical averaging, theoretical approximations, etc.

IV. DISCUSSION

Using a dynamic shadowgraph method, we have mea-
sured the autocorrelation function of concentration fluctua-
tions present during free diffusion of a 39 wt. % glycerol/
water solution into pure water. We find that the dynamics of
concentration fluctuations present during free diffusion are
strongly nondiffusive, i.e., the decay rate does not decrease
monotonically with decreasing wave vector. Instead, a well-
defined minimum in the decay rate of the correlation func-
tion vs wave vector is observed at all times after forming the
initial gradient. This effect is predicted theoretically, and we
have used vertical averaging with concentration-dependent
fluid properties to compare theory and experiment, without
using adjustable parameters. The agreement is reasonably
good, being within about 20% or better. Given the rather
weak dependence of the crossover wave vector on fluid prop-
erties, we think the discrepancy with theory is primarily the
result of assumptions made in the calculations, rather than
experimental errors.
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