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It is well known that the Navier-Stokes equations cannot adequately describe gas flows in the transition and
free-molecular regimes. In these regimes, the Boltzmann equation (BE) of kinetic theory is invoked to govern
the flows. However, this equation cannot be solved easily, either by analytical techniques or by numerical
methods. Hence, in order to efficiently maneuver around this equation for modeling microscale gas flows, a
kinetic lattice Boltzmann method (LBM) has been introduced in recent years. This method is regarded as a
numerical approach for solving the BE in discrete velocity space with Gauss-Hermite quadrature. In this paper,
a systematic description of the kinetic LBM, including the lattice Boltzmann equation, the diffuse-scattering
boundary condition for gas-surface interactions, and definition of the relaxation time, is provided. To capture
the nonlinear effects due to the high-order moments and wall boundaries, an effective relaxation time and a
modified regularization procedure of the nonequilibrium part of the distribution function are further presented
based on previous work [Guo et al., J. Appl. Phys. 99, 074903 (2006); Shan et al., J. Fluid Mech. 550, 413
(2006)]. The capability of the kinetic LBM of simulating microscale gas flows is illustrated based on the

numerical investigations of micro Couette and force-driven Poiseuille flows.

DOI: 10.1103/PhysRevE.76.036711

I. INTRODUCTION

Gas flows in microscale devices have received particular
attention over the past decade with the rapid development in
microelectromechanical systems (MEMS) [1-3]. In these mi-
croscale devices, the flows are usually distinguished by rela-
tively small Mach numbers (Ma=U/c,=0.3, where U is the
characteristic velocity of the flow and ¢, is the sound speed)
and large Knudsen numbers (Kn=\/H=0.01, where \ is the
molecular mean free path of fluid and H is the characteristic
length of the flow domain). It is well known that processes in
these kinds of flows are described by the Boltzmann equation
(BE) of the kinetic theory [4,5]. Since the numerical solution
of the BE, either directly [6] or via the direct simulation
Monte Carlo (DSMC) method [7], is very time expensive,
there is a strong desire for accurate models which allow
simulations of processes in microscale gas flows at lower
computational cost.

Currently, there are three well-known approaches toward
this goal, the Chapman-Enskog (CE) method [4,5,8], the
Grad’s moment method [9-11], and the lattice Boltzmann
method (LBM) [12,13]. In the CE method, the phase density
is expanded in powers of Kn, and to different successive
orders the expansion yields the Euler, Navier-Stokes (NS),
Burnett equations, and so on. The NS equations cease to be
accurate for Kn larger than 0.01, and although the Burnett
equations are theoretically valid for larger Knudsen numbers,
their numerical solutions become linearly unstable for pro-
cesses involving small wavelength or high frequencies [14].
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In the Grad’s moment method [9-11], the BE is replaced
by a set of moment equations, first-order partial differential
equations for the moments of the distribution function. For
the closure of the equations, the phase density is approxi-
mated by a expansion in the Hermite orthogonal polynomials
about local Maxwellian equilibrium distribution, and the co-
efficients of the polynomials are related to the moments.
Only a few moments have an intuitive physical meaning, i.e.
density, momentum density, energy density, heat flux, and
pressure tensor. The set of 13-moments forms the basis of
Grad’s well-known 13-moment equations [9]. However, the
13-moment set does not allow the computation of Knudsen
boundary layers [15,16] and, with an increasing number of
moments [17], the Knudsen boundary layers can be com-
puted, but solving these moment equations becomes formi-
dable due to its complexities.

The LBM [12,13] is a simplified solver of the BE on a
discrete lattice. The LBM is originated from the lattice gas
cellular automaton models [18-20], and quickly accepted as
an efficient computational fluid dynamics (CFD) solver [21]
due to its distinctive computational features: easy to imple-
ment, intrinsically parallelizable, and straightforward for
handling complex geometries. Because of its intrinsic kinetic
nature, the LBM seems to allow the microscopic physics
responsible for many complex fluid phenomena to be mod-
eled more directly [22-28]. However, since the early LBM
models only satisfy the rotational invariance of hydrody-
namic properties up to the Navier-Stokes order, an argument
[29] usually arises, especially when they are applied in simu-
lations of high-Knudsen number flows [30-39], in which the
higher-order moments are manifested.

Recently, inspired by the Grad’s moment method, a rigor-
ous and systematic theoretical procedure for the LBM, in-
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cluding effects of the higher-order moments, was developed
[40]. By using the Hermite expansion approach, hydrody-
namic moments at various orders can be precisely and ex-
plicitly determined at a given order of truncations of the
Hermite polynomials. On this point, one can think that the
LBM is equivalent to the Grad moment method.

In this paper, we further develop the above kinetic theory
of the LBM by addressing the issues of the boundary condi-
tion, the relaxation time, and the nonequilibrium moments.
In Sec. II, we give a brief description of the lattice Boltz-
mann equation (LBE) including higher-order moment effects
[40]. The accuracy issue required by describing fluid proper-
ties is discussed. In Sec. III, three main topics are further
discussed; first, the boundary condition. Derivation of the
diffuse scattering boundary condition [30,41,42] on the Her-
mite basis is presented. Second, we discuss the relaxation
time. In the presence of the solid wall, an effective relaxation
time is introduced. The last topic is related to the nonequi-
librium distribution. To preserve the nonequilibrium hydro-
dynamic moments, a regularization procedure [38,43] of the
nonequilibrium distribution is discussed, and its effects on
the Knudsen layer are highlighted. Sec. IV is devoted to the
numerical illustrations of the LBM in simulating the high-
Knudsen number flows and concluding remarks are given in
Sec. V.

II. LBE WITH HIGHER-ORDER MOMENTS

The BE [4,5] has been well accepted as a mathematical
model simulating the microscale fluidic gas in the entire
Knudsen regime. The BE describes evolutions of a single
particle velocity distribution function f(x,£,7) in the phase
space (x, &), where x denotes the position and & denotes the
velocity of the particle, and can be written as the following
BGK form:

af =1

E+§-Vf+a~V§f=— (1)

r
Here, 7 is the characteristic relaxation time of collisions to
equilibrium, V the gradient operator in velocity space, and a
the acceleration due to the external or self-generated body
force. f¥) represents a local equilibrium distribution and is
the Maxwellian

) _ p _ (£- u)2>
1= (27TRT)D’26XP( 2RT )’

where p, T, and u are the fluid density, temperature, and
velocity, respectively, D is the dimension of the space, and R
is the gas constant. Hydrodynamic variables, such as the den-
sity, velocity, and temperature are defined, respectively, as in
the following form:

2)

p=jfd§, pU=Jf§d§, DpRT + pu2=ff§2d§-

3)

As argued by Grad [9], the Boltzmann BGK equation (1)
can be projected onto the Hermite orthogonal basis and we
have [40]
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where F,=-a-V, Ja is the contribution of the force term,
and ff)is the nth-order truncated Hermite expansion of the
Maxwellian distribution (2) at a set of discrete velocities &, (
a=0,1,2,...,d, and d depending the truncation order N of
the Hermite expansion) and is written as

N
1
192 0,3 ~a H(E,), (5)
n=0 -

where aé") ~3d_ f(;))H(”)(fa) is the Hermite expansion coef-
ficient, w, is the weight function, and H"(&,) is the
nth-order Hermite polynomial, the first few terms of which
can be expressed as

HO(&) =1,
H(l)(ga) = §ai’
H(z)(ga) = §ai§aj - é‘i,j’

H(3)(§a) = gaigajgak - gai(sjk - gaj(sik - fakb‘i,jv (6)

where ¢§;; is the Kronecker delta function. In the discrete
velocity space, the fluid variables are calculated as

d d d
p=2 far PU= 2 foks DpRT+pu’= 2 f &
a=0 a=0 a=0

()

Obviously from Egs. (4)—(7), the truncation level of the
Hermite expansion determines the accuracy of Eq. (4) to
approximate Eq. (1), and the level of accuracy is increased as
higher-order terms in the truncated expansion are retained.
As revealed by the CE method, by retaining up to the fourth-
order terms in the Hermite expansion, the Burnett level ac-
curacy pertaining to the fluid momentum evolution for iso-
thermal systems can be satisfied. For most microscale gas
flows in MEMS [1-3], the Burnett description is said to be
accurate enough for modeling them. For isothermal MEMS
fluids, a third-order Hermite expansion is enough to model
the momentum equation at the Burnett level due to the small
Mach numbers and the equilibrium distribution function f(cf))
has the following form [40]:

FOx,0) = wap{l + fa U + l[(ga'“)z _ “_2]

RT 2| (RT)> RT
1[ &-w? _]f_
+6{ (RT)? “3%7 | RT } ®

Similarly, the force distribution term F, in Eq. (4) can be
written as
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TABLE 1. D2Q21 and D3Q39 discrete velocity models and the
corresponding weighting functions.

(0,0), 91/324 0
(£1,0),(0,£1) 1/12 1-4
(£1,41) 2/27 5-8
bag21 S = (+2,0),(0,£2) %1730 ¥ o-12
(£2,22) 1/432 13-16
(3,0),(0,43) 1/1620 17-20
(0,0,0), 1/12 0
(1,0,0),(0,£1,0),(0,0,21) 1/12 1-6
(x1,41,41) 1/27 7-14
D3Q39 4. = *2,00),0420).00042) =" 2/135 ¥ |15-20
(£2,4#2,#2) 1/432 21-32
(+3,0,0),(0,43,0),(0,0,+3) 1/1620 33-38

pasi=ana] [ 21 222

e b ) of £u) 2
+2pRT[ i ]{ (RT) (RT>_2RTH’
)

where O-ij=2i=0f;§ai§aj is the stress tensor and f|,=f,— fg))
is the nonequilibrium part of the distribution function f,. The
choice of &, depends on the quadrature in evaluating the
moments of Eq. (7). In general, the quadrature must be ac-
curate enough so that not only the conservation constraints
are preserved, but also necessary symmetry is retained. Ac-
cording to previous work [40], the Gauss-Hermite quadra-
tures employed for solving the third-order truncated system
are based on the D2Q?21 and D3Q39 discrete velocity mod-
els for the 2D and 3D Cartesian lattices, respectively. In
these two quadratures, the sound speed ¢,=VRT is uniquely
equal to v2/3. The discrete velocities &, and weights w,, are
listed in Table I.

With the above Cartesian quadratures, Eq. (4) can be sim-
ply discretized in physical space and time, and yields the
following LBE:

Fal)t 081+ 8) = (4060 = — = (falx,1) = £2(x,1)

TOt

+m (X t) (10)

with the density, velocity, and pressure calculated as

d d
ot
P=2 for PU= D fobut o p=pc;. (11
a=0 a=0

III. BOUNDARY CONDITION, RELAXATION TIME,
AND REGULARIZATION

In microscale gas flows, the degree of systems deviating
from the equilibrium is measured by the Knudsen number.
Therefore, in order to use the LBE (10) to model the micro-
scale gas flow systems, it is better to define the relaxation
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time 7 in terms of Kn [27-32,35,36,38-40,42,43]. On the
other hand, when solid wall boundaries are presented,

the slip boundary condition should be imposed
[27-33,35,39,41-43] and its effects on the relaxation time
should be reflected [2,29]. Furthermore, as seen from the
above Gauss-Hermite procedure, the nonequilibrium distri-
bution f/, generally does not lie in the space spanned by the
leading N Hermite orthogonal basis, and therefore the Gauss-
Hermite procedure introduces an error to the described fluid
systems. When Kn is small, such an error is small and ignor-
able. However, as Kn increases, the error becomes larger and
the correct hydrodynamics of the system will be blurred. To
avoid this and improve isotropy of the system, a “regulariza-
tion” procedure [38,43] is introduced.

A. Diffuse scattering boundary condition

From the kinetic theory, the slip boundary condition in
solving the BE (1) is described by the gas-surface interaction
law [4,5]. Taking into account the wall type via the non-
negative scattering kernel R(£' — &,x,1), representing a prob-
ability density that particles colliding the wall with velocity
between &' and & +d§' at location x and time instance ¢ will
be reflected with velocity between & and §+d§, the boundary
condition for the distribution f(x,&,7) can be given as

f(x,f,t)=f, e, IR(E — Ex.0f(x, & ,0dE",  (12)
¢, <0

where ¢, =(& —u,,)-n, with n being the unit wall vector nor-
mal to the boundary surface and the subscription w meaning
the wall. If there is no absorption on the wall, the kernel
satisfies the normalization and reciprocity conditions, which
are expressed respectively as

f R(§ — &x,0d§ =1, (13)
C)/1>0

and

lcl|R(&' — Ex,010(x,& 1)
=|cJR(- £ — - & x.0)fx,£1), (14)

where fﬁ))(x,g,t) is the wall equilibrium distribution func-
tion. Different types of the scattering kernels express differ-
ent gas-surface interactions and the most well-known Max-
well’s kernel has the following form:

R(f’—§,x,t)=%\/z—:ﬂ3)(x,§,t). (15)

By using the Gauss-Hermite quadrature [40], Egs. (12)—(14)
yield the following Maxwell’s diffuse-scattering boundary
condition in the LBM frame [30,41,42]:

E |(§¢,1_ uw) : n[fa’(X,t)

Fulxt) == O (x,1).,
& -u,) -0l
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Bounded wall
boundary

O\C lision x
(a) (b)

FIG. 1. Definition of molecular mean free path in unbounded
and bounded systems. (a) Unbounded system. (b) Bounded system.

[(£,-u,) n<0; (&u,) n>0], (16)

where ffzv(x,t) = fff)(pw,uw,x,t). Previous theoretical analy-
sis [42] based on a 2D constant density flow along a straight
plate has shown that the above equation generates the fol-
lowing higher-order slip boundary condition

x(&“> +)‘2<‘9u>2+ (17)
Y N T Sl L)
o on/, 2\dn/,

provided that the Cartesian lattice spacing is in the order of
the molecular mean free path.

B. Relaxation time

In kinetic theory [4,5], the relaxation time 7 can be de-
fined in terms of viscosity u as

T=", (18)

p
and the viscosity is proportional to a qualitatively defined
molecular mean free path N, and for hard sphere gases it is

expressed as
T
gy (19)
p V2RT

Consequently, the relaxation time can be further written as

2 2
T= \/j)\csz \/iKn c,H. (20)
v v

Here the definition of the sound speed c¢,=VRT is used.

It is important to note that the mean free path given by
Eq. (19) is only valid for unbounded systems. In a micro-
scale gas flow system confined by the solid boundaries, some
molecules will hit walls and their flight paths may be shorter
than the molecular mean free path A defined in the un-
bounded systems (see Fig. 1). Therefore, the molecular mean
free path in a bounded system should be modified to reflect
the boundary wall effects [2,29]. Here we use an effective
mean free path A* to denote the property of gas flows in the
bounded system, and it can be formally expressed as

A =\P(Kn). (21)

Here Kn is still the conventional Knudsen number without
boundary effects. Intuitively, when the boundary walls are
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far away enough (continuum flows), X" should approximate
to A and thus satisfies limg,_,oW(Kn)=1. According to pre-
vious investigations [2,29], the function ¥ can be best ex-
pressed as

2
W(Kn) = — arctan(aKn™®), (22)
o

where the coefficients a and b depend on the boundary types.
For microscale flows confined between two infinite parallel
walls, it is best to set a=\2 and h=3/4 based on empirical
investigation [29]. Accordingly, Eq. (22) gives the effective
viscosity and relaxation time as

u = u¥(Kn), (23)

and

. 2
T = \/ancSH\I’(Kn), (24)
T

respectively.

C. Regularization

The regularization procedure was introduced by Chen et
al. [38] to guarantee the nonequilibrium moments of the
LBM satisfied in the Hermite space. The regularization is
implemented before the collision of the particles. In the regu-
larization procedure, the nonequilibrium distribution f7, is
also projected on the N Hermite-truncated basis by using the
Gauss-Hermite procedure, and we have

- N £
"= 0, —a<">H<">(—“) (25)
J:‘ n=0 ! Vﬁ

with the Hermite coefficients a"==4_ f' H"(&,/ VRT). Cor-
responding to the first three Hermite-truncated expansions
where the LBE (10) is obtained, Eq. (25) can be written as
the following generic form by using the mass and momen-
tum conservations:

N d
fo= wa{LH@)(%)E fokaibaj
s/ a=0

2
2c;

d
Bo&)3 fgfa,-ga,fak} . e
Cs a=0

Cs

+

where the additional coefficient B is introduced in the second
term and is properly given by B=1-W(Kn). Obviously,
when Kn goes to zero, the contribution of the third-order
nonequilibrium moment vanishes, and the Navier-Stokes or-
der hydrodynamics is recovered.

Mathematically, the regularization procedure serves as a
filter and ensures the nonequilibrium distribution remains in-
side the defined Hermite space by filtering out the higher-
order nonequilibrium moments not supported by the defined
Hermite basis. Besides improvement of stability and isotropy
of the LBE [38], the other significance of the regularization
procedure that needs to be addressed here is the Knudsen
layer, a region that the non-Newtonian stress/strain-rate rela-
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tionship exists, can be given correctly to some extent. This is
because the nonlinear fluid behaviors in the Knudsen layer
are mostly influenced by the higher-order nonequilibrium
moments, and the regularization procedure ensures the con-
sistent description of the higher-order hydrodynamic mo-
ments in the LBM frame. With the above regularization, the
discrete distribution function f,, can be written as

fa=13+ for 27)
and the LBE (10) becomes
-0.56t
St.t+60) = O + — 22 (x.t
Fals+ €adt,t 4+ 8) = £ (60 + —— 0 f1(%,0)
7Ot

+——F (X, 28
74058 %0 28

when the flow system is unbounded.

IV. NUMERICAL ILLUSTRATIONS

To demonstrate advantages of the kinetic LBM introduced
above, the planar Couette and force-driven Poiseuille flows
for a range of Knudsen numbers are simulated in this section
and accuracy of the present method is verified against DSMC
approach [44] and the linearized BE method [45]. For con-
venience, hereafter we shall refer to the method based on Eq.
(10) as the LBE method and the one based on Eq. (28) as the
LBE-REG method. Both methods employ Egs. (8), (9), (16),
and (24) with the D2Q21 discrete velocity models.

A. Planar Couette flows

We consider a planar Couette flow confined between two
plates parallel to the x axis at y==+H. The upper plate moves
with a constant velocity U,=0.1 and the lower plate remains
stationary. Initially, a linear velocity distribution is set in the
flow field. The diffuse-scattering boundary conditions of Eq.
(16) are used to describe the gas-surface interactions on the
plates, while periodic boundary conditions are implemented
at the inlet and outlet. To demonstrate grid independence,
simulations are carried out on three uniform grid sizes of
17X 17, 33 X33, and 65X 65, respectively. Figure 2 illus-
trates the normalized velocity (U=u/U,) profiles of Kn
=0.1, 1, and 10 as a function of distance (Y=y/H) between
the plates at different grid sizes. As shown in this figure, the
velocity profiles demonstrate the Knudsen layers near the
plates and a linear property inside the domain. With Kn in-
creasing, the Knudsen layers increase. Slip velocities on the
plates are also clearly observed for these three Knudsen
numbers and their magnitudes increase as Kn becomes
larger. Also see in this figure, the results are consistent with
each other as the grid size becomes larger than 33 X33.
Therefore, in the following, the results based on the grid size
of 33 X33 are shown only.

It is known that the Knudsen layer comes from the non-
linear fluid behaviors near the boundaries. However, from
our earlier experiences [30,31], the LBE (10) cannot capture
these phenomena and this can be clearly seen from Fig. 3,
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I Kn=0.1(17 x 17)

I o Kn=0.1(33 x 33)

a Kn=0.1 (65 x 65)

08F _ _ _ _ Kn=1 (17x17)

B =] Kn=1 (33x33)

+ v Kn=1 (65x65)

F— Kn=10 (17 x 17)

0.6 > Kn=10 (33 x33)

I 4 Kn=10 (65 x 65)
> |
04
0.2}

0 L » . P
5 57 0.4 06 08 !

FIG. 2. Normalized velocity profiles for planar Couette flows at
different Knudsen numbers and grid sizes.

which compares the normalized velocity profiles of Kn
=0.1, 1, and 10 between the plates obtained by the LBE and
LBE-REG methods. As shown in Fig. 3, the LBE method
gives the linear velocity profiles between the plates for all
three Knudsen numbers as compared to the LBE-REG solu-
tions. Physically, the nonlinear fluid behaviors of the Knud-
sen layer are contributions of the high-order nonequilibrium
moments. Therefore, we can rationally figure out that the
regularization of the nonequilibrium moments makes the
LBE well consistent with the coupling physics (Navier-
Stokes order hydrodynamics and beyond) at macro and mi-
cro scales. The accuracy of the present LBE-REG is shown
in Fig. 4, in which the normalized velocity profiles of the
planer Couette flows at Kn=0.1 and 1 have been compared
to the DSMC data [44]. The DSMC method has been gener-
ally accepted as an accurate method to model the large
Knudsen number flows. Figure 4 shows that the LBE-REG
solutions are in good agreement with the DSMC data. The
differences between the two simulations imply that more
(higher than third-order) terms in the Hermite polynomials
should be included in the present LBE-REG model.

1 A
I ‘s
| LEB-REG (Kn =0.1) ’
| = = = = LBEREG (Kn=1) / Vz
08l ===~ LBE-REG (Kn = 10) 7
©r LBE (Kn=0.1) 4
| - — — - LBE(Kn=1) 7
— LBE (Kn = 10) 4
0.6
>~ L
04
0.2
ot ‘ '
0 0.2 04 0.6 0.8 1

FIG. 3. Regularization effects on the normalized velocity pro-
files for planar Couette flows at different Knudsen numbers.
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| LEB-REG (Kn =0.1) o,
| — — — — LBE-REG (Kn=1) DD / OO
o8k O  DSMC (Kn=0.1) o/
ad O  DSMC(Kn=1) o’
06
>_| -
04
0.2
O L 1 L
0 0.8 1

FIG. 4. Comparison of the normalized velocity profiles for pla-
nar Couette flows at different Knudsen numbers obtained by the
LBE-REG and DSMC approaches.

However, the present method is still shown to be capable of
providing a reasonable description for the microscale gas
flows.

B. Force-driven Poiseuille flows

The second numerical illustration is the force-driven Poi-
seuille flows in a 2D channel with height H. In numerical
simulations, the flow is assumed to be static initially, and a
constant force a=0.01 is applied in the streamwise direction
while periodic boundary conditions are used at the inlet and
outlet. To ensure the grid independence of the solutions, two
uniform grid sizes of 33 X33 and 65X 65 are also used for
the flows to be presented in the following, and the consistent
velocity profile results of the flows at Kn=1 on these two
grid sets are displayed in Fig. 5.

Figure 6 shows the normalized velocity profiles, U
=1/ Upax (Upay is the maximum value in the channel), across
the channel for three Knudsen numbers at 0.1, 1, and 10. To
show the accuracy of the present method, the DSMC results

1.2

0.8
2 0.6 B
04 R 33 x33
i o 65 x 65
0.2f
0 i L1 L1 L1 L1
0 0.2 0.4 0.6 0.8 1

FIG. 5. Normalized velocity profiles for force-driven Poiseuille
flows of Kn=1 at different grid sizes.
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0.812
D 0.6t i
e o) DSMC  (Kn=0.1) o
049 A DSMC  (Kn=1.0) Q
O DSMC  (Kn=10)
’ LBE-REG (Kn=0.1)
02 - —=--- LBE-REG (Kn=1)
I LBE-REG (Kn = 10)
0 L 1 P R N P R
0 0.2 0.4 0.6 0.8 1
Y

FIG. 6. Comparison of the normalized velocity profiles for
force-driven Poiseuille flows at different Knudsen numbers ob-
tained by the LBE-REG and DSMC approaches.

[44] are also included. As observed from this figure, the re-
sults obtained by the LBE-REG are in good agreement with
the DSMC predictions. With the increase of the Knudsen
numbers, the slip velocities at the channel walls increase. As
a result, the velocity profiles become flatter and flatter.

One of the major successes in kinetic theory is the predic-
tion of a minimum of the mass flow rate as a function of the
Knudsen number at Kn~ 1. It was reported in [43] that the
LBE model presented in that work can predict the Knudsen
minimum. However, the simulations indicate a large differ-
ence to the linearized BE and DSMC methods [2,45] due to
no consideration of boundary effects on the relaxation time
and the third-order nonequilibrium moments. The nondimen-
sionalized mass flow rate, Q=E§,’=0pu(y)/ (paH?*/c,), as a
function of Knudsen numbers obtained by the present model,
is plotted in Fig. 7. For comparison, this figure also includes
the DSMC results [2] and the linearized BE solutions [45] as
well as the analytical asymptotic expressions in the zero and
infinite Knudsen limits [4],

Qo= m/(12Kn) + 5o+ (252 1)2Kn/\m,  (29a)
1000 3
; O Linearized BE
A DSMC
100 - ——- Asympotic solution Eq.(29a) -
F —-—-- Asympotic solution Eq. (29b) Pie

—— LBE-REG Ihe

100
Kn

FIG. 7. Nondimensionalized mass flow rate as a function of
Knudsen numbers predicted by different methods.
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0. = s, PIn(2Kn/\ ), (29b)

with sg=1.01615 and s..=3. As expected, the LBE-REG pre-
dicts a minimum mass flow rate around Kn=1. As Kn de-
creases to zero limit, all simulation results agree with each
other and converge to the asymptotic solutions of Eq. (29a).
This implies that Navier-Stokes order hydrodynamics are re-
covered correctly by all schemes at vanishing Knudsen num-
bers. At higher Kn, the LBE-REG simulations are close to
the asymptotic solution of Eq. (29b) and exhibit an excellent
agreement with the results of the linearized BE and DSMC
methods, suggesting that the present model with effective
relaxation time and modification of the third-order nonequi-
librium moments can indeed capture the microscale gas fluid
properties at high Knudsen numbers.

V. CONCLUSIONS

In conclusion, a systematic description of the issues of the
kinetic lattice Boltzmann method for simulating the micro-
scale gas flows is presented in this paper. By using the
Gauss-Hermite quadrature, the diffuse-scattering boundary
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condition is directly obtained by projecting the Maxwell ki-
netic boundary condition on the Hermite space. The relax-
ation time is linked to the Knudsen number, and a concept of
the effective mean free path is introduced in determining the
relaxation time by taking into account the boundary effects.
Significances of the high-order nonequilibrium moments and
their regularization procedure are addressed. With a link to
the numerical simulations of the Couette and Poiseuille
flows, it is argued that by introducing the effective molecular
mean free path with boundary effects and regularization pro-
cedure to guarantee the nonequilibrium moments of the
LBM to be in the Hermite space, the microscale gas flows at
a range of the Knudsen numbers can be modeled.
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