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Fluid limit of the continuous-time random walk with general Lévy jump distribution functions
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The continuous time random walk (CTRW) is a natural generalization of the Brownian random walk that
allows the incorporation of waiting time distributions ¢(¢) and general jump distribution functions 7(x). There
are two well-known fluid limits of this model in the uncoupled case. For exponential decaying waiting times
and Gaussian jump distribution functions the fluid limit leads to the diffusion equation. On the other hand, for
algebraic decaying waiting times ¢~ r~(*# and algebraic decaying jump distributions 7~ x~'*® correspond-
ing to Lévy stable processes, the fluid limit leads to the fractional diffusion equation of order « in space and
order 3 in time. However, these are two special cases of a wider class of models. Here we consider the CTRW
for the most general Lévy stochastic processes in the Lévy-Khintchine representation for the jump distribution
function and obtain an integrodifferential equation describing the dynamics in the fluid limit. The resulting
equation contains as special cases the regular and the fractional diffusion equations. As an application we
consider the case of CTRWs with exponentially truncated Lévy jump distribution functions. In this case the
fluid limit leads to a transport equation with exponentially truncated fractional derivatives which describes the
interplay between memory, long jumps, and truncation effects in the intermediate asymptotic regime. The
dynamics exhibits a transition from superdiffusion to subdiffusion with the crossover time scaling as 7,
~N\"%B_where 1/\ is the truncation length scale. The asymptotic behavior of the propagator (Green’s func-
tion) of the truncated fractional equation exhibits a transition from algebraic decay for < 7, to stretched

Gaussian decay for > ..
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I. INTRODUCTION

Macroscopic transport models often arise as fluid or con-
tinuum limits of particle kinetic descriptions. A well-known
example is the diffusion equation describing the probability
distribution function of particles exhibiting a Brownian ran-
dom walk. In this case, the particle kinetic description is
based on a Gaussian uncorrelated stochastic process deter-
mining the individual particle displacements. A more general
description at the kinetic level is provided by the continuum
time random walk (CTRW) model [1,2] that extends the
Brownian random walk in two ways. First, contrary to the
Brownian random walk, where particles are assumed to jump
at fixed time intervals, the CTRW model allows the possibil-
ity of incorporating waiting times. In addition, the CTRW
model allows the possibility of using general, non-Gaussian
jump distribution functions with divergent second order mo-
ments to account for anomalously large particle displace-
ments known as “Lévy flights.”

The fundamental equation for the CTRW is the Montroll-
Weiss equation [1] that describes the probability distribution
function of particle displacements in terms of the waiting
time distribution () and the jump distribution function
7(x). However, the Montroll-Weiss master equation contains
in a sense too much information which might be irrelevant
from the point of view of the long-time behavior of large
scale macroscopic transport. This motivates taking the fluid
or continuum limit of which two cases have been widely
studied. One is the Markovian-Gaussian case which neglects
memory effects in the waiting time distribution function and
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assumes a Gaussian jump distribution function. As expected,
both assumptions lead in the fluid limit to the diffusion equa-
tion. The other case corresponds to the inclusion of memory
effects and long jumps with divergent second-order moments
through slowly algebraic decaying waiting time ¢~ r(1*P)
and jump distribution functions 7~x~1*® with 0<p<1
and 0<a<2. As is well known, in this case, the resulting
macroscopic transport equation is the fractional diffusion
equation of order B in time and order « in space (see, for
example, Ref. [3], and references therein).

One might be tempted to think that the two cases men-
tioned above encompass all the fundamentally different sepa-
rable CTRWs and corresponding fluid limits. After all, in the
absence of memory, according to the generalized central
limit theorem, the sum of individual particle displacement
asymptotically converges to either a Gaussian (described by
the diffusion equation) if 7(x) has a finite second moment or
to a Lévy stable distribution (described by the fractional
equation) if 7(x) has a divergent second moment. However,
what is missing from this simple view is the fact that al-
though the dynamics asymptotically converge to a Gaussian
or a Lévy stable distribution, the convergence rate could be
extremely slow. A clear example are the truncated Lévy pro-
cesses introduced in Refs. [4,5] as a way to eliminate the
arbitrary large flights produced by Lévy stable distributions.
Since truncated distributions have finite second moments,
Gaussian convergence is expected. However, what was ob-
served in Refs. [4-6], and several subsequent studies, is that
the convergence rate is so slow that for practical purposes
(i.e., for time scales typically considered in applications) the
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process can be considered non-Gaussian but not described by
Lévy stable distributions.

Truncated Lévy processes have shown applicability in
many areas. In the context of plasma physics it has been
shown that truncated Lévy distributions reproduce the prob-
ability distribution function of the electrostatic potential fluc-
tuations measured in the edge of ohmically heated tokamaks
[7]. In fluids, it was observed that the probability distribution
function and scaling properties of truncated Lévy processes
display several features of two-dimensional turbulence simu-
lations including a sharp transition from algebraic to expo-
nential decay in the tails of the velocity probability distribu-
tion function [8]. In Ref. [9] truncated Lévy distributions
were used to fit and model the statistics of interplanetary
solar-wind velocity and magnetic velocity fluctuations mea-
sured in the heliosphere. Finally, in finance it has been shown
that truncated Lévy distributions describe the scaling of the
probability distribution function of the S&P 500 economic
index [10].

One of our main motivations for studying truncated Lévy
distributions stems from our studies of turbulent transport in
magnetically confined plasmas. In this system transport is
typically nondiffusive, and it has been shown that CTRW
models [11,12] and fractional diffusion transport equations
[13-15] are capable of describing some of the basic phenom-
enology. In particular, in pressure gradient driven plasma tur-
bulence the trapping effects of E X B eddies give rise to wait-
ing time distributions with power law tails and avalanchelike
transport events give rise to jump distributions with power
law decay in Refs. [16,13]. In this system, transport is de-
scribed by a space-time fractional diffusion equation with
a=3/4 and B=1/2 [14]. However, the transport models con-
sidered up to now have been based on the use of Lévy stable
distributions which, as discussed before, allow for the possi-
bility of arbitrarily large transport events characterized by
divergent second moments. Although the presence of large
displacements has been well documented in numerical simu-
lations of turbulent transport, it is clear from the physical
point of view that particle displacements cannot be arbi-
trarily large. In particular, it is expected that some sort of
decorrelation in the particles trajectories or boundary effects
in finite size systems will eventually lead to the truncation of
otherwise arbitrary large transport events. Accordingly, to
make further progress in the modeling of nondiffusive turbu-
lent transport it is important to study CTRWs and their asso-
ciated macroscopic transport for truncated Lévy distribu-
tions.

Despite their apparent widespread applicability, little is
known about the role of truncated Lévy distributions in
CTRW models, and most importantly about the role of the
truncation effects in the formulation of macroscopic trans-
port equations with memory. Among the few previous stud-
ies on macroscopic transport models incorporating truncated
Lévy processes is Ref. [17] where a special case of a distrib-
uted order fractional diffusion equation was proposed to de-
scribe a power-law truncated Lévy process. In this case, a
Lévy distribution with a power law decay of order 1+« is
truncated by a steeper power law distribution with decay 5
—a. Although moments of order higher than 4—« still di-
verge, the (slow) Gaussian convergence is guaranteed by the
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existence of the second moment. The models discussed here
are based on exponentially truncated Lévy distributions
which have finite moments of all orders. In addition, we
incorporate memory effects which were not addressed in
Ref. [17]. In Refs. [18-20] subordination arguments from
probability theory were presented for the study of the scaling
limit of the CTRW with memory and general Lévy distribu-
tions. The resulting generalized transport equation contains a
fractional time derivative describing the memory and the in-
finitesimal generator of a general Lévy process describing
the jumps. Here we follow a complimentary approach based
on the Montroll-Weiss master equation for a general CTRW
and show that the corresponding generalized transport equa-
tion naturally arises from a fluid (long wavelength) limit.

One of the main goals of the present work is to study the
interplay of memory and truncation effects in fractional dif-
fusion. To address this problem we propose a fractional
equation with exponentially truncated fractional derivatives.
This equation follows from the generalized transport equa-
tion mentioned above. We show that the solution of the ex-
ponentially truncated equation exhibits a scaling transition.
In particular, the return probability distribution function ex-
hibits a transition from the Lévy stable scaling G(0,r)
~1P'¢ at short times, to the scaling G(0,)~t#? at long
times, where a and (3 are the orders of the fractional deriva-
tives in space and time, respectively. For 23/ a>1 this cor-
responds to a transition from superdiffusive to subdiffusive
dynamics. The crossover time to subdiffusive behavior scales
as 7~N"%B_ where 1/\ is the truncation length scale. We
also show that the asymptotic behavior of the propagator
(Green’s function) of the truncated fractional diffusion equa-
tion exhibits a transition from algebraic decay (characteristic
of superdiffusive processes) for APt < 1 to stretched Gauss-
ian decay (characteristic of subdiffusive processes) for
N¥Bt>> 1, where 1/X\ is the characteristic scale length of the
truncation.

The rest of the paper is organized as follows. The next
section discusses the fluid limit of the Montroll-Weiss master
equation for a separable CTRW with memory and a general
Lévy stochastic process. Section III focuses on the study of
exponentially truncated processes. The corresponding frac-
tional diffusion equation is formulated and applications in-
cluding scaling transitions are presented. The conclusions
and a summary of the results are presented in Sec. IV.

II. FLUID LIMIT OF GENERAL, SEPARABLE CTRWs

The CTRW model consists of an ensemble of particles
that at times 7,75, ...,t,..., experience a displacement, or
jump, Xxy,Xs,...,X;,... . Both the waiting times 7,=t;,—1,_,
and the jumps x; are random variables drawn from a waiting-
time distribution ¢{(7) and a jump distribution 7(x), respec-
tively. Given #z and ¢, the probability of finding a particle at
position x and time ¢ is determined by the Montroll-Weiss
(MW) equation [1,21,3] which in Fourier-Laplace space
takes the form

Pk,s) = — , 1)
S 1=y(s) k)

where C{y}t=ils)=[ oe™(t)dt is the Laplace transform of
the waiting time distribution function and (k)
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=[”,e™ n(x)dx is the Fourier transform of the jump distribu-
tion function. Introducing the survival probability distribu-
tion function

Y= J i, b=, @
; s
Eq. (1) becomes
p= % (3)
1-[1-s¥]%

Following Refs. [22,23] we consider W (r)=Eg(-1#), where
Eg is the Mittag-Leffler function for which (see, for example,
Ref. [24])

) n!sh!

E{tnﬁEﬁ [+atP]} = —(SB ST Re(s) > a],  (4)
where E(g) (z):dd—;E 5(2). Using Eq. (4), the Montroll-Weiss
equation reduces to

- B-1

= s

P=——. 5
sP+1-7 ©)

Introducing the Caputo fractional derivative in time

| Loaf cnBA _ BF_ I
Oth_ F(l _ﬂ) 0 (I— T)'BdT’ ‘C[Oth]_s f § f(o)’
(6)
Eq. (5) yields for P(x,t=0)=4(x)
DPP(k1)=[7-1]P. (7)

The use of the Mittag-Leffler function allowed the exact
inversion of the Laplace transform in terms of the fractional
time derivative, something that is not possible for a general
waiting time distribution function. However, in the fluid limit
what matters is the asymptotic decay of the survival prob-
ability distribution function. Thus, any distribution that ex-
hibits the same algebraic decay as the Mittag-Leffler func-
tion, namely, ¢~ ) will yield Eq. (7) in the fluid limit.
What is remarkable about the Mittag-Leffler function is that,
as originally pointed out in Refs. [22,23], this choice leads
directly to a fractional equation in time without the need to
take a time asymptotic (s—0) limit. Note that, as expected,
since E,(z)=¢%, the inversion is also exact in the Markovian
B=1 case.

In Fourier space, the large scale macroscopic fluid limit
corresponds to k—0. In this limit, approximating 7(k)
=e =14+ A(k)+... in Eq. (7) leads to

(DPP(k.1)= AP, (®)

where A is the characteristic exponent of 7, the probability
distribution for jumps. Equation (8) is a macroscopic trans-
port equation describing, in the small & fluid limit, the dy-
namics of a CTRW with a general probability distribution
function of jumps with characteristic function 7=e. As we
will discuss in the next section, this equation contains as a
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special case the well-known fractional diffusion equation
corresponding to Lévy stable distributions but, most impor-
tantly, it allows the incorporation in the fluid limit of more
general stochastic process including truncated Lévy distribu-
tion functions.

Using Egs. (4) and (6) it is straightforward to show that
the general solution of Eq. (8) for an initial condition Pg(x)
=P(x,1=0) is

©

G(x=y,t)Py(y)dy, 9)

—o0

1
Plx,t)=—
() ="
where the Green’s function or propagator G is given by
1
G(x,1) = . f e""XEB[tﬁA(k)]dk. (10)
L —

The form of Eq. (10) is similar to the form of the solution of
the standard fractional diffusion equation, see, for example,
Refs. [25,26]. However, it is important to keep in mind that
Eq. (10) is more general since, contrary to the well-studied
standard case, the function A is not restricted to be of the
a-stable type. For a probabilistic interpretation of the solu-
tion in Eq. (10) based on subordinated processes see Refs.
[18,19]. Note that in the Markovian B8=1 case, E,(z) =€ and
the Fourier transform of the propagator of the macroscopic
transport equation at time 7, G(k,1)=e>=(#)', is the t power
of the characteristic function of the “microscopic” particle
jump distribution function.

To make further progress we need to specify the form of
the probability distribution function of jumps 7. Here we
assume that this function belongs to the large class of infi-
nitely divisible distributions. The logarithm of the corre-
sponding characteristic function 7 is given by the Lévy-
Khintchine representation [27]

o0

1 )
A=In 5=aik - Eolk2 + [e* =1 — iku(x)w(x)dx,

—00

(1

where a is a constant and o=0. The function u(x) is a trun-
cation function used to remove the singularity of the inte-
grand at the origin and to guarantee the convergence of the
integral. It can be shown that the specific form of this func-
tion is irrelevant and that different choices only manifest as
different rescalings of the constant a. The function w(x) is
called the Lévy density and it satisfies [min{l,x*}w(x)dx
< oo, Substituting Eq. (11) into Eq. (8) and taking the inverse
Fourier transform yields

[

| ‘
‘DPP=—ag P+ Eo%ﬁp + | [P(x=y,0)=P(x,1)

—00

+u(y)d Plw(y)dy. (12)

Equation (12) is the macroscopic transport equation describ-
ing the continuum, fluid limit of a CTRW with a general
jump distribution function 7 characterized by a general Lévy
density w(y). For an alternative derivation of Eq. (12) see
Refs. [18-20]. As expected, the integral operator on right-

041105-3



A. CARTEA AND D. DEL-CASTILLO-NEGRETE

hand side of Eq. (12) is the infinitesimal generator of a gen-
eral Lévy process. By a general Lévy process we mean a
stochastic process x,, for 0 <<t<<o and x,=0 consisting of
independent and  stationary increments with log-
characteristic function tA with A defined in Eq. (11) [27].
According to this definition a Lévy process consists of a
combination of a drift component, a Brownian motion
(Gaussian) component, and a jump component. These three
components are completely determined by the Lévy-
Khintchine triplet (a,0?,w). The constant a parametrizes the
“trend” component which is responsible for the development
of the process x, on the average. The parameter o~ defines
the variance of the continuous Gaussian component of x,.
Finally, the Lévy density w is responsible for the behavior of
the jump component of x, and determines the frequency and
magnitude of jumps. Given the fact that the propagator in
Eq. (10) gives already the solution of the fluid limit of the
CTRW, one might wonder about the usefulness of Eq. (12).
The key issue here is that having Eq. (12) is conceptually
important when studying the role of general Lévy processes
(and, in particular, truncated processes) in other problems for
which Eq. (10) is not necessary the solution. Two important
examples would be the study of the role of truncation effects
in the fractional Fokker-Plank equation or in the propagation
of fronts in the fractional Fisher-Kolmogorov equation. In
principle, such studies could be carried out by adding to Eq.
(12) an external potential in the Fokker-Planck case or the
corresponding reaction kinetics in the Fisher-Kolmogorov
case.

III. APPLICATION: FRACTIONAL DIFFUSION
EQUATION FOR EXPONENTIALLY TRUNCATED LEVY
PROCESSES

In this section we consider two specific cases of Lévy
processes and obtain from Eq. (12) the corresponding mac-
roscopic transport equations. The first example corresponds
to the Lévy stable case and recovers the well-known deriva-
tion of the standard fractional diffusion equation [3,23]. The
second example considers the case of an exponentially trun-
cated Lévy process and leads to a fractional transport equa-
tion describing the interplay of memory effects, long-range
jumps, and truncation.

For a Lévy stable process the Lévy density is given by

1+6
c( 5 )|x|_(l+“) for x <0,
wig(x) = (13)
e (1 - 0) —(1+a)
ch for x>0,

where ¢ >0 and —1 = #=1 is an asymmetry parameter. Sub-
stituting Eq. (13) into Eq. (11) and integrating, it follows that

[

o’
App=iak - —k - —————
ET =1 2 2008(&’7‘[‘/2){

1+ O\ +ik)*+(1-6)
1+ 0N\ +ik)*+(1-60(\-
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1
ALS = lak - _(Tzk2
2
clk|*{1 +i60 sgn(k)tan(am/2)} for a# 1,
2i6
clky 1+ —sgn(k)Inlk| ( for a=1,
T

(14)

where sgn(k)=
exponent for a Lévy stable process. Note, however, that we
are using a different sign convention for the asymmetry com-
pared to the one used in Ref. [28].

Introducing the Riemann-Liouville fractional derivatives
[24,29]

L " 1K)

D= Fm-a)ox™J, (x_y)a/+l—mdy’ (15)
ap_ D" (T SO

Dof = Tm—-a)ox), (y- x)““ nd (16)

with m—1=a<m and using

F_.DXf)=(=ik)*f, FDf=Gk)F,  (17)

Eq. (8) for A=Ag gives the well-known fractional diffusion
equation

1
ad P +=0*@P + c[l_.D*+r DX]P,
2

(18)

SDPP(x,t)=—

where the weighting factors are defined as

(1-6) (1+0)

-—— = 19
2 cos(a/2) " 2 cos(am/2) (19)

A. Exponentially truncated Lévy distribution
For exponentially truncated Lévy processes [5] the Lévy
density is given by

1+6
cu|x|_(““)e_7‘|x‘ for x <0,

werl(x) = (20)

1-0
( > )x (+a)p=Mr - for x>0,

0<a=2,c>0,-1=60=1, and A =0. In this case the inte-
gral in Eq. (11) leads to the characteristic exponent [5]

(N — ik)* = 2\*,

k)% =2\ - @D

2ikaON*",
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for 0<a<1 and 1<a=2, respectively. The interpretation
of the parameters is very similar to the Lévy stable case. The
damping parameter A can be seen as the “strength” of the
exponential decay of the tails. When A — 0, the further out in
the tails of the distribution the dampening will take effect
and the longer the process will take to become Gaussian as a
consequence of the central limit theorem. Moreover, it is
straightforward to observe that for A>0 the process will
have finite moments of all orders. Substituting Eq. (21) into
Eq. (8) and using

Fle™_ D%MP]=(\ - ik)*P, (22)
FleM D% ™MP] = (\ + ik)*P
we obtain, after inverting the Fourier transform,
cn B 0-2 a,\
0D,P=—V0XP+?dfP+cDx’ P-P, (23)

where the \-truncated fractional derivative operator of order
a, D*" is defined as

’D;")‘ = le_)‘x_mee)‘x + re)‘xfoée_” , (24)
where V=a for 0<a<1 and V=a-v for 1 <a <2 with
caO\*!
v (25)
|cos(am/2)]
and
c\”
y=————. (26)
cos(am/2)

As expected, for A\=0 Eq. (23) reduces to Eq. (18).

B. Crossover and slow convergence to subdiffusive transport

As an application of Eq. (23) we consider the interplay
between memory effects and truncation. In particular, we
show that for 8# 1, in the presence of a truncated Lévy
process, the probability of first return exhibits a transition
from superdiffusive dynamics to subdiffusive dynamics. We
also show that this transition manifests as a crossover from
algebraic decaying tails to exponentially decaying tails in the
probability distribution function.

For a=0 and =0, the characteristic exponent in Eq. (21)
satisfies the scaling relation Agp(uk; uN)=u*Agp(k;\). Us-
ing Eq. (10), this scaling implies the following scaling for
the propagator G:

Gx, ut;N) = w PG (P, t; WP*N). (27)

Note that due to the dependence on A there is no space-time
self-similarity, physically the truncation introduces the pre-
ferred length scale 1/\ that breaks the scale invariance. That
is, the probability distribution function at a time w cannot be
obtained from a simple rescaling in x of the probability dis-
tribution function at ¢, unless \ is also rescaled.

To gain some intuition into the role of truncation consider
the moments of the propagator
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I'Gk,1)

(x") = J“’ X"G(x,t)dx=(=1i)" P
o k=0

. (28)

where according to Eq. (10), é=Eﬁ[tﬂAET]. For A=0, only
the moments of order n < a exist, which, as discussed before,
is one of the drawbacks of the Lévy-Stable distributions from
the applications point of view. On the other hand, for A #0,
the function Agr(k) is C” at k=0, and all the moments of the
distribution exist. The first-order moment exhibits the usual
scaling

%4
(x)= mtﬁ , (29)

where V=a-v for 0<a<1, and V=a for 1 <a<2, with v
defined in Eq. (25). Here the truncation plays no role in the
scaling exponent. However, note that depending on the val-
ues of @ and the asymmetry parameter 6, the truncation can
increase or decrease the drift velocity a. For the time evolu-
tion of the variance the second moment gives

2 1
2= ([x— () = - V226
(lr= 0T TeB+1) TXB+1)
2x
e 30
rp+1) (30)
where we have introduced the effective diffusivity
o cala-1| 31)
=t 5.
X= 2 T olcos(am2) N

The truncation increases the Gaussian diffusivity ?/2 by a
term inversely proportional to N and directly proportional to
c, the strength of the truncated Lévy density in Eq. (20).
Furthermore, in the limit A—0, y— %, a result consistent
with the divergence of the second moment in the absence of
truncation.

Of particular interest is the scaling in time of the prob-
ability of first return G(x=0,7). From the scaling relation in
Eq. (27) we have G(0,;\)=r"%G(0,1;#/*\). In the ab-
sence of truncation A=0, this implies the expected scaling
G(0,1) ~ 1P« which in the case =2, B=1, reduces to the
well-known diffusive scaling G(0,7)~r"2. The scaling
G(0,1) ~ 1P remains valid for N#0 and small enough
times because lim, ., G(0,1;#*N\)=G(0,1;0). The long-
time behavior is less trivial and leads to a different scaling.
The decay of the Mittag-Leffler function implies that in the
limit r— < the maximum contribution to the integral in Eq.
(10) comes from the region around k~0. Therefore, using
stationary phase arguments we can get the leading order
asymptotic behavior by Taylor expanding the argument of
the Mittag-Leffler function around k=0. Note, however, that
some care must be taken since, contrary to the usual situation
involving exponentials, Eg decays algebraically for B+ 1.
Restricting attention to the symmetric case =0 with no drift
a=0, and substituting the small k expansion App=—yk>+...
into Eq. (10) we get
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(A) G(0,0)
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10
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10° 10° 10°
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FIG. 1. (Color online) Probability of first return G(0,7) for the
truncated fractional diffusion Eq. (23) obtained from the numerical
evaluation of the general solution in Eq. (10) for A=Agy with 6
=0, a=1.25, and B=0.75. The solid line denotes the value of
G(0,1), the steeper dashed line corresponds to the superdiffusive
scaling G(0,7) ~1#'®, and the less steep dashed line corresponds to
the subdiffusive scaling G(0,7) ~ . The scaling constant in the
horizontal axis is A=[c/|cos(am/2)|]"E.

1 oo
lim G(0,£;\) ~ — f Ef[- xtPk*1dk
o

11— 0

= l# J ’ Ep(- uz)du:| P2 (32)

TNXJ0

Thus, the truncation gives rise to a transition in the scaling of
the return probability from ~¢#% for t< 1 to ~1#? for
t>1. In the case 28/ a>1 this corresponds to a transition
from superdiffusive scaling to subdiffusive scaling. This
transition is clearly observed in Fig. 1 which shows the re-
turn probability as a function of time over ten orders of mag-
nitude obtained from the direct numerical evaluation of the
integral in Eq. (10) with a=1.25, 8=0.75, and 6=0. From
the scaling of the probability distribution in Eq. (27) it fol-
lows that the time 7, for the crossover to subdiffusive dy-
namics scales as

T, ~ ¢ VB\"¥B, (33)

As expected, in the Markovian case, B=1, we recover the
scaling for ultraslow Gaussian convergence reported in Refs.
[4.6].

For symmetric =0 processes with | <a<2 and a=0
=0, the propagator in Eq. (10) can be written as

(m/N)G(\x,7) = f ’ cos(\Nxu) Eg[ 7°®(u)ldu,  (34)
0

where
®d(u)=(1+u?)?? cos[a tan" " (u)] - 1 (35)

and
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7=[- c/cos(am/2) NPt (36)

Figure 2 shows the temporal evolution of the propagator G
as a function of x obtained from the numerical evaluation of
Eq. (34) for @=1.25 and 8=0.75. Because of the truncation,
the evolution is not self-similar. In particular, the solution
exhibits a transition in (log-normal scale) from a concave
profile shape at short times to a convex shape at long times.
At the crossover time scale 7~ 1 the distribution exhibits a
linear profile indicating exponential decay. To ease the com-
parison at different times we have rescaled the spatial dimen-
sion by o=, which corresponds to the scaling of the
variance in the subdiffusive limit. To maintain the normal-
ization of the probability, the vertical axis has been rescaled
by 0. Figure 2(a) shows the propagator in the small 7 limit.
As expected, in this case G exhibits the characteristic form of
the Green’s function of the fractional diffusion equation for
B<1<a<2.The superimposed dashed line shows the func-
tion G, B(Z)=Z_(1+“). It is observed that for Ax/o>1, G
— G, 5 This result is expected because of the fact that for
small 7the truncation effects are negligible and the tails of G
exhibit the algebraic scaling x"'*® corresponding to the so-
lution of the standard (A=0) fractional diffusion equation.
Figures 2(b)-2(d) show the propagator G at later times. The
superimposed dashed line in Fig. 2(d) is a plot of the func-
tion Gj 4(z)=z" exp(-z*2) with a;=(8-1)/(2-p) and a,
=2/(2—- ), which is the asymptotic form of the solution of
the subdiffusive (@=2,0<B<1) fractional equation [3].
Consistent with the fact that for 7>> 1 truncation effects are
dominant, it is observed that for Ax/o>1, GHG; &

IV. CONCLUSIONS

We considered the fluid limit of the continuum time ran-
dom walk model for the most general jump probability dis-
tribution function in the Lévy-Khintchine representation. The
resulting integrodifferential equation gives the probability
distribution function in the long-time small-k (large scale)
limit. The time evolution is governed by a fractional time
derivative and the spatial evolution corresponds to the gen-
erator for a general Lévy density. As expected, for Lévy
stable densities we recover the usual fractional diffusion
equation. However, one of the main drawbacks of Lévy
stable distributions from the applications point of view is
that, due to the algebraic decaying tails, they have divergent
moments. In the past, to circumvent this problem, several
authors have proposed the use of truncated Lévy densities
that lead to finite moments. Of particular interest are expo-
nentially truncated densities in which the algebraic decay of
the tails is damped by an exponential factor. These distribu-
tions have found widespread applicability in many areas in-
cluding plasma physics, fluid mechanics, and finance. How-
ever, despite their importance, little is known about the role
of these distributions in CTRW with memory and in the cor-
responding fluid limit. Here we addressed this issue and for-
mulated a macroscopic transport equation in terms of trun-
cated fractional derivatives. Because of the truncation, the
dynamics ultimately converge to the Gaussian case for S
=1 and to the standard subdiffusive case for S<1. However,
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FIG. 2. (Color online) Time evolution of the solution of the truncated N\ # 0 fractional diffusion Eq. (23) for a delta function initial
condition and a=o=0=0, a=1.25, and 8=0.75. The dashed lines in panels (a) and (d) correspond to the asymptotic behavior of the solution
of the standard A=0 fractional diffusion equation for (a,8)=(1.25,0.75) and (a,B)=(2,0.75), respectively. To ease the comparison at
successive times, the axes have been rescaled by the variance in the subdiffusive limit og= 2. A slow transition due to the truncation is
observed from the superdiffusive concave algebraic decaying profile in panel (a) to the subdiffusive convex profile in panel (d) with
asymptotic stretched Gaussian decay. At the crossover time scale 7~ 1, the profile shows asymptotically vanishing curvature characteristic

of exponential decay.

the key issue is that convergence can be extremely slow and
for time scales of interest to applications the process can be
considered non-Gaussian but not described by Lévy stable
distribution. The proposed truncated fractional diffusion
equation describes this intermediate asymptotic regime
which cannot be captured by the standard fractional diffusion
equation based on Riemann-Liouville derivatives. As an ap-
plication of the truncated fractional equation we studied the
interplay between truncation and memory effects. It was
shown that the return probability distribution function exhib-
its a transition from the Lévy stable scaling G(0,7) ~ 17 at
short times, to G(0,f)~t#? scaling at long times. For
23/ a>1 this corresponds to a transition from superdiffusive
to subdiffusive dynamics. The crossover time to subdiffusive
behavior scales as 7~N"%8, where 1/\ is the truncation
length scale. The asymptotic behavior of the propagator

(Green’s function) of the truncated fractional diffusion equa-
tion exhibits a transition from algebraic decay (characteristic
of superdiffusive processes) for At <1 to stretched Gauss-
ian decay (characteristic of subdiffusive processes) for
NP> 1.
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