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Nonspherical colloids can exhibit liquid-crystalline phases with different degrees of broken orientational and
translational symmetry. Here we investigate hard rectangles consisting of photolithographically prepared disks
standing on edge. We observe a conventional Kosterlitz-Thouless transition from isotropic to nematic with
almost smectic behavior at high density. But just on the isotropic side of the isotropic to nematic transition we
observe an unusual regime where short-range tetratic correlations dominate over nematic correlations. This
occurs due to the proliferation of Ising-like � /2 grain boundaries that disrupt nematic order, but preserve
tetratic correlations, at lengths shorter than the spacing between free disclinations.
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In hard-particle systems, shape, packing, and associated
excluded-volume effects determine the entropy and the phase
diagram. The most well-known examples are the isotropic-
nematic transition of rodlike systems �1� and the crystalliza-
tion of hard spheres �2�. In three dimensions both transitions
are typically first order. In two dimensions �2D� they can also
be second order and involve the unbinding of topological
defects, and there can be several hierarchical steps of broken
symmetry in approaching the ordered state. There have been
several theoretical and computational studies of various disk
and rodlike systems over the past decade �3–10�. In 3D disk
systems, aside from the nematic, smectic, and columnar or-
der expected from the basic symmetry of the particles, there
are also indications of intermediate cubatic phases �4�. Simi-
larly for 2D rodlike systems there has been interest in the
possibility of a tetratic phase with �cos�4��� order along with
the more common �cos�2��� nematic order �5–8�. Recent pa-
pers suggest that the existence of a tetratic phase is very
sensitive to details of the rodlike shape �9,10�. The simula-
tions also suggest a phase diagram with two possible sce-
narios: a direct transition from isotropic liquid to crystal with
a first-order transition or a transition from isotropic to a
liquid-crystal phase �nematic or tetratic� via a Kosterlitz-
Thouless �KT� transition and then a transition to a crystal
�smectic� phase.

The experiments we present here indicate a different sce-
nario with order evolving from isotropic to tetratic to nem-
atic to smectic as the concentration/volume fraction is in-
creased. There appears only one true phase transition, a KT
transition from isotropic to nematic. But preceding the nem-
atic transition, there are strong tetratic correlations which
dominate the observed behavior. At high density the short-
range smectic order also persists for many particle lengths.
Nematic→ tetratic→ isotropic melting would be interesting.
From nematic to tetratic one would expect an Ising-like tran-
sition with proliferation of � /2 grain boundaries separating
horizontal and vertically aligned nematic regions. At lower

densities unbinding of � /2 disclination pairs would lead to a
KT transition from tetratic to isotropic. We believe our ob-
servations are a remnant of this type of combined Ising-KT
transition. Such combined continuous-discrete symmetry
breaking has been studied in the context of the frustrated x-y
model. �11�.

There are several novel techniques employed in the fab-
rication of the samples and in obtaining the phase diagram of
this system. The colloidal particles are platelike disks of di-
ameter d=5.3 �m and thickness t=0.8 �m made by photo-
lithography. An ac electric field is used to orient the disks so
that they stand “on edge.” Their gravitational height is hg
=0.12 �m �hg=��Vg /kBT��d, so they form a monolayer.
The cell is tilted at an angle �2° with respect to the hori-
zontal so that in equilibrium gravity and osmotic pressure
produce a concentration profile which allows observation of
the complete phase diagram with a single sample of dimen-
sions 1.5�1.5 mm.

Photolithography can produce �108–1010-�m-scale par-
ticles �12� of arbitrary two-dimensional shape on a commer-
cial 3–6-in. wafer. Care must be taken to use compatible
layers that do not interfere with �i.e., dissolve� each other.
Here we use spin coating, a hexamethyldisilazine wetting
layer, an AZP 4110 photoresist �Hoescht� sacrificial layer �to
allow liftoff�, a PMMA �molecular weight 495 000� colloidal
layer, and an AZP 4110 photoresist top layer for exposure. A
Karl Suss MA6 mask aligner is used in “hard-contact mode”
operating at 365 nm through a chromium-coated laser-
scribed mask �Adtek Photomask� on a 4-in. quartz substrate
patterned with a square lattice �15 �m periodicity� of 5-�m
metal circles. The top layer is developed and samples are
then etched with a PlasmaTherm 790 reactive ion etcher us-
ing an oxygen plasma. Figure 1�a� shows a SEM of
4.5-�m-diam and 0.8-�m-thick disks which are similar to
the 5.3 �m�0.8 �m disks used in this study. The polydis-
persity in the diameter of the disks is 5.5%. The colloidal
disks are stable in water with a negative surface charge den-
sity �1e /200 nm2 determined by electrophoresis. The
Debye length is 0.03 �m in a solution with ionic strength
1.5�10−4M.*chaikin@physics.nyu.edu

PHYSICAL REVIEW E 76, 040401�R� �2007�

RAPID COMMUNICATIONS

1539-3755/2007/76�4�/040401�4� ©2007 The American Physical Society040401-1

http://dx.doi.org/10.1103/PhysRevE.76.040401


Figure 1�b� is a schematic of our sample cell. Contactless
electrodes on the outside of the cell produce an ac field,
220 kHz, 52 V/cm rms at the particles. The PMMA disks

have both shape and molecular dielectric anisotropy
��=�� −��. The energy, U of particles of volume vp and
density mismatch ��, in a vertical electric field E, with an
angle � of the disk plane to the horizontal is U

vp
=

− ��E2

2 �sin ��2+ ��gd
2 sin �, which has two stable minimum at

�=0 and at �=� /2. The particles lie flat for �	E2���gd
and stand on edge for �	E2
��gd. For these experiments
the applied field is twice the field where disks are observed
to “stand up.” At this field thermal fluctuations allow for an
rms tilt from vertical of �5° so the system is slightly differ-
ent from ideal hard rods.

Figure 2�a� shows optical micrographs of the sample in
the volume fraction regimes of interest. The disks standing
on edge and viewed from below appear as rods and will be
referred to as rods in the following. The rightmost frame
shows the most ordered phase, which is nematic and close to
smectic. That is, large regions of periodic, parallel, vertical,
columns of stacked horizontal rods are evident. The inset
shows a Fourier transform of the frame with two narrow
peaks indicating the periodic density modulation. Transla-
tional order is broken both by undulations �Landau-Peierls
fluctuations give a lower critical dimension of 3 for the
smectic phase �13�� and dislocations. Nematic order in this
phase is long range, at least longer than the picture,
100 �m�20 rod lengths. Note the complete lack of � dis-
clinations in this panel. The middle figure is of most interest
here. Tetratic order is discernible in the pattern of vertically
and horizontally arranged rods. The leftmost frame shows
the isotropic phase. Stacks of rods are still visible but so are
numerous disclinations.

Orientational order is characterized by an order parameter
S2m	�cos�2m��� and a correlation function g2m�r�
	�cos
2m���0�−��r����, where m=1,2 ,3. . . corresponds to
nematic, tetratic, hexatic, etc. �6�. In Fig. 2�b� we show the
correlation functions associated with the micrographs of the

FIG. 1. �Color online� �a� Scanning electron micrograph of pho-
tolithographically prepared 4.5-�m-diam, 0.8-�m-thick PMMA
disks. �b� Schematic of the experimental setup. Particles settle to a
monolayer on the bottom of the sample chamber and stand on edge
in the applied field. Dashed line indicates the horizontal plane.

FIG. 2. �Color online� �a� Optical micrographs of the sample at 2D packing fractions of 0.50, 0.53, and 0.56 from left to right. Inset on
right is Fourier transform of 0.56 image. �b� Orientational correlation functions associated with the micrographs. Square, g2; circle g4; up
triangle, g6; down triangle, g8. Inset of right image shows the �g2�r��4 and g4�r� overlay, indicating both arise from nematic order.
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different phases. The correlation functions are calculated
from an interactive data language �IDL� algorithm which lo-
cates the center and long axis of each rod. In the isotropic
phase the correlation functions decay rapidly to zero on the
distance scale of a rod length. In the nematic phase the decay
is much slower both for g2 and g4. Of course, perfect order
for one m will produce perfect order for all higher m and
correlation for m=1 will induce correlation in g2m
2. In fact,
for power law decay in g2�r−� we expect power law decay
g2m�r−�m2

�6,14�. For the nematic we plot �g2�4 and g4 to-
gether as the inset of Fig. 2�b�. The strong overlap confirms
that the tetratic correlations in this phase are parasitic to the
nematic order. Such a simple parasitic dependence cannot,
however, explain the behavior in the middle panel of Fig.
2�b� where g4 is larger and longer ranged than g2. This is
where we might expect a tetratic phase.

Theoretically both the nematic-isotropic and tetratic-
isotropic transitions are expected to be KT transitions �15�
caused by unbinding of � or � /2 disclinations respectively.
Associated with the unbinding is a discontinuous drop of an
elastic �Franck� constant from a universal value K
=m28kBT /� to zero �13,16–18�. The elastic constant respon-
sible for order parameter rigidity determines the range of the
correlation function g2m�r��ar−2m2kBT/�K�ar−�2m and the
decay of the average order parameter with system size,
S2m�cN−kBTm2/2�K�cN−�2m/4 �6,14�. For thermodynamic
stability the exponent �2m must be less than 1

4 for the small-

est m that shows quasi-long-range order �15,16,18�.
Suppose that the sequence of transitions is isotropic-

tetratic-nematic. Then on increasing density the complete
continuous rotational symmetry is broken in favor of a sys-
tem with discrete fourfold rotations via a KT transition. The
discrete fourfold tetratic symmetry would then be further
broken by an Ising transition to a nematic with discrete two-
fold rotations. This latter transition would be mediated by the
growth of horizontally and vertically aligned nematic do-
mains and the elimination of the � /2 domain walls separat-
ing these domains.

The first test of this scenario is the value of the exponent
�4. Our measurements of g4 never yield a value of �4 less
than 1/4. In fact, the value of �4 in the tetraticlike region is
�1. In Fig. 3�b� we plot 1 /�2 and 1/�4 as a function of the
particle density or packing fraction. We see that 1 /�4�4 and
�4
1/4 in the density region below the nematic phase
where 1/�2
4 Thus with �4


1
4 we do not have a true

tetratic phase. The next question is whether we have a true,
stable, nematic phase. In Fig. 3 we show the nematic
order parameter S2 evaluated as an average over a
73 �m�112 �m window along with the exponent �2 from
the dependence of S2 on N. Here we see that S2, the Franck

FIG. 3. �a� Nematic and tetratic order parameter and �b� nematic
and tetratic decay exponent as a function of 2D packing fraction.
For the nematic phase, the Franck constant has a relation with �2:
�2=2kBT /�K.

FIG. 4. �Color online� �a� Disclinations and domain walls for the
almost tetratic sample. Star, plus, and square denote �, � /2, and
−� /2 dislcinations, respectively. Lines �blue in color� indicate the
location of walls. Bound tetratic disclinations are connected by
white segments �white-red in color�. The free disclinations are
shown in isolated symbols. �b� Schematic of correlation functions
arising from topological defects. The dotted line represents the
nematic correlation function g2�r� expected from the distance be-
tween � disclinations. The solid line represents the tetratic correla-
tion function g4�r� expected from g2�r�  the distance between � /2
disclinations. The dashed line represents g2�r� expected from the
separation length of grain boundaries  the distance between �
disclinations. The � /2 grain boundaries, of separation Lwall, destroy
nematic but not tetratic correlations. Thus in our observation win-
dow d�73 �m, g4 dominates over g2.
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constant, and �2
−1 increase from near zero in the isotropic

phase and that �2 goes through 1
4 at a packing fraction of

0.54. This strongly suggests that there is a single isotropic-
nematic KT transition in our system.

In order to understand the tetratic-like region we study the
topological defects. In Fig. 4�a� we show a micrograph of the
rods decorated with the topological defects calculated from
an IDL program that we have written. We have nematiclike
��� and tetraticlike �� /2� disclinations and Ising-like domain
walls. There are three length scales in this regime. The first
two length scales are the between tetraticlike disclinations
L�/2�1/ ���/2�1/2 and the distance between the nematiclike
disclinations L��1/��

1/2 �where the �’s are the respective
disclination densities�. The third length scale is the persis-
tence length of the walls Lwall, which is gotten by the area
and total length of the walls. We find that Lwall�L�/2�L�

�Lwall�7 �m, L�/2�41 �m, L�
90 �m�. In this regime
the low density of free � disclinations preserves orientational
order. However, the high density of meandering domain
walls destroys the nematic order in favor of the tetratic. The
unbound tetratic, � /2, disclinations are sufficient to destroy
long-range tetratic order, but are sparse enough to give a
correlation length comparable to the window for our micro-
graphs. The decay of the correlation function g2 will depend
on both L� and Lwall, while the decay of g4 will only depend
on L�/2. Because in the experiment the size of a typical ana-
lyzing region, �73 �m, is larger than Lwall and comparable

to L�/2, g2�r� decays quickly due to the short length of Lwall,
while g4�r� is still observable �Fig. 4�b��.

In our system, the aspect ratio of the disks is �6.4. For
hard rectangles with this aspect ratio, according to Ref. �9�,
the system will have a continuous transition from the isotro-
pic phase to nematic phase and the transition point is about
0.52. But for hard discorectangles �6� with the same aspect
ratio �20�, the system will have a first-order transition from
the isotropic phase to solid phase and the transition point is
about 0.78. Thus our results agree more with those of hard
rectangles.

In summary, we have studied the phase diagram of a 2D
system of rectangles of aspect ratio �6.4:1. We find strong
evidence for a single Kosterlitz-Thouless transition from iso-
tropic to nematic. However, in our system we also find wall
defects, and these Ising-like domain boundaries play a very
important role in destroying the nematic order near the tran-
sition point. This combination of KT disclination unbinding
and an Ising-like mechanism leads to a length scale where
tetratic short-range order intervenes in the nematic-isotropic
phase transition. We note that a tetratic phase has recently
been observed in a vibrated �nonthermal� macroscopic rod
system �19�.
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