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We consider a family of models describing the evolution under selection of a population whose dynamics
can be related to the propagation of noisy traveling waves. For one particular model that we shall call the
exponential model, the properties of the traveling wave front can be calculated exactly, as well as the statistics
of the genealogy of the population. One striking result is that, for this particular model, the genealogical trees
have the same statistics as the trees of replicas in the Parisi mean-field theory of spin glasses. We also find that
in the exponential model, the coalescence times along these trees grow like the logarithm of the population
size. A phenomenological picture of the propagation of wave fronts that we introduced in a previous work, as
well as our numerical data, suggest that these statistics remain valid for a larger class of models, while the
coalescence times grow like the cube of the logarithm of the population size.
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I. INTRODUCTION

It has been recognized for a long time that there is a
strong analogy between neo-Darwinian evolution and statis-
tical mechanics �1�. For an evolving population, there is an
ongoing competition between the mutations which make in-
dividuals explore larger and larger regions of genome space
and selection which tends to concentrate them at the optimal
fitness genomes. This is very similar to the competition be-
tween the energy and the entropy in statistical mechanics.

In the simplest models of evolution, one associates to
each individual �2,3� �or to each species �4�� a single number
which represents how fit this individual is to its environment.
This fitness is transmitted to the offspring, up to small varia-
tions due to mutations. A higher fitness usually means a
larger number of offspring �2,3,5–9�. If the size of the popu-
lation is limited by the available resources, survivors are
chosen at random among all the offspring. This leads in the
long term to a selection effect: the descendants of individuals
with low fitness are eliminated whereas the offspring of the
individuals with high fitness tend to overrun the whole popu-
lation.

Our focus in this paper is a class of such models �5–9�
describing the evolution of a population of fixed size N under
asexual reproduction. The ith individual is characterized by a
single real number, xi�g�, which represents its adequacy to
the environment. �This xi�g� plays a role similar to fitness in
the sense that offspring with higher xi�g� will be selected; in
the following, we shall simply call it the position of the
individual.� At a generation g, the population is thus repre-
sented by a set of N real numbers xi�g� for 1� i�N. At each
new generation, all individuals disappear and are replaced by
some of their offspring: the jth descendant of individual i has
position xi�g�+�i,j�g� where �i,j�g� represents the effect of
mutations from generation g to generation g+1. Then comes
the selection step: at generation g+1, one keeps only the N
rightmost offspring among the descendants of all individuals
at generation g. One may consider two particular variants of
this model.

Model A. Each individual has a fixed number k of off-
spring and all the �i,j�g� are independently distributed ac-
cording to a given distribution ����. For example, ���� may
be the uniform distribution between 0 and 1. A realization of
such an evolution is shown in Fig. 1.

Model B. Each individual has infinitely many offspring:
the �i,j�g� are distributed according to a Poisson process of
density ���� �this means that, with probabiliy ����d�, there
is one offspring of individual i with position between xi�g�
+� and xi�g�+�+d��. The density ���� is a priori arbitrary.
The only constraints we impose are that ���� decays fast
enough, when � increases, for the position not to diverge
after one generation, and that �−�

� ����d�=�, for the survival
probability to be 1. �This latter constraint implies in fact that
each individual i has infinitely many offspring before the
selection step. After selection, however, each individual has a
finite number of surviving offspring in the next generation,
and the model would remain the same if each individual had
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FIG. 1. Numerical simulation of the evolution of model A, with
k=2 and ���� uniform between − 1

2 and 1
2 for N=10. Upper plot: The

filiation between each individual and its two offspring is shown. At
each generation, the N rightmost survive. Lower plot: The noisy
traveling wave front hg�x�, constructed as in �1�, is shown for the
five generations of the upper plot.
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N offspring located at the N rightmost positions of the Pois-
son process.�

Another example would be N branching random walks
where the size of population is kept constant by eliminating
the leftmost walk each time a branching event occurs.
A visual representation of this latter example is shown in
Fig. 2.

As discussed in Sec. II, these models are related to noisy
traveling wave equations, of the Fisher–Kolmogorov-
Petrovsky-Piscounov �Fisher-KPP� type �10–12�, which ap-
pear in many contexts: disordered systems �13,14�, reaction-
diffusion �15–18�, fragmentation �19� or QCD �20–22�. A
number of recent works �8,18,23–30� focused on the fluctua-
tions of the position of these fronts, and this will allow us to
predict how the fitness of the population evolves with the
number of generations.

Another interesting aspect of these models with stochastic
evolution is their genealogy �9�: one can associate to any
group of individuals, at a given generation, its genealogical
tree. One can then study how this tree fluctuates, and in
particular what is the number of generations needed to reach
their most recent common ancestor. The relationship between
noisy traveling waves and genealogies is the main purpose of
the present paper.

Note that in the present work, we will limit the discussion
to models A and B where selection is strict in the sense that
the N rightmost offspring are selected at each time step. In
the numerical simulations presented in �9�, we showed that
the behavior is robust, as it remains unchanged when selec-
tion is less strict, for example, when the N survivors are
chosen at random among the 3N /2 rightmost offspring.

While the models we consider here are difficult to solve
for arbitrary ���� and ����, one particular case of model B,
with ����=e−�, turns out to be analytically solvable both for
the statistics of the position of the population and for the
properties of the genealogical trees. We shall call this case
the “exponential model” and present its solution in Sec. III.

As explained at the end of Sec. II, the exponential model
is, however, nongeneric in the sense that it does not behave
like a Fisher-KPP front. The generic case �which behaves
like a noisy Fisher-KPP equation that we are not able to

solve� and the exponential model can, however, be both de-
scribed by a similar phenomenological theory �8� that we
develop in Sec. IV. As a consequence, we argue that both the
generic case and the exponential model have the same cumu-
lants for the position of the front �up to a change of scale�,
and that the genealogical trees have the same statistics in
both models �up to a change of time scale�. Numerical re-
sults, presented in Sec. V, support these claims.

II. THE LINK WITH NOISY FISHER-KPP FRONTS

Our models are nothing but stochastic models for the evo-
lution of the positions of N individuals along the real axis.
These positions form a cloud that does not spread: if an
individual happens to fall far behind the cloud, it will have
no surviving offspring, whereas the descendants of an indi-
vidual far ahead of the cloud grow until they replace the
whole population. With this picture in mind, it makes sense
to describe the population by a front. Let Nhg�x� be the num-
ber of individuals with a position larger than x,

hg�x� =
1

N
�

x

�

dz�
i=1

N

��z − xi�g�� . �1�

Clearly, hg�x� is a decreasing function with hg�−��=1 and
hg�+��=0. In this section, we write the noisy equation that
governs the evolution of this front.

Let Nhg+1
* �x� be the number of offspring on the right-hand

side of x at generation g+1 before the selection step. �So, for
instance, hg+1

* �−�� is k in model A and � in model B�. Once
hg+1

* �x� is known, the selection step to get hg+1�x� is simply

hg+1�x� = min�1,hg+1
* �x�� . �2�

Let us write the average and variance of hg+1
* �x� for both

models.

A. Statistics of hg+1
*

„x… for model A

In model A, one can write

Nhg+1
* �x� = �

i=1

N

ng+1
�i� �x� , �3�

where ng+1
�i� �x� is the total number of offspring before selec-

tion of the ith individual of generation g that fall on the
right-hand side of x. The probability that an offspring of i
falls on the right-hand side of x is �x

�d����−xi� and, as the k
offspring of xi�g� are independent, ng+1

�i� �x� has a binomial
distribution. The average and variance are therefore given by

ng+1
�i� �x� = k�

x

�

d� ��� − xi�g�� , �4�

Var�ng+1
�i� �x�� = k�

x

�

d� ��� − xi�g��

��1 − �
x

�

d� ��� − xi�g��	 .

As the variables ng+1
�i� �x� are uncorrelated, the average and

x

t

FIG. 2. A branching process for which the size N of the popu-
lation is limited to five. Each time the number of walks reaches six,
the leftmost walk is eliminated. Time goes downwards and the hori-
zontal direction represents space. The actual population is repre-
sented in black, while the grey lines represent what the population
would be for infinite N �i.e., in the absence of selection�.
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variance of Nhg+1
* �x� are simply from �3� the sums over i of

the averages and variances of the ng+1
�i� �x�. For the average,

one has

Nhg+1
* �x� = k�

x

�

d��
i

��� − xi�g��

= − k�
x

�

d�� dz ��� − z�Nhg��z� , �5�

where we used, from �1�,

�
i=1

N

��x − xi�g�� = − Nhg��x� . �6�

Simplifying, and doing the same transformation for the vari-
ance, one finally gets for model A

hg+1
* �x� = k� d� hg�x − ������ , �7a�

Var�hg+1
* �x�� =

k

N
� d� hg�x − ������

��1 − 2�
�

�

dz ��z�	 . �7b�

�Note that these average and variance are obtained for a
given hg�x�: they are not computed for the whole history.�

B. Statistics of hg+1
*

„x… for model B

In model B, before the selection step, an individual at
position xi�g� has infinitely many offspring given by a Pois-
son process of density ��x−xi�g��. As Poisson processes are
additive, the whole population �before selection� at genera-
tion g+1 is also given by a Poisson process of density 	�x�
with

	�x� = ��x − x1�g�� + ¯ + ��x − xN�g�� . �8�

The number of individuals on the right-hand side of x is
therefore a Poisson random number of average �x

�d� 	���,
thus

Nhg+1
* �x� = Var�Nhg+1

* �x�� = �
x

�

d� 	��� . �9�

One can rewrite 	��� using the same trick as in �6� and �5�.
One finally gets for model B

hg+1
* �x� =� d� hg�x − ������ �10a�

and

Var�hg+1
* �x�� =

1

N
� d� hg�x − ������ . �10b�

Front equations for both models and comparison to Fisher-
KPP fronts

Comparing �10� and �7�, one sees that one can write, for
both models

hg+1
* �x� = hg+1

* �x� + 
g�x�
Var�hg+1
* �x�� , �11�

where 
g�x� is a noise with 
g�x�=0 and Var�
g�x��=1. Us-
ing �2� one finally gets for model A,

hg+1�x� = min�1,k� d� hg�x − ������

+

g�x�

N


k� d� hg�x − �������1 − 2�
�

�

dz ��z�	�
�12a�

and, for, model B,

hg+1�x� = min�1,� d� hg�x − ������

+

g�x�

N


� d� hg�x − ������� . �12b�

The precise distribution of 
g�x� depends on N and on the
choice of the model. Far from both tips of the front, this
distribution is Gaussian. At the tip, however, where hg�x� is
of order 1 /N, both hg�x� and its variance are comparable and
the noise cannot be approximated by a Gaussian. �This is
because the number of individuals is small and the discrete
character of hg�x� cannot be forgotten anymore.� Further-
more, the noise is correlated in space but uncorrelated for
different g.

Thus, the precise expression of the noise 
g�x� is rather
complicated, but its variance is 1, so that the amplitude of the
whole noise term in �12� decays as 1/
N as N becomes
large.

Equations �12� are very similar to the noisy Fisher-KPP
equation

�hg�x�
�g

=
�2hg�x�

�x2 + hg�x� − hg�x�2 +

g�x�

N


hg�x� − hg�x�2,

�13�

where 
g�x� is a Gaussian noise with 
g�x�=0 and

g�x�
g��x��=��g−g����x−x��. The noisy Fisher-KPP equa-
tion appears as a dual equation for the branching process A
→2A �rate 1� and 2A→A �rate 1 /N� or, more simply, is an
approximate equation, valid for large N, describing the frac-
tion of A in the chemical reaction A+B→2A when the con-
centration of reactants is of order N �16,31,32�.

Comparing �12� and �13�, the convolution of hg�x� by
k���� or ���� in �12� spreads the front in the same way as the
diffusion term in �13�. The same convolution induces the
growth, similarly to the linear hg�x� term in �13�, as k����
and ���� both have an integral larger than 1. Thus, the fixed
point hg�x�=0 is unstable. To balance the indefinite growth
of hg�x�, both �12� and �13� have a saturation mechanism
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�respectively, the min�1,…� and the −hg�x�2 term� which
makes hg�x�=1 a stable fixed point. So, ignoring the noise
terms �N→��, both �12� and �13� describe a front that
propagates from a stable phase hg�x�=1 into an unstable
phase hg�x�=0. Finally, the noise terms in �12� and �13� have
a similar amplitude of the order of 
hg�x� /N in the unstable
region hg�x��1.

It is clear from the definitions of our models that the av-
erage velocity of the front is an increasing function of N. We
first consider the limiting case N→�, which is equivalent to
removing the noise term �
g=0� from �12� and �13�. To de-
termine �12� the velocity of such traveling wave equations, it
is usually sufficient to consider the linearized equation in the
unstable region hg�x��1 �where the saturation mechanism
can be neglected�. Looking for solutions of the form hg�x�

exp�−
�x−vg��, one gets a relation between the decay rate

 and the velocity v=v�
� that reads

v�
� =
1



ln�k� d� ����e
�	 for model A, �14a�

v�
� =
1



ln�� d� ����e
�	 for model B. �14b�

�For Fisher-KPP �13�, one has v�
�=
−1+
.�
In many cases, when v�
� is finite over some range of 


and reaches a minimal value v�
0� for some finite positive
decay rate 
0, the selected velocity of the front for a steep
enough initial condition �12� is this minimal velocity v�
0�.
For instance, for �13�, one has 
0=1 and the selected veloc-
ity is v�
0�=2. Whenever this minimal velocity exists, we
shall say that the model is in the universality class of the
Fisher-KPP equation �13�. For finite N, i.e., in the presence
of noise, there is a correction to this velocity and the front
diffuses. We shall recall �8� in Sec. IV that for the generic
Fisher-KPP case, the correction to the velocity is of order
1 / ln2 N and that the diffusion constant is of order 1 / ln3 N.

There are, however, some choices of ���� or ���� for
which v�
� is everywhere infinite or has no minimum. An
example that we study in some detail in Sec. III is model B
with ����=e−�, for which v�
�=� for all 
. We shall see
that, in presence of noise, the velocity of that front diverges
as ln ln N for large N instead of converging to a finite value.
Another case would be model A with ����= p���−1�+ �1
− p����� for which v�
� has no minimum when p�1/k.
�Note, however, that for p�1/k, the function v�
� has a
minimum and the model belongs to the Fisher-KPP class.�

It has been known for a long time that traveling wave
equations are related to branching random walks �33,34�.
This can be seen by considering a single individual at the
origin at generation 0 and by looking at the evolution of the
probability Qg�x� that all of its descendants at generation g
are on the left-hand side of x. In the case of model B with
N=�, one has

Qg+1�x� = �
y

�1 − ��y�dy + ��y�dyQg�x − y��

= exp�� dy ��y��Qg�x − y� − 1�	 . �15�

This equation describes the propagation of a front of the
Fisher-KPP type, but where the unstable fixed point is at
Qg=1 instead of 0. For Qg close to 1, one gets exponentially
decaying traveling wave solutions of the form 1−Qg�x�
�exp�−
�x−vg��, with v=v�
� given by �14b�. �A similar
calculation for model A leads to v�
� given by �14a�.�

III. EXACT RESULTS FOR THE EXPONENTIAL MODEL

In this section, we derive exact expressions �for large N�
of the velocity, diffusion constant, and coalescence times for
model B with ����=e−�. We first write some expressions
valid for model B with an arbitrary density function ����,
which we shall later apply to the exponential model.

Before selection, the positions of the individuals at gen-
eration g+1 are distributed according to a Poisson process of
density 	�x� defined in �8�. We now wish to know the dis-
tribution of the N rightmost individuals of this Poisson pro-
cess �i.e., of the offspring who survive the selection step�. We
first consider the probability that there are no offspring on
the right-hand side of x. Clearly, it is given by

�
x�z��

�1 − 	�z�dz� = exp�− �
x

�

	�z�dz	 . �16�

Then, the probability that the rightmost offspring at genera-
tion g+1 is in the interval �x1 ,x1+dx1�, and the second right-
most is in �x2 ,x2+dx2�, up to the �N+1�st rightmost particle
is, for xN+1�xN� ¯ �x1,

	�xN+1�dxN+1	�xN�dxN ¯ 	�x1�dx1exp�− �
xN+1

�

	�z�dz	 .

�17�

It will be more convenient not to specify the ordering of the
N rightmost particles. Then, the probability that the �N
+1�st rightmost particle is in the interval �xN+1 ,xN+1

+dxN+1� �as before� and that the N rightmost particles are in
the intervals �xk ,xk+dxk� for 1�k�N, with no constraint on
the order of x1 , . . . ,xN, becomes, for k=1, . . . ,N,

1

N!
	�xN+1�dxN+1	�xN�dxN ¯ 	�x1�dx1

�exp�− �
xN+1

�

	�z�dz	 when xN+1 � xk. �18�

One obtains the probability that the �N+1�st rightmost
particle is in the interval �xN+1 ,xN+1+dxN+1� by integrating
�18� over x1 , . . . ,xN,
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1

N!
	�xN+1�dxN+1��

xN+1

�

	�x�dx	N

exp�− �
xN+1

�

	�z�dz	 .

�19�

�As we imposed �−�
+�����d�=� in the definition of the model,

this distribution is normalized; see �8�.� Finally, the probabil-
ity of x1 , . . . ,xN given xN+1 is the ratio of �18� by �19�. One
can see that, given the value of xN+1, the distributions of
x1�g+1� , . . . ,xN�g+1� are independent and one gets that,
given xN+1, each of the N rightmost particles is in �x ,x+dx�
with probability

	�x�dx

�
xN+1

�

	�x�dx

for xN+1 � x . �20�

Therefore, to generate the whole population after selec-
tion at generation g+1, one needs to calculate the density
	�x� according to �8�, then to choose the position of the
�N+1�st rightmost particle according to �19� and, finally, to
generate independently the N rightmost particles x1�g
+1� , . . . ,xN�g+1� with the distribution �20�. Note that the
�N+1�st particle is not selected and is therefore eliminated
after the N rightmost particles have been generated. This
procedure is valid for any ����, but is in general complicated
because �8� is not easy to handle analytically.

A. Statistics of the position of the front in the exponential
model

In the exponential model ����=e−�, however, everything
becomes simpler: the Poisson process �8� becomes

	exp�x� = e−�x−Xg� with Xg = ln�ex1�g� + ex2�g� + ¯ + exN�g�� ,

�21�

which means that the offspring of the whole population are
distributed as if they were the offspring of a single effective
individual located at position Xg. The distribution of the �N
+1�st rightmost particle �19� becomes

xN+1 = Xg + z with Prob�z� =
1

N!
exp�− �N + 1�z − e−z� ,

�22�

and, once xN+1 has been chosen, the distribution �20� of the
xk�g+1� for k=1, . . . ,N becomes

xk�g + 1� = xN+1 + yk with Prob�yk� = e−yk for yk � 0.

�23�

We now recall the calculation of the statistics of the po-
sition of the front �9� which was done for a similar model in
�14�, because we shall use later the same approach to calcu-
late the statistics of the genealogical trees.

There are many ways of defining the position of the front
at a given generation g. One could consider the position of
its center of mass, or the position of the rightmost or leftmost
individual, or actually, any function of the positions xk�g�

such that a global shift of all the xk�g� leads to the same shift
in the position of the front. Because the front does not
spread, the difference between two such definitions of the
position does not grow with time so that, in the limit g→�,
all these definitions lead to the same velocity, diffusion con-
stant, and higher cumulants.

For the exponential model, it is convenient to use Xg,
defined in �21�, as the position of the front. Indeed, one can
write

�Xg = Xg+1 − Xg = z + ln�ey1 + ey2 + ¯ + eyN� , �24�

where the definitions and probability distributions of z and yk
are given in �22� and �23�. From �24�, the shifts �Xg are
uncorrelated random variables, and the average velocity vN
and diffusion constant DN of the front are given by

vN = ��Xg�, DN = ��Xg
2� − ��Xg�2. �25�

More generally, all cumulants of the front position at a long
time g are simply g times the cumulants of �Xg. To compute
theses cumulants, we evaluate the generating function G���
defined as

eG��� = �e−��Xg� = �
−�

+�

dz Prob�z�e−�z�
0

+�

dy1 Prob�y1� ¯

��
0

+�

dyN Prob�yN��ey1 + ¯ + eyN�−�, �26�

and one obtains the cumulants by doing a small � expansion,

G��� = �
n�1

�− ��n

n!
��Xg

n�c. �27�

Using �22�, the integral over z is easy,

�
−�

+�

dz Prob�z�e−�z =
1

N!
�

−�

+�

dz exp�− �� + N + 1�z − e−z�

=
��N + 1 + ��

��N + 1�
. �28�

To calculate the integrals over yi in �26�, one can use the
representation �valid for ��0�

Z−� =
1

�����0

+�

d� ��−1e−�Z �29�

with Z=ey1 + ¯ +eyN. This leads to the factorization of the
integrals over y1 , . . . ,yN. Replacing Prob�yk� by its explicit
expression from �23�, one gets for ��0 �a similar calcula-
tion can be made for ��−1�,

eG��� =
��N + 1 + ��
��N + 1������0

+�

d� ��−1I0���N, �30�

where

I0��� = �
0

+�

dy e−y−�ey
. �31�

One can rewrite I0��� in several ways,
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I0��� = ��
�

+� du

u2 e−u

= e−� + ��ln � + 
E� − ��
0

�

du
1 − e−u

u

= 1 + ��ln � + 
E − 1� − �
k=0

+�
�− 1�k

�k + 1��k + 2�!
�k+2,

�32�

where 
E=−���1� is the Euler constant. �It is easy to check
that the derivatives of these expressions divided by � coin-
cide and the integration constant can be checked in the large
� limit.� The expansion �32� can also be found in the litera-
ture �35� as I0 is an exponential integral.

As I0��� is a monotonous decreasing function, the integral
�30� is dominated by � close to 0. In fact, using �30�, one can
check that the range of values of � which dominate �30� is of
the order of 1 / �N ln N�. Indeed, if one makes the change of
variables

� = �N ln N , �33�

one gets I0���N for values of � of order 1,

�I0����N 
 exp�N��ln � + 
E − 1��


 exp� �

ln N
�ln � − ln N − ln ln N + 
E − 1�	


 e−��1 + �
ln � − ln ln N + 
E − 1

ln N

+
1

2
��

ln � − ln ln N + 
E − 1

ln N
	2

+ ¯ � , �34�

where terms of order 1 /N have been dropped. Replacing this
expression into �30� and using

�
0

�

d� �x−1e−��ln ��k =
dk

dxk��x� , �35�

one gets

eG��� 

��N + 1 + ��
��N + 1�����

1

�N ln N�������

+
���� + 1� + ��� + 1��− ln ln N + 
E − 1�

ln N
+ ¯ 	



��N + 1 + ��

��N + 1�
1

�N ln N���1 +
�

ln N
����� + 1�

��� + 1�

− ln ln N + 
E − 1	 + ¯ � . �36�

�The next order is obtained in Appendix A.� The Stirling
formula allows to simplify the expression

��N + 1 + ��
��N + 1�

1

N� = 1 + O� 1

N
	 . �37�

Then, one gets from �36� the following expression for the
generating function:

G��� = − � ln ln N −
�

ln N
�ln ln N + 1 − 
E −

���1 + ��
��1 + �� 	

+ o� 1

ln N
	 . �38�

�This expression was obtained assuming ��0, but one can
show that it remains valid for ��−1 by using, instead of
�29�, a different representation of Z−�.� Now one simply
reads off the expressions of the cumulants of the position of
the front by comparing the expansion of �38� in powers of �
and �27�,

vN =
�Xg�

g
= ��Xg� = ln ln N +

1

ln N
�ln ln N + 1� + ¯ ,

DN =
�Xg

2�c

g
= ��Xg

2�c =
�2

3 ln N
+ ¯

�Xg
n�c

g
= ��Xg

n�c =
n!��n�
ln N

=
n!

ln N
�
i�1

1

in + ¯ , �39�

up to terms of order ln ln N / ln2 N that are computed in Ap-
pendix A. The velocity vN diverges for large N, in contrast
with models of the Fisher-KPP class for which vN has a finite
large N limit. Note that velocities which become infinite in
the large N limit occur in other models of evolution with
selection �2�.

B. Trees in the exponential model

Let us now consider the ancestors of a group of p�2
individuals chosen at random in the population �of size N�.
Looking at their genealogy, one observes a tree which fluc-
tuates with the choice of the p individuals and which is char-
acterized by its shape and coalescence times.

For model B with an arbitrary density ����, the probabil-
ity of finding, at generation g+1 before selection, an off-
spring in �x ,x+dx� is 	�x�dx with 	 given by �8�. On the
other hand, the probability of finding in �x ,x+dx� an off-
spring of xi�g� is, by definition, ��x−xi�g��dx. Therefore,
given an offspring at generation g+1 and position x, the
probability that its parent was the ith individual �at position
xi�g�� is

Wi�x� =
��x − xi�g��

	�x�
. �40�

For general ����, these probabilities Wi�x� depend on x, mak-
ing the calculation of these coalescence times difficult. In the
exponential model, however, �40� becomes
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Wi = exi�g�−Xg =
exi�g�

ex1�g� + ¯ + exN�g� =
eyi

ey1 + ¯ + eyN
,

�41�

where the yk=xk�g�−xN+1�g� are the exponential variables of
�23�. Therefore the Wi do not depend on x. It follows that the
probability qp that p individuals at generation g+1 have the
same ancestor at generation g is simply

qp =��
i=1

N

Wi
p� , �42�

where the average is over the yi of �41�. After performing
this average, all the terms in the sum over i become equal
since the yi are identically distributed. Therefore

qp = N�W1
p�

= N�
0

+�

dy1 e−y1
¯ �

0

+�

dyN e−yNepy1�ey1 + ¯ + eyN�−p.

�43�

Using the representation �29�, one obtains

qp =
N

�p − 1�!�0

+�

d� �p−1Ip���I0���N−1 �44�

in terms of the function I0��� introduced in �31� and of its
derivatives

Ip��� = �
0

+�

dy e�p−1�y−�ey
= �− �p dp

d�p I0���

= �1−p�
�

+�

du up−2e−u. �45�

For small � one gets, by taking derivatives of Eq. �32�, to
leading order,

I0��� 
 1 + ��ln � + 
E − 1�, I1��� 
 − �ln � + 
E� ,

Ip��� 

�p − 2�!

�p−1 for p � 2. �46�

So far, �44� is an exact expression and valid for arbitrary
N. From now on, we will work at leading order in ln N,
leaving the extension to subleading orders to Appendix A.

As for the obtention of �38� from �30�, the integral over �
is dominated by the region where � is of order 1 / �N ln N�.
Doing the same change of variable �=�N ln N, one gets
I0���N
e−� and, using �46�, �p−1Ip���
�p−2�!. Therefore,
we obtain for p�2,

qp 

1

ln N

1

p − 1
. �47�

We see that for large N the probability that p branches merge
is of the same order for all p, in contrast to the neutral model
��36,37� and Appendix C� for which qp is of order 1 /Np−1, so
that q2�q3�q4�¯.

To calculate the moments of the coalescence times, it is
convenient to introduce the probability rp�k� that p randomly
chosen individuals at generation g+1 have exactly k ances-
tors at generation g. In one generation, at leading order in N,
only a single coalescence may occur among the p individu-
als, and �47� tells us that the coalescence probability goes
like 1/ ln N �any additional coalescence at the same genera-
tion would in fact cost an additional power of 1 / ln N; see
Appendix A�. Consequently, we just need that p−k+1 indi-
viduals coalesce to one ancestor, say individual number i �the
probability is Wi

p−k+1�, and that none of the other individuals
have i as an ancestor �probability �1−Wi�k−1�. Altogether,
this reads 1

rp�k� = � p

k − 1
	��

i=1

N

Wi
p−k+1�1 − Wi�k−1� . �48�

The factor �1−Wi�k−1 may be expanded and the average may
be expressed with the help of the qp defined in �42�,

rp�k� = � p

k − 1
	�

j=0

k−1 �k − 1

j
	�− 1�k−1−jqp−j . �49�

Replacing �47� in �49�, one gets after some algebra

rp�k� 

1

ln N

p

�p − k��p − k + 1�
, �50�

which holds for k� p. The probability rp�p� that there is no
coalescence at all among the p individuals �that is to say, that
all p have distinct ancestors� has a simple expression, which
is obtained from a completeness relation,

rp�p� = 1 − �
k=1

p−1

rp�k� 
 1 −
p − 1

ln N
. �51�

The knowledge of the probabilities rp�k� in �50� and �51�
allows one to determine �in the large N limit� all the statis-
tical properties of the trees.

We introduce the probability Pp�g� that p individuals have
their first common ancestor a number of generations g in the
past. For p�2, one may write a recursion for Pp�g� in the
form

Pp�g + 1� = �
k=2

p

rp�k�Pk�g� + rp�1��g
0. �52�

Using �50� and �51�, this becomes

1In the mathematical literature, one would rather use the transition
rates �b,q which give the probability that out of b individuals, the
only event is the coalescence of the q first individuals �38,39�.
Clearly, rp�k�= � p

k−1
��p,p−k+1. All the �b,q can be obtained through a

measure � through �b,q=�0
1xq−2�1−x�b−q��dx�. The exponential

model corresponds to a uniform measure �, studied in �40�.
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Pp�g + 1� − Pp�g� = −
p − 1

ln N
Pp�g�

+ �
k=2

p−1
1

ln N

p

�p − k��p − k + 1�
Pk�g�

+ rp�1��g
0. �53�

In the large-N limit, the number of generations g over which
the coalescence occurs is typically ln N�1 �since the coales-
cence probabilities scale like 1/ ln N�. It is then natural to
introduce the rescaled variable t=g / ln N and the correspond-
ing coalescence probability Rp�t�dt= Pp�g�dg. In this new
variable, the recursion becomes for t�0,

dRp�t�
dt

= − �p − 1�Rp�t� + �
k=2

p−1
p

�p − k��p − k + 1�
Rk�t� .

�54�

This equation may be solved by introducing the generating
function

	��,t� = �
p�2

�p−1Rp�t� , �55�

which turns the summation over k in �54� into

�	

�t
= ��1 − ��ln�1 − ���

�	

��
− �ln�1 − ���	 . �56�

The general solution �which can be obtained by the method
of characteristics� reads

	��,t� =
1

1 − �
��e−t ln�1 − ��� , �57�

where � is an arbitrary function. The initial condition for
�54� is the probability that all p individuals coalesce between
times 0 and dt �see �47��,

Rp�t = 0�dt = qp
dg

dt
dt =

dt

p − 1
, �58�

and thus, �55� becomes

	��,t = 0� = − ln�1 − �� . �59�

This leads to

	��,t� =
d

dt
�1 − ��e−t−1. �60�

The expansion of �60� in powers of � using

�1 − ��−a =
1

��a� �p=0

+�
��p + a�
��p + 1�

�p, �61�

leads through �55� to

Rp�t� =
1

�p − 1�!
d

dt

��p − e−t�
��1 − e−t�

=
1

�p − 1�!
d

dt
��1 − e−t��2 − e−t� ¯ �p − 1 − e−t�� ,

�62�

which is just a polynomial of order p−1 in the variable e−t.
More explicitly, for the first values of p, one finds

R2�t� = e−t, R3�t� = 3
2e−t − e−2t, �63�

R4�t� = 11
6 e−t − 2e−2t + 1

2e−3t, . . . .

The average coalescence times �using �62�� are

�Tp� = �
g=0

�

gPp�g� = ln N�
0

+�

dt tRp�t�

= ln N�
0

�

dt�1 − �1 − e−t��1 −
e−t

2
	¯ �1 −

e−t

p − 1
	�
�64�

and one gets

�T2� = ln N, �T3� = 5
4 �T2�, �T4� = 25

18�T2�, ¯ .

�65�

These expressions contrast with a neutral model of coales-
cence with no selection �37,41�, where at each generation
one would choose the N survivors at random among all the
offspring at generation g+1 �see Appendix C�,

�T2
neutral� = O�N�, �T3

neutral� = 4
3 �T2

neutral� , �66�

�T4
neutral� = 3

2 �T2
neutral�, ¯ .

�Table I compares the frequencies of the trees in the cases
with and without selection.�

As shown in Appendix B, the ratios �65� are on the other
hand identical to those that would be computed if the genea-
logical trees had the same statistical properties as mean-field
spin glasses �40,42�.

We also see that �Tp� in �65� scales like ln N for any fixed
value of p, which means that on average, a given number of
individuals have their first common ancestor at order ln N
generations in the past. It is, however, interesting to note that
for large p,

�Tp� 
 ln N � ln ln p �67�

which is obtained by using, from �62�, Rp�t�
 d
dt p

−exp�−t�


 d
dte

−exp�−�t−ln ln p�� for large p; Rp�t� becomes a Gumbel dis-
tribution of width of order 1 centered at ln ln p.

IV. PHENOMENOLOGICAL EXTENSION TO GENERIC
MODELS

The exponential model had the advantage of being exactly
solvable, but as already mentioned, it is nongeneric because
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the velocity vN→� as N→�, in contrast to models of the
Fisher-KPP type. We do not know how to calculate directly
the velocity vN, diffusion constant DN, or the coalescence
times of the generic Fisher-KPP case. One can, however, use
a phenomenological picture of front propagation �8� and an-
cestry, which is consistent with exact calculations in the case
of the exponential model, and agrees with numerical simula-
tions in the generic case.

A. Picture of the propagation of fluctuating pulled fronts

Let us recall briefly the phenomenological picture of front
propagation that emerged from �8,43�. In this picture, most
of the time, the front evolves in a deterministic way well
reproduced by an equation obtained from �12� by removing
the noise term, and by adding a cutoff that takes into account
the discreteness of the number of individuals: This ensures
that hg�x� cannot take values less than 1/N. The evolution
equation in the case of model B reads �43�

hg+1�x�

= �min�1,� d� ����hg�x − ��	 if that number

is larger than 1/N ,

0 otherwise.
�

�68�

�Note that in the exponential model �����=e−��, it is easy to
see that the solution to �68� is

hg�x� = �1 for x � Yg,

e−�x−Yg� for Yg � x � Yg + ln N ,

0 for x � Yg + ln N ,
� �69�

where the parameter Yg can be used as the definition of the
position of the front. Substituting �69� into �68�, one obtains
the velocity

vcutoff
exp = Yg+1 − Yg = ln�ln N + 1� 
 ln ln N , �70�

which does agree, to leading order, with the exact expression
�39�.�

For fronts in the Fisher-KPP class �including �68��, the
cutoff theory can also be worked out �43�. One obtains

hg�x� � L0 sin��
x − Yg

L0
	e−
0�x−Yg� �71a�

and

vcutoff
F-KPP = Yg+1 − Yg 
 v�
0� −

�2v��
0�
2L0

2 , �71b�

where v�
� is given by �14�, 
0 is the value of 
 which
minimizes v�
�, and L0= �ln N� /
0 is the length of the front,
from the region where hg is of order 1 to the region where it
cancels. The expression of hg�x� in �71a� is only valid for
hg�x��1 and x−Yg�L0.

TABLE I. Probabilities of observing each of the possible genealogical trees for three and four individuals
in the neutral case and in the exponential model.
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By convention, we shall define 
0=1 in the exponential
case. Then, both in �69� and in �71a�, the front has essentially
an exponential decay with rate 
0 and its length is L0
= �ln N� /
0.

So far, �70� and �71� have been obtained from a purely
deterministic calculation �68�, where only the discreteness of
hg�x� has been taken into account. Stochasticity may be put
back in the picture for the generic �Fisher-KPP� case in the
following phenomenological way, as developed in �8�.

From time to time, a rare fluctuation sends a few individu-
als ahead of the front at a distance � from its tip. This occurs
during the time interval dt with a probability p��� d� dt
where p��� was assumed �8� to be

p��� = C1e−
0� �72�

for � large enough. C1 is a given constant.
These individuals then multiply and build up their own

front in an essentially deterministic way. After about L0
2 gen-

erations, the descendants of these individuals have mixed up
with the individuals that stem from the rest of the front. The
effect of this rare fluctuation is therefore to pull ahead the
front by a quantity R��� which, in the generic �Fisher-KPP�
case, is given �8� by

R��� =
1


0
ln�1 + C2

e
0�

L0
� 	 , �73�

where C2 is another constant and �=3. Finally, in �8� it was
argued that

C1C2 = �2
0v��
0� . �74�

�Note that �72�–�74� have ben obtained in �8� on heuristic
arguments and we do not know how to properly derive
them.�

As we shall show in the next section, the same picture
applies to the exponential model with some slight modifica-
tions: in �73�, one needs to take �=1 instead of �=3, every-
where 
0 must be replaced by 1, one should replace �74� by
C1=C2=1 and the relaxation time of a fluctuation by 1 in-
stead of L0

2.
With these ingredients, it is not difficult to write the gen-

erating function of the position Yg of the front,

�e−�Yg� � egG��� where �75�

G��� = − �vcutoff +� d� p����e−�R��� − 1� .

The first term in G��� is due to the deterministic motion,
while the integral represents the effect of the forward rare
fluctuations. In the case of the exponential model, this ex-
pression leads to �39�, up to terms of order 1 / ln N for the
velocity and of order ln ln N / ln2 N for the other cumulants.
In the generic Fisher-KPP case, the average front velocity,
diffusion constant, and higher order cumulants are found
from �75� to be �8�

vN = v�
0� −
�2
0

2v��
0�
2 ln2 N

+ 
0
2v��
0��23 ln ln N

ln3 N
+ ¯

= v�
0� −
�2
0

2v��
0�
2�ln N + 3 ln ln N�2 + ¯ ,

DN = 
0v��
0�
�4

3 ln3 N
+ ¯ ,

��Yg − Y0�n�c

g
= 
0

3−nv��
0�
�2n!��n�

ln3 N
+ ¯ for n � 2.

�76�

One important aspect of �73� is that when � is of order
�� ln L0� /
0, the front is shifted by one additional unit in
position due to this fluctuation. This means that a large frac-
tion of the population is replaced by the descendants of the
individuals produced by this fluctuation. Thus, when one
considers a given number of individuals at generation g, the
most probable is that their most recent common ancestor
belongs to one of these fluctuations that triggered shifts of
order 1 in the position of the front in the past generations.
According to �72�, such events occur once every �g�L0

�

generations. �g is likely to give the order of magnitude of
the average coalescence times. In Sec. IV C, we shall build
on this observation to obtain the statistics of the genealogical
trees and the coalescence times in the generic Fisher-KPP
case. But first, we show that this phenomenological picture is
consistent with the exact results �39� for the exponential
model.

B. Exponential model

Since the exponential model can be solved exactly �Sec.
III�, we are now going to test in this case our phenomeno-
logical picture of Sec. IV A. Let us first show that �72� gives
the correct distribution of fluctuations.

In the exponential model at any generation g, the front is
built according to �23� by drawing N independent exponen-
tial random numbers yk, which represent the positions of the
particles relative to a common origin xN+1. There is a prob-
ability �1−e−y�N that none of the yk are on the right of y;
therefore the distribution of the rightmost yk is

Prob�yrightmost� = N�1 − e−yrightmost�N−1e−yrightmost


 exp�− �yrightmost − ln N� − e−�yrightmost−ln N�� .

�77�

yrightmost is the distance between the rightmost particle and
the �N+1�st rightmost particle �before selection�. We define
the length l of the front as l=yrightmost. �A more natural defi-
nition could have been the distance between the rightmost
and the leftmost particles, which is obtained by replacing N
by N−1 in the previous equation. For large N, the difference
between these two definitions is negligible.� The average
length of the front is therefore �l�
 ln N+
E with fluctua-
tions of order 1 given by a Gumbel distribution, and the
probability to observe a large fluctuation where l=ln N+�
with ��1 is given by
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p��� 
 exp�− � − e−�� 
 exp�− �� , �78�

which is the same as �72�.
We now wish to know the effect of such a fluctuation on

the position of the front. As the shape of the front isdecorre-
lated between two successive generations, the relaxation
time of a fluctuation is 1 and it is sufficient to compute �Xg

given the value of � at generation g. Given the value of l
=yrightmost, the distribution �23� of the N−1 other yk becomes

Prob�yk� =
e−yk

1 − e−l for 0 � yk � l . �79�

As in �26�, we introduce the generating function of the dis-
placement �Xg, given the value of l,

�e−��Xg�l� =� dz Prob�z�e−�z� dy1 Prob�y1� ¯� dyN−1 Prob�yN−1��ey1 + ¯ + eyN−1 + el�−�

=
��N + 1 + ��

��N + 1�
1

�1 − e−l�N−1�
0

l

dy1e−y1
¯ �

0

l

dyN−1e−yN−1�ey1 + ¯ + eyN−1 + el�−�, �80�

where �28� and �79� were used. By using the same represen-
tation �29� that led to �30�, one gets

�e−��Xg�l� =
��N + 1 + ��
��N + 1������0

�

d� ��−1

�� 1

1 − e−l�
0

l

dye−y−�ey	N−1

e−�el
, �81�

which, in terms of I0��� defined in �31�, is the same as

�e−��Xg�l� =
��N + 1 + ��
��N + 1������0

�

d� ��−1

�� I0��� − e−lI0��el�
1 − e−l 	N−1

e−�el
, �82�

where, using �32�,

I0��� − e−lI0��el�
1 − e−l = 1 − �

l

1 − e−l

+ �
k=0

+�
�− 1�k

�k + 1��k + 2�!
�k+2el�k+1� − 1

1 − e−l .

�83�

Expressions �82� and �83� are valid for any value of l. We
now consider a large fluctuation l=ln N+� with 1��
� ln ln N. As for �30�, the integral is dominated by values of
� of order 1 / �N ln N�. Making as before the change of vari-
able �=�N ln N, and dropping all the terms of order 1 /N,
one gets

� I0��� − e−lI0��el�
1 − e−l 	N−1


 exp�− ��1 +
�

ln N
	

+ �
k=0

+�
�− 1�k

�k + 1��k + 2�!

�� �

ln N
	k+2

e��k+1�� . �84�

We are only interested in the leading order in 1/ ln N. Drop-
ping higher order terms, one gets, in �82�,

�e−��Xg��� 

��N + 1 + ��
��N + 1�����

1

�N ln N���
0

�

d� ��−1

�exp�− ��1 +
� + e�

ln N
	�



1

�ln N���1 +
e�

ln N
	−�

, �85�

where �37� has been used and where � was neglected com-
pared to e�.

This means that up to the order 1 / �ln N� we are consider-
ing, �Xg given � is deterministic with

�Xg��� 
 ln ln N + ln�1 +
e�

ln N
	 
 vcutoff + R��� , �86�

where we used �70� and �73� with C2=�=
0=1.
The phenomenological picture we developed for the ge-

neric case is therefore justified for the exponential case: each
rare fluctuation of size � in the length of the front leads to a
shift R���, given by �73�, for the position of the front.

C. Genealogical trees

With the above scenario, one can also build a simplified
picture for the evolution of a population. We assume that, at
each generation, there is with a small probability a fluctua-
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tion of amplitude f produced by an individual ahead of the
front. The long term effect of this fluctuation is that a frac-
tion f of the population is replaced by the descendants of this
individual.

One can now relate the probability distribution of f to the
phenomenological picture of front propagation. Starting with
a front at position Yg0

at generation g0, we consider its posi-
tion Yg at a generation g�g0. If no important fluctuation has
occurred, the tail of the front is given by

hno fluctuation�x,g� � e−
0�x−Yg
no fluctuation� �87a�

with

Yg
no fluctuation = Yg0

+ vcutoff�g − g0� . �87b�

�See �71�; for simplicity, we neglect the sine prefactor in the
tail as it is a slowly varying factor which, to the leading
order, does not change our final result.�

If instead a fluctuation has occurred, generated by an in-
dividual ahead of the front by a distance �, then the shape is
eventually described by

hfluctuation�x,g� � e−
0�x−Yg
fluctuation� �88a�

with

Yg
fluctuation = Yg0

+ vcutoff�g − g0� + R��� . �88b�

that is, the front is pulled ahead by R���. If one assumes that
the extra mass in the front with fluctuation �in gray in Fig. 3�
is due to the fraction f of descendants originating from the
fluctuation, then one gets hno fluctuation= �1− f�hfluctuation. The
substitution of �87� and �88� yields

f = 1 − e−
0R���. �89�

This equation defines the mapping between the f and the �
representations of the phenomenological model. The prob-
ability distribution of � in �72� and the expression �73� of
R��� implies the following distribution of f:

Prob�f� =
C1C2


0L0
�

1

f2 . �90�

�Note that this expression cannot be valid down to f =0 for
the distribution to be normalized. One should therefore con-
sider that �90� is valid above a certain small threshold fmin.
This threshold has no effect on the correlations calculated
below.�

Using �74� and �=3 in the Fisher-KPP case, and C1=C2
=
0=�=1 in the exponential case �see Sec. IV B�, one gets

Prob�f�

= �
1

ln N

1

f2 for the exponential model.

�2
0
3v��
0�

ln3 N

1

f2 for the generic Fisher-KPP case.�
�91�

In this model, p individuals may coalesce if they belong to
the fraction f of individuals that are the descendants of a
fluctuation. The probability of such an event thus reads

qp = �
0

1

df Prob�f�fp =
C1C2


0L0
�

1

p − 1
�92�

which, for the exponential model, is identical to the exact
asymptotic result in �47�.

The coalescence probabilities in one generation rp�k� may
be obtained in a straightforward way in this model. One first
chooses the k−1 individuals among p that do not have a
common ancestor in the previous generation. The latter must
be part of the fraction 1− f of individuals, while the remain-
ing p−k+1 individuals that have their common ancestor in
the previous generation must belong to the fraction f . Thus

rp�k� = � p

k − 1
	�

0

1

df Prob�f�fp−k+1�1 − f�k−1

=
C1C2


0L0
�

p

�p − k��p − k + 1�
, �93�

with the same result as in �50� for the exponential model.2 At
this point, the combinatorics to get the coalescence probabili-
ties and average times are the same as in the exact calcula-
tion for the exponential model in Sec. III B. So, for the ex-
ponential model we recover the results of Sec. III B and for
the generic Fisher-KPP case, we get instead

�T2� 

ln3 N

�2
0
3v��
0�

, �94�

while the ratios �Ti� / �T2� are the same �65� as for the expo-
nential model, in agreement with the results of numerical
simulations of �9� and of Sec. V below. Indeed, the rp�k�’s

2In the language of the transition rates �b,q defined in �38,39�, one
would write �b,q=�0

1df p�f�fq�1− f�b−q��0
1df fq−2�1− f�b−q. It is the

�-coalescent with the uniform measure, i.e., the Bolthausen-
Sznitman coalescent.

h

x

R(δ)

1 − f

f

FIG. 3. Effect of a fluctuation of a front. The dashed line is the
front �87� in the absence of a fluctuation. The plain line is the front
�88� if a rare fluctuation occured. The grey area represents the con-
tribution to the front from the descendants of the fluctuation. After
the front has relaxed, they represent a proportion f of the whole
population.
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given in �50� and �93� are identical except for an overall
constant which cancels out in the ratios.

We note an interesting relation between the average coa-
lescence time and the front diffusion constant, valid both in
the exponential model and in the generic Fisher-KPP case,

DN � �T2� 

�2

3
0
2 . �95�

We will test numerically this identity in Sec. V.
As a side remark, we note that if Prob�f� of �91� is re-

placed by Cste f−a with a→3 �instead of a=2 in our selec-
tive evolution models�, then the ratios of the coalescence
times are identical to those obtained for evolution models
without selection, see Appendix C.

V. NUMERICAL SIMULATIONS

A. Algorithms

In order to measure the velocity and diffusion constant of
our models, it is sufficient to follow the evolution of the
positions of the individuals. In the case of model A, at each
generation, one first draws at random the k offspring of each
individual and then one keeps the N rightmost offspring as
the new population. This can be done in a computer time
linear in N. For model B, one can start by drawing at random
the two rightmost offspring of each individual. If Z is the
position of the Nth rightmost offspring out of this first set of
2N, then one draws for each individual all its remaining off-
spring which are larger than Z. Then, taking the N rightmost
individuals among those drawn gives the new population.

We measured the velocity vN using vN= �Xg0+g−Xg0
� /g

and the diffusion constants DN as in �44�, using DN
= ��Xg0+g−Xg0

−vNg�2� /g for a large g. �These expressions
are in principle only valid in the g→� limit.� In practice, we
must choose an appropriate value of g and average over
many runs. For each value of N, we measured the diffusion
constant twice, once with g�2 ln3 N and once with g
�10 ln3 N, and we have plotted both values with the same
symbol. The fact that one cannot distinguish the two sets of
data indicates that the values of g we took are large enough
and that we accumulated enough statistics.

To measure the statistics of the genealogical trees in the
population, one needs to memorize more information than
simply the positions of the individuals in the current genera-
tion. The most naive method would be to record the whole
history of the population, keeping for all individuals in all
generations their positions and parents, and then to analyze
at the end the whole genealogical tree. This is clearly too
time and memory consuming. Instead, we used the three fol-
lowing algorithms.

The first algorithm consists in working with a matrix Tg,
the element Tg�i , i�� being the age of the most recent com-
mon ancestor of the pair of individuals i and i� at generation
g. This matrix is simple to update: if j and j� are the parents
of i and i�, then Tg+1�i , i��=1+Tg�j , j�� for i� i� and
Tg+1�i , i�=0. By sampling random elements of the matrix at
different generations, one obtains the average value of the
coalescence time between two individuals. The nice thing is

that, due to the ultrametric structure of the tree �for any i, j
and k, Tg�i , j��max�Tg�i ,k� ,Tg�j ,k���, no more information
is needed to compute the coalescence times of three or more
individuals: the age of the most recent ancestor of p indi-
viduals i1 , . . . , ip is simply given by
max�Tg�i1 , i2� ,Tg�i1 , i3� , . . . ,Tg�i1 , ip��. This method is appro-
priate for values of N up to about 103 as it takes a long time
of order N2 to update the matrix at each generation.

In the second algorithm, instead of working with this ma-
trix Tg�i , j�, we take advantage of the tree structure of the
genealogy by recording only its “relevant” nodes: at genera-
tion g, we say that a node is “relevant” if it is an individual
of the current generation g or if it is the first common ances-
tor of any pair of individuals of the current generation.
Clearly, the “relevant” nodes have a tree structure �the first
common ancestor of any two “relevant” nodes is a “relevant”
node�, which we record as well. The leaves of this tree are
the current generation, and the root is the most recent com-
mon ancestor of the whole population. This tree is simple to
update: if, after one timestep, a node has no child, it is re-
moved and its parent is updated. If a node has only one child,
it is removed as well and its child and parent get directly
connected. If the root of the tree has only one child, it is
removed and its child becomes the new root. As can be seen
easily, the tree has at most 2N−1 nodes and it can be updated
in a time of order N. The extraction of the interesting infor-
mation from the tree is also very fast: if a node has p chil-
dren, and these children are the ancestors of �1 , . . . ,�p indi-
viduals of the current generation, then this node is the most
common ancestor of �i�j�i� j pairs of individuals. More gen-
erally, this node is the most common ancestor of � �i�i

q
�

−�i
� �i

q
� groups of q individuals in the current generation. By

computing this quantity on each node of the tree, one obtains
the average �or even the distribution� of all the coalescence
times within the current generation in a computer time of
order N. This algorithm turns out to be very fast and we used
it for N up to about 106.

The third algorithm only works for a limited class of mod-
els, for which the positions xi�g� are integers: instead of re-
cording the N positions, one only needs to record the number
of individuals at a given site. The typical width of the front
and, therefore, the number of variables to handle, are only of
order ln N. Let us, then, consider model B with ���� given as
a sum of Dirac functions: ����=�q�q���−q�. This means
that, before selection, an individual at position x has a num-
ber of offspring at position x+q which has a Poisson distri-
bution of average �q. Considering now the whole population,
the number of offspring at time g+1 and site y is also a
random Poisson number of average �xn�x ,g��y−x, where
n�x ,g� is the number of individuals at site x and generation g
�compare to �8��. To simplify, we consider only cases where
�q=0 for q larger than some q0, so that one can easily update
the system from right to left by drawing Poisson numbers
and stopping when the total number of individuals at time
g+1 reaches N. So far, the method described allows us to
update the positions of the particles, and therefore to extract
the velocity and the diffusion constant, in a time proportional
to ln N per generation. A similar method has already been
used in �43,44� to simulate populations up to N
10100. To
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extract the coalescence times, one needs to keep more infor-
mation. The difficulty resides in the fact that the many indi-
viduals at a given position usually have different ancestors.
To overcome this difficulty, one can consider the average

coalescence times T̄g�x ,x�� of two different individuals at
respective positions x and x�. To update that matrix, one
starts from the probability that an individual of generation
g+1 and position y is the offspring of an individual who was
at position x,

Prob�y comes from x� =
n�x,g��y−x

�
x�

n�x�,g��y−x�

. �96�

�Compare to �40�.� Then, one obtains that

T̄g+1�y,y�� = 1 + �
x,x�

Prob�y comes from x�

�Prob�y� comes from x��T̄g�x,x��

��1 −
�x

x�

n�x,g�
	 . �97�

�The term in parentheses is the probability that individuals at
positions y and y� come from two different parents given the
parents’ positions x and x�.� Then, the average coalescence
time of two individuals in the population is simply given by

1

N�N − 1� �
x,x�

T̄g�x,x��n�x,g�n�x�,g��1 −
�x

x�

n�x,g�
	 . �98�

Therefore, by storing a matrix of size ln2 N, which can be
updated in a time ln4 N, one can obtain the average coales-
cence time of two individuals. An interesting observation is
that this algorithm simulates one possible realization of the

positions of the particles; however, the quantity T̄g�x ,y� is

actually an average over all the possible genealogical trees in
the population given that realization of the positions over
time of the particles. A complexity in time of order ln4 N
allows already to simulate rather large systems. However, a
further optimization is possible in the special case where �q
is constant for q�q0. For that specific model, additional sim-
plifications occur �one can write a recursion on the matrix

elements� and the matrix T̄g�x ,x�� can be updated in a time
of only ln2 N. This allows one to study systems of size N up
to about 1050 in a few weeks time on standard desktop com-
puters. There is, unfortunately, not enough information in the
matrix Tg�x ,x�� to extract the average coalescence time of
three �or more� individuals: to that purpose, one needs to
simulate a tensor with three �or more� indices which can be
updated with rules very similar to �97�. Because of this extra
complexity, we only measured the average coalescence time
of three individuals for values of N up to 1020.

B. Results

Using this last algorithm, we have simulated model B for
����= 1

4�n�0���−n� up to N=1050. The velocity and diffu-
sion constants are shown in Fig. 4, compared to the predic-
tions �76� in plain lines. There is still a small visible differ-
ence between numerics and theory, but this difference gets
smaller as N increases. In order to obtain a better fit, we have
included subleading corrections by changing the denomina-
tor �ln N+3 ln ln N�2 for the velocity in �76� into �ln N
+3 ln ln N−3.5�2. Similarly, we changed the denominator
�ln N�3 for the diffusion constant in �76� into �ln N
+3 ln ln N−3.5�3. With these subleading terms �in dotted
lines on the figure�, the fit is almost perfect over more than
40 orders of magnitude.

We have no theory to justify these extra subleading terms,
but we simply notice that it is possible to fit both the correc-
tion to the velocity and the diffusion constant using the same

π2γ2
0v′′(γ0)/2

(ln N + 3 ln ln N − 3.5)2
and

π4γ0v
′′(γ0)/3

(ln N + 3 ln ln N − 3.5)3

π2γ2
0v′′(γ0)/2

(ln N + 3 ln ln N)2
and

π4γ0v
′′(γ0)/3

(ln N)3

DN

v(γ0) − vN

N

D
N

an
d

v
(γ

0
)
−

v N

103 105 1010 1030 1050
10−5

10−4

10−3

10−2

10−1

FIG. 4. Numerical simulations of model B with ����
= 1

4�n�0���−n�. For this model, one has 
0=ln�2�, v�
0�=−1, and
v��
0�=2/ ln�2�. The circles are the correction to the velocity and
the triangles the diffusion constant, as a function of N. The plain
lines are the predictions �76�. The dotted lines are the predictions
�76� with, for both quantities, the same subleading terms added in
the denominators. �The scale on the N axis is proportional to
ln ln N.�

0.105(lnN + 3 ln ln N − 3.5)3 and ln N + ln ln N

0.105(lnN)3 and ln N

Exponential model
Model B, ψ(ε) = (1/4)

∑
n≤0 δ(ε − n)

N

〈T2〉

103 105 1010 1030 1050

10

102

103

104

105

FIG. 5. Numerical simulations of �T2� for model B with ����
= 1

4�n�0���−n� �circles� and for the exponential model �triangles�.
The plain lines are the predictions �65� for �T2� and �94�, while the
dotted lines are the same predictions with some subleading term: for
the generic case, we used subleading terms suggested by �95� and
the fit of Fig. 4, and for the exponential model the exact results
�A15�.
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subleading terms in the denominators of their respective ex-
pressions.

For the same model, �T2� is shown in Fig. 5 �using
circles�, compared to the prediction �94� in plain lines. As for
the velocity and diffusion constant, there is still a small vis-
ible difference and we obtain a better fit if we include sub-
leading terms �in dotted lines�: guided by �95� and the fit
used for the diffusion constant in Fig. 4, we changed the
numerator of �94� from �ln N�3 into �ln N+3 ln ln N−3.5�3.
On the same figure, �T2� for the exponential model is shown
�using triangles�, compared with the exact prediction �65�
�T2�
 ln N. Here again, the fit is improved by including the
subleading corrections �A15� �T2�
 ln N+ln ln N obtained in
Appendix A.

Figure 6 combines data from Figs. 4 and 5. The triangles
are the ratio of the diffusion constant and of the correction to
the velocity to the power 3/2. For large N, this should con-
verge to a constant which we can compute from �76�. The

circles are the product of the diffusion constant and of the
coalescence time �T2�, which we expect to converge to the
value given in �95�. The horizontal lines on the figure repre-
sent both predictions.

Finally, Fig. 7 shows the ratio �T3� / �T2� as a function of N
up to N=1020. The ratio is very close to 1.25 for large N,
which is the prediction of the phenomenological theory of
Sec. IV C �see also �65��.

VI. CONCLUSION

In the present work, we have solved exactly a simple
model of evolution with selection, the exponential model of
Sec. III. For this model, we have calculated the velocity and
the diffusion constant �39� of the parameter representing the
adequacy of the population to its environment, as well as the
coalescence times �64�,�65� which characterize the geneal-
ogy. We have shown that the statistical properties of the ge-
nealogical trees are identical to those trees which appear in
the Parisi mean-field theory of spin glasses �45,46�. They,
therefore, follow the Bolthausen-Sznitman statistics �40,47�,
in contrast to the case of evolution without selection which
obeys the statistics of the Kingman coalescent.

The reason why the exponential model is exactly soluble
is that, going from one generation to the next, the only rel-
evant information on the position of the individuals is con-
tained in one single variable Xg defined in �21�. The expo-
nential model belongs to a larger class of models
parametrized by a single function � �for model A� or � �for
model B�. We have not been able to solve the generic case
and, unfortunately, the exponential model is special: while
the generic case can be described by a Fisher-KPP front, with
a velocity which converges when N→�, the velocity of the
front associated to the exponential model diverges when N
→�. We have however constructed a phenomenological pic-
ture �Sec. IV� of front propagation which can be used both
for the exponential model and for the generic Fisher-KPP
case, and which also provides predictions for the genealogy.
Within this picture, the average coalescence times scale like
ln3 N with the size N of the population for the generic Fisher-
KPP case �while it grows like ln N for the exponential
model�, and the structure of the trees is the same as in the
Parisi mean-field theory of spin glasses.

Proving the validity of the phenomenological picture for
generic models is an interesting open question for future re-
search. Understanding more deeply why our models of se-
lective evolution are related to spin glasses would also de-
serve some efforts. Last, it would be interesting to study
genealogies in other models of selective evolution �2� to test
the robustness of our results.
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APPENDIX A: EXACT RESULTS FOR THE EXPONENTIAL
MODEL INCLUDING SUBLEADING ORDERS

In this appendix, we obtain higher orders in the large ln N
expansion, for the statistics of the position of the front and

DN

[v(γ0) − vN ]3/2

DN × 〈T2〉

N

D
N

[v
(γ

0
)−

v N
]3

/
2

an
d

D
N
×
〈T

2
〉

103 105 1010 1030 1050

7

6

5

4

3

2

1

0

FIG. 6. Numerical simulations of model B with ����
= 1

4�n�0���−n�. The circles represent the product DN� �T2� com-
pared to the prediction �95�. The triangles are the ratio of the dif-
fusion constant and the correction to the velocity to the power 3/2,
compared to �
8/v��
0� / �3
0

2�, which is the prediction obtained
from �76�. The predictions �95� and �76� are represented by the
horizontal lines.
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FIG. 7. Numerical simulations of model B with ����
= 1

4�n�0���−n�. The circles represent the ratio �T3� / �T2� as a func-
tion of N, compared to the result 5 /4 suggested by the phenomeno-
logical theory of Sec. IV C. �The scale on the N axis is proportional
to 1/ ln N.�
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for the coalescence probabilities in the exponential model.

1. Front position statistics

The exact expression for the cumulants of the front veloc-
ity was given in �30� in terms of the function I0 defined in
�31�. Discarding all the terms of order 1 /N or smaller, one
can use directly the expression �34� of �I0����N as a function
of the rescaled variable � in �30�. Keeping terms up to the
order 1 / ln2 N, one gets, using also �37�,

eG��� =
1

ln� N

1

�����0

�

d� ��−1e−�

��1 + �
ln � − ln ln N + 
E − 1

ln N

+
1

2
��

ln � − ln ln N + 
E − 1

ln N
	2

+ ¯ � . �A1�

The integrals of each term can be computed using �35�. One
gets

eG��� =
1

ln� N
�1 +

�

ln N
����� + 1�

��� + 1�
− l	

+
��� + 1�
2 ln2 N

����� + 2�
��� + 2�

− 2
���� + 2�
��� + 2�

l + l2	 + ¯ �
�A2�

with l=ln ln N−
E+1. Taking the logarithm of �A2�, one
obtains G���. By expanding in powers of � and comparing
with �27�, one gets the cumulants of the position of the front.
We give the velocity and diffusion constant,

vN = ln ln N +
ln ln N + 1

ln N
−

�ln ln N�2 − 1 +
�2

6

2 ln2 N
+ ¯ ,

DN =
�2

3

1

ln N
−

1

ln2 N
��2

3
ln ln N −

�2

6
+ 2��3�	 + ¯ .

�A3�

Note that the first correction to the leading term can be in
both cases obtained by replacing in the leading term ln N by
ln N+ln ln N: vN
 ln�ln N+ln ln N� and DN
��2 /3� / �ln N
+ln ln N�. This is reminiscent of the observation in Fig. 4
that, in the generic case, the fit was better by replacing the
ln N by ln N+3 ln ln N in the theoretical prediction for the
diffusion constant.

2. Tree statistics

To get subleading orders for the statistics of the tree in the
exponential case, one needs to generalize the discussion in
Sec. III B where we derived the leading term in the large
ln N expansion. The central quantity is still the probability
rp�k� that p individuals at generation g+1 have exactly k
ancestors in the previous generation. But while at leading
order it was enough to consider one coalescence at each step,

one needs to take into account up to n simultaneous coales-
cences when one wishes to keep terms of arbitrary order
1 / lnn N.

One must assign an ancestor at generation g to each indi-
vidual at generation g+1. We start from the probability Wi�x�
given in �40� that the parent of an individual at position x and
generation g+1 was the ith individual of generation g. In the
exponential model, Wi�x� does not depend on x �see �41��.
We consider p individuals of generation g+1 and we note pi,
the number of these individuals that are descendants of the
ith individual of generation g. The probability distribution of
the pi is

Prob�p1, . . . ,pN� =
p!

p1! ¯ pN!
�p1+¯+pN

p W1
p1
¯ WN

pN.

�A4�

One now averages over the positions of individuals at gen-
eration g, and rp�k� is simply the probability that there are
exactly k nonzero pi’s. After relabeling the individuals at
generation g, one gets

rp�k� = �N

k
	 �

p1�1,. . .,pk�1

p!

p1! ¯ pk!
�p1+¯+pk

p �W1
p1
¯ Wk

pk� .

�A5�

It is actually convenient to call n the number of pi that are
strictly larger than 1 and to write rp�k� as a sum over n: after
another relabeling,

rp�k� = �N

k
	�

n�0
�k

n
	 �

p1�2,. . .,pn�2

p!

p1! ¯ pn!
�p1+¯+pn

p−k+n

��W1
p1
¯ Wn

pnWn+1 ¯ Wk� . �A6�

Indeed, as we shall see, each term in the sum over n gives a
contribution of order 1 / lnn N in the final result. The averaged
term can be expressed using the probability Wi given in �41�,

Jp,k,n
p1,. . .,pn = �W1

p1
¯ Wn

pnWn+1 ¯ Wk�

= �
0

�

dy1e−y1
¯ �

0

�

dyNe−yN
ep1y1+¯+pnyn+yn+1+¯+yk

�ey1 + ¯ + eyN�p .

�A7�

The technique to evaluate the integrals involved here is
essentially the same as in Sec. III. We first use the standard
representation �29� for the denominator in the integrand.
Then the integral over yi may be expressed with the help of
the functions Ip��� defined in �45�:

Jp,k,n
p1,. . .,pn =

1

�p − 1�!�0

+�

d� �p−1Ip1
��� ¯

�Ipn
���I1���k−nI0���N−k. �A8�

As before, for large N, the term I0���N makes the integral
�A8� dominated by values of � of order 1 / �N ln N�. It is
sufficient to use the leading order �46� for the Ip��� as next
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orders in � would generate terms of order 1 /N, which we
discard throughout. Making the change of variables �

=�N ln N �see �33��, and using the fact that p1+ ¯ + pn= p
−k+n, one gets for the integrand of �A8�,

�p−1Ip1
¯ Ipn

I1
k−nI0

N−k 

�p1 − 2�! ¯ �pn − 2�!

Nk−1 lnn−1 N
�k−1e−��1 +

�k − n − ���ln ln N − ln � − 
E� − �

ln N
+ ¯ 	 , �A9�

�A8� can then be evaluated using �35�. One gets

Jp,k,n
p1,. . .,pn =

�p1 − 2�! ¯ �pn − 2�!
�p − 1�!

�k − 1�!
Nk lnn N

�1 +

n����k�
��k�

+ 
E − ln ln N	 − �k − 1�

ln N
+ ¯ � �A10�

as expected, jp,k,n has an amplitude proportional to 1/ lnn N.
To compute rp�k� for k� p to order 1 / ln2 N, one only needs
in �A6� the terms n=1 and n=2 �the term n=0 gives a con-
tribution only for k= p�,

rp�k� 

Nk

k!
�k

p!

�p − k + 1�!
Jp,k,1

p−k+1

+
k�k − 1�

2 �
p1=2

p−k
p!

p1!�p − k + 2 − p1�!
Jp,k,2

p1,p−k+2−p1 + ¯ 	 .

�A11�

After some algebra, one gets, for k� p,

rp�k� =
p

�p − k + 1��p − k�
1

ln N�1 +
1

ln N��
n=1

k−1
1

n

+
2�k − 1�
p − k + 2

� �
n=1

p−k−1
1

n
−

3

2
	 − ln ln N� + ¯ �

�A12�

�we used, among other things, ���k� /��k�+
E=1+ 1
2 + ¯

+ 1
k−1 �.
We can now compute the �Tk�. From the recurrence

�Tp� = 1 + �
k=1

p

rp�k��Tk� , �A13�

we get, using �krp�k�=1 and �T1�=0,

�Tp� =

1 + �
k=2

p−1

rp�k��Tk�

�
k=1

p−1

rp�k�

. �A14�

For the first values of p, we obtain

�T2� = ln N + ln ln N + o�1� ,

�T3� = 5
4 �ln N + ln ln N� + o�1� ,

�T4� = 25
18�ln N + ln ln N� − 1

54 + o�1� . �A15�

APPENDIX B: THE PARISI BROKEN REPLICA
SYMMETRY

The replica trick is a powerful approach to calculate the
typical free energy of a sample in the theory of disordered
systems. In the replica trick, one considers n replicas of the
same random sample, one averages the product of their par-
tition functions, and at the end of the calculation one takes
the limit n→0. In some cases, the n dependence of this
averaged product is simple enough for the analytic continu-
ation n→0 to be unique leading to the desired free energy.

In the case of mean-field spin glasses, the situation is
more complicated: the symmetry between the replicas gets
broken as n takes noninteger values �n�1� and remains bro-
ken in the limit n→0. In this appendix we recall the statis-
tical properties of the trees predicted by the Parisi theory of
the broken replica symmetry �42,45,46,48�.

One starts with an integer n=n0 number of replicas. These
replicas are grouped into n0 /n1 groups of n1 replicas. Each of
these groups of n1 replicas is decomposed into n1 /n2 groups
of n2 replicas and so on: each group of ni replicas is formed
of ni /ni+1 groups of ni+1 replicas each. When this hierarchy
consists of k levels, it is characterized by k+1 integers

n = n0 � n1 � n2 � ¯ � nk = 1. �B1�

At level i, there are a total of n /ni groups of size ni. There-
fore, the probability that m distinct individuals chosen at ran-
dom belong to the same group at level i �without specifying
whether they belong or not to the same group at level i+1� is

Qm =

n

ni
�ni

m
	

� n

m
	 =

n�ni − 1��ni − 2� ¯ �ni − m + 1�
n�n − 1� ¯ �n − m + 1�

. �B2�

One can also associate a tree to each choice of m replicas:
the m replicas are at the bottom of the tree and when two
replicas belong to the same group at level i, but to different

EFFECT OF SELECTION ON ANCESTRY: AN EXACTLY… PHYSICAL REVIEW E 76, 041104 �2007�

041104-17



groups at level i+1, their branches merge at level i.
The various possible trees which might occur for three

replicas or four replicas are shown in Tables II and III with
their probabilities. For example, for the first tree of Table II,
the probability that two branches merge at level j and the
remaining branches merge at level i is

n�ni − ni+1��nj − nj+1�
n�n − 1��n − 2�

, �B3�

as there are n possible choices for the leftmost replica, ni
−ni+1 choices for the rightmost replica, and nj −nj+1 choices
for the replica at the center of the figure. The degeneracy
factor is simply the number of different ways of permuting
the roles of the replicas at the bottom of the tree.

In the Parisi ansatz, all the calculations are done as if all
the ni’s and all the ratios ni /ni+1 were integers. At the end of
the calculation, however, one takes the limit n→0 and one
reverses the inequality �B1� into

n = n0 � n1 � n2 � ¯ � nk = 1. �B4�

One then takes a continuous limit �k→��, where ni becomes
a continuous variable x,

ni = x . �B5�

In the spin-glass theory �45,46�, there is an ultrametric dis-
tance between pairs of replicas, related to the overlap q�,�.
�The distance is a decreasing function of the overlap.� This
overlap q�,� depends on the level at which the branches of
these two replicas merge: this means that at each level i of
the hierarchy, one associates a value qi of the overlap and
that q�,�=qi if the two replicas � and � belong to the same
group at level i and to different groups at level i+1. �qi is an
increasing function of i with q0=0 and qk=1.� In the limit
k→�, when ni becomes a continuous variable �B5�, the
overlap qi becomes a increasing function q�x�=q�ni�=qi with
q�0�=0 and q�1�=1.

The probability that two replicas have an overlap q�,�
�qi is

Prob�q�,� = q0� + Prob�q�,� = q1� + ¯ + Prob�q�,� = qi−1�

= 1 − Q2�ni� =
n − ni

n − 1
. �B6�

Therefore, in the n→0 limit, the probability P�q� that the

overlap q�,� between two replicas � and � takes the value q
is then given by

�
0

q�x�

P�q��dq� = lim
n→0

�1 − Q2� = x �B7�

and this leads to the famous relation �42� between the func-
tion q�x� and the probability distribution of the overlap

P�q� =
dx

dq
. �B8�

In our models, the coalescence time between a pair of
individuals in the population defines, clearly, an ultrametric
distance. In order to see whether the statistics predicted by
the replica approach remain valid for the trees of the expo-
nential model discussed in the present paper, one needs to
relate the overlap q�x� or the parameter x �which indexes the
height of the hierachy� to the coalescence time T by a func-
tion T�x�. It turns out that this can be achieved by identifying
the probability e−T that the coalescence time between two
individuals is larger than T �see R2�T� in �63�� with the prob-
ability that two replicas belong to different groups at level i.
In other words,

e−T = 1 − Q2 =
n�n − ni�
n�n − 1�

, �B9�

which leads in the n→0 limit to

e−T = x . �B10�

With this identification, if one assumes that the statistics
of the trees are given by Parisi’s theory, one can compute all
the statistical properties of the coalescence times of trees. For

TABLE II. All possible trees of three replicas, their probabili-
ties and degeneracies.

TABLE III. All possible trees of four replicas, their probabili-
ties and degeneracies.
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example, by taking the n→0 limit of �B2�, one gets that the
probability Qm that m individuals have a coalescence time
Tm�T is given by

Qm →
��m − x�

�m − 1�!��1 − x�
�B11�

which, by taking the derivative with respect with T, gives

��Tm�p� = �
0

1

dx T�x�pdQm

dx

= �
0

�

dT Tp d

dT

��m − e−T�
�m − 1�!��1 − e−T�

. �B12�

This coincides with the result of the direct calculation �62� of
the moments of the Tm and shows that the statistics of the
trees in the exponential model are the same as the ones pre-
dicted by the mean-field theory of spin glasses.

APPENDIX C: THE NEUTRAL MODEL

In this appendix we recall some well-known results on the
statistical properties of the coalescence times in neutral mod-
els �37,41� and derive �66�.

We consider a population of fixed size N with nonover-
lapping generations. Each individual i at a given generation g
has ki�g� offspring at the next generation. We assume that the
ki�g� are random and independent, and we call pk the prob-
ability that ki�g�=k. The total number M of offspring is
therefore given by

M = �
i=1

N

ki. �C1�

To keep the size of the population constant we choose N
individuals at random among these M individuals.

The probability qn that n individuals have the same parent
at the previous generation is

qn =��
i
�ki

n
	

�M

n
	 � =��

i

ki�ki − 1� ¯ �ki − n + 1�

M�M − 1� ¯ �M − n + 1�
� .

�C2�

For a population of large size, if pk decays fast enough with
k for the moments of k to be finite, the law of large numbers

gives that the denominator is approximatively equal to
�N�k��n and

qn 

1

Nn−1�k�n� ��k + 1�
��k − n + 1�� . �C3�

We see �when the moments of k are finite� that q2 is much
larger than all the other qn when the size N of the population
is large, and therefore in the ancestry of a finite number n of
individuals, branches coalesce only by pairs. Similarly, the
probability that two or more pairs of individuals coalesce at
the same generation is negligible.

Let Tn�g� be the age of the most recent common ancestor
of a group of n individuals at generation g. As for large N
only coalesences by pairs may occur from one generation to
the previous one, one has

Tn�g + 1�

= �Tn�g� + 1 with probability 1 − 1
2n�n − 1�q2,

Tn−1�g� + 1 with probability 1
2n�n − 1�q2.

�
�C4�

In the steady state �49�, this implies that

�Tn
p� = �1 −

n�n − 1�
2

q2	��1 + Tn�p� +
n�n − 1�

2
q2��1 + Tn−1�p�

�C5�

and using the fact that T1�g�=0, one gets

�Tn� = �2 −
2

n
	 1

q2
. �C6�

We see that all the times Tn scale like N �since q2�N−1� and
that

�T3�
�T2�

=
4

3
,

�T4�
�T2�

=
3

2
, ¯ ,

�Tn�
�T2�

=
2�n − 1�

n
. �C7�

One can also calculate from �C5� higher moments of the Tn’s
or their generating functions

��T2�2�
�T2�2 = 2,

��T3�2�
�T3�2 =

13

8
. �C8�

These distributions of the Tn as well as their correlations are
universal �in the sense that they do not depend on the details
of the distribution of the pk’s�.
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