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Global feedback control of pattern formation in a wide class of systems described by the Swift-Hohenberg
�SH� equation is investigated theoretically, by means of stability analysis and numerical simulations. Two cases
are considered: �i� feedback control of the competition between hexagon and roll patterns described by a
supercritical SH equation, and �ii� the use of feedback control to suppress the blowup in a system described by
a subcritical SH equation. In case �i�, it is shown that feedback control can change the hexagon and roll
stability regions in the parameter space as well as cause a transition from up to down hexagons and stabilize
a skewed �mixed-mode� hexagonal pattern. In case �ii�, it is demonstrated that feedback control can suppress
blowup and lead to the formation of spatially localized patterns in the weakly nonlinear regime. The effects of
a delayed feedback are also investigated for both cases, and it is shown that delay can induce temporal
oscillations as well as blowup.
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I. INTRODUCTION

Spatiotemporal pattern formation in systems far from
equilibrium has been a subject of active research in physics,
chemistry, and biology for several decades �1–4�. Recently,
the manipulation of pattern-forming processes by applying
feedback control has been attracting growing attention �5,6�.
It has been shown that feedback control can be successfully
used to manipulate Rayleigh-Bénard convection �7–10�, Ma-
rangoni convection �11–13�, convection in binary systems
�14�, contact line instability in thin liquid films �15,16�, shear
flows �17–20�, excitable media �21–24� and other reaction-
diffusion systems �25�, catalytic reactions �26–28�, patterns
in nonlinear optics �29,30�, crystal growth �31,32�, cardiac
dynamics �33�, and other systems as well.

A characteristic feature of pattern-forming systems is that
they can be divided into several large classes depending on
the type of instability, basic symmetries, and conservation
laws present in the system. Within each class, the system’s
nonlinear dynamics near the instability threshold is governed
by a generic evolution equation, such that the whole plethora
of pattern-forming systems can be described by a few such
equations �3,4,39�. Thus, the feedback control of pattern for-
mation in many systems can be studied by using models
based on generic nonlinear evolution equations. For ex-
ample, feedback control of wave dynamics, typical of sys-
tems exhibiting oscillatory instabilities, has been studied us-
ing the generic complex Ginzburg-Landau equation �34–38�.
The possibility of feedback control of chaotic dynamics in
systems with translation invariance exhibiting long-wave in-
stability that are described by a generic Kuramoto-
Sivashinsky equation �such as flame fronts �40�, solidifica-
tion fronts �41–43�, liquid film flow �44,45�, and chemical
oscillations �46�� was studied in �47–49�.

A large class of spatially isotropic systems that exhibit the
formation of stationary roll �stripe� or hexagonal patterns re-
sulting from a monotonic instability of a spatially homoge-
neous state is described by a Swift-Hohenberg �SH� equation
�3,50,51� for the “order parameter” ��x , t� that can be writ-
ten in a rescaled form as

��

�t
= �� − �1 + �2�2� + ��2 − ��3. �1�

Equation �1� is used to model the nonlinear dynamics of
Rayleigh-Bénard and Marangoni convection, diblock copo-
lymerization, and many other systems �3,50,52�, and has
been extensively studied. The quadratic term is present to
include systems with broken reflection symmetry of the or-
der parameter. In fluid convection, this corresponds to ther-
mocapillary effects or non-Boussinesq fluids �52�. The pa-
rameter � characterizes the linear growth rate and is
proportional to the distance of the bifurcation parameter
from the instability threshold, and �= ±1. The case �=1
corresponds to a supercritical instability in which Eq. �1�
describes relaxational dynamics leading to the formation of
roll or hexagonal patterns. The case �=−1 corresponds to a
subcritical instability in which Eq. �1� leads to a blowup in
finite time and does not describe pattern formation dynamics.
In this case, one can argue that higher-order nonlinearities
start playing a role, and one should add a quintic nonlinear
term to Eq. �1� in order to describe the nonlinear dynamics.
The quintic SH equation, describing pattern formation in sys-
tems exhibiting a subcritical instability, has also been exten-
sively studied �53,54�.

Feedback control of systems described by a supercritical
SH equation in one dimension �1D� was first considered in
�55�. It was shown that applying localized feedback at a few
spatial locations can stabilize both uniform and pattern
states. In the present paper, we investigate the possibility of
applying a global feedback control to a pattern-forming sys-
tem whose dynamics is described by a Swift-Hohenberg
equation in 2D. By global feedback control, we mean that,
based on the measurements of some global characteristic of
the system, we vary some parameter that determines the sys-
tem behavior in the whole domain. Such types of control
might be easier to implement experimentally. We shall focus
on the following two questions: �i� Can global feedback con-
trol change the competition between roll and hexagonal pat-
terns? �ii� Can global feedback control suppress the blowup
in a subcritical SH equation and keep the system dynamics in
a weakly nonlinear regime? Since both the roll-hexagon
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competition and the subcritical pattern blowup are associated
with growing amplitude of the pattern, we choose a global
feedback control based on measuring the maximum of the
pattern amplitude over the domain. Thus, we consider the
following two cases: �i� feedback control of roll-hexagon
competition in a supercritical SH equation ��=1�; �ii� feed-
back control of blowup in a subcritical SH equation
��=−1�. In case �i�, since the presence of hexagonal patterns
is due to the quadratic term in Eq. �1�, we choose to apply
feedback control to the parameter � characterizing the reflec-
tion symmetry breaking and consider

���� = �0 + p max
x

����t − ���� . �2�

This can be done experimentally, say, by applying an exter-
nal field tuned according to the measurements of maxx���.
The delay � has been included to allow for any experimental
elapse in time between the sensor measurements and the ad-
justments of actuators in the feedback loop. In many cases,
however, this time delay is small in comparison to the tem-
poral evolution of the system and can be neglected. In case
�ii�, we consider controlling the supercriticality � and set

���� = �0 − p max
x

����t − ����, p � 0. �3�

This can be implemented in a laboratory by changing the
parameter governing the instability driving force �for in-
stance, the temperature difference across a liquid layer in the
case of convection�, and this type of global feedback was
also considered in �32,38�.

The paper is structured as follows. In Sec. II, we consider
feedback control without delay of the competition between
rolls and hexagons. In Sec. III, we investigate the possibility
of suppressing the blowup in a system described by a sub-
critical SH equation, via feedback control without delay in
order to keep the system dynamics in a weakly nonlinear
regime. In Sec. IV, we investigate the effects of delay in the
feedback loop. Conclusions are presented in Sec. V.

II. FEEDBACK CONTROL OF HEXAGON-ROLL
COMPETITION

Here we consider the following model describing the SH
dynamics in the presence of feedback control of the
symmetry-breaking quadratic term with a negligible delay
��=0�:

��

�t
= �� − �1 + �2�2� + �����2 − �3, �4a�

���� = �0 + p max
x

����� . �4b�

Since Eqs. �4a� and �4b� are invariant with respect to the
transformation �0→−�0, �→−�, p→−p, we will restrict
our attention to �0�0.

Equations �4a� and �4b� have the trivial solution ��0.
Small perturbations of this solution, �̃	e�t+ik·x, are charac-
terized by the dispersion relation �=�− �1−k2�2, where k
= �k�. The trivial state is unstable for ��0, and the instability
onset corresponds to k=kc�1.

Consider the system �4a� and �4b� near the instability
threshold: �=O�	2�, 0
	�1. We introduce the slow time
T=	2t, assume p=O�1�, �0=O�	�, and expand �=	�1

+	2�2+	3�3+¯, where �1=A1�T�eik1·x+A2�T�eik2·x

+A3�T�eik3·x+c.c. �with k1+k2+k3=0, �k1,2,3�=1�. Since the
competition between rolls and hexagons is governed by am-
plitude rather than modulational instabilities, we neglect here
spatial modulations of the complex amplitudes A1,2,3�T�. The
effect of spatial modulations could be taken into account
within the framework of more general models �56–59�; how-
ever, as seen below, the predictions based on the Landau-
type equations are verified by numerical simulations of Eqs.
�4a� and �4b�. By means of a standard multiple-scale analysis
�see �4�, Chap. 4.4�, one obtains the following system of
amplitude equations for the complex amplitudes A1,2,3�T�:

Ȧ1 = �A1 − �3�A1�2 + 6�A2�2 + 6�A3�2�A1

+ 2A2
�A3

�
�0 + 2p�
n=1

3

�An�� , �5�

where the two other equations are obtained via cyclic permu-
tations of the indices, and �·� denotes differentiation with
respect to T.

A. Stability of rolls

We first rewrite our complex amplitudes in polar form as
An=Rn exp�i�n� and define �=�1+�2+�3. To examine the
stability of a roll pattern, consider one of the three stationary
solutions of the system �5�: R1=R=
� /3, R2=R3=0. For in-

finitesimal perturbations R̃n	e�T of this solution, we see that
one mode is always damped, and, for the two remaining
modes, we obtain a quadratic dispersion relation that has the
roots �=−�± �2�0


� /3+ �4/3�p��. Thus, the rolls are stable
for

� 2�0


3�
+

4p

3
� 
 1. �6�

One can see that, in the absence of control �p=0�, the
condition �6� reduces to the usual condition for roll stability,
��4�0

2 /3.

B. Stability of hexagons

Now consider the stationary solution of the system �5�
corresponding to a hexagonal pattern, R1=R2=R3=R, where

R =
�0qh ± 
�0

2 + �15 − 12qhp��
15 − 12qhp

, qh = sgn��0 + 6pR� .

�7�

The solution �7� clearly exists only for �0
2+ �15−12qhp��

�0. Since �0�0, then qh=1 for p�0. If p
0, qh=1 for
0
R
�0 / �6�p��, and qh=−1 for R��0 / �6�p��. This flip in
sign results in a change in stability of the attracting manifold
for �. Hence, for p
0, one observes a transition from up
hexagons �the order parameter has a maximum in the center
of the hexagonal cell� to down hexagons �the order param-
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eter has a minimum in the center�, when the pattern ampli-
tude exceeds the critical value Rc=�0 / �6�p��.

For infinitesimal perturbations R̃n	e�T of the solution
�7�, one obtains the following dispersion relation: ��− �a
+2b����− �a−b��2=0, where a=−2�0qhR− �8qhp+6�R2 and
b=2�0qhR+ �16qhp−12�R2. This leads to the two stability
conditions

0 � a + 2b = 
 2R
�0
2 + �15 − 12qhp�� ,

0 � a − b = 2� − 24R2. �8�

From �8�, we obtain that the lower branch of the steady-state
solution �7� is always unstable, and the stability condition for
the upper branch is

1 
 � 4�0


3�
+ 4p� . �9�

In the absence of feedback �p=0�, the condition �9� reduces
to the usual condition for hexagon stability, �
16�0

2 /3.

C. Stability of mixed modes

The system �5� has a third stationary solution in the form
R1=R, R2=R3=mR�m�0�, where

R =
�6qm − 8p��0 ± 8

3 p
� 112
3 p2 − 24qmp + 9�� − 12�0

2

112
3 p2 − 24qmp + 9

,

mR =
1

3

� − 3R2, qm = sgn��0 + �2 + 4m�pR� . �10�

It describes the so-called mixed mode or skewed hexagons
and separates the basins of attraction of rolls and hexagons.
In the absence of feedback, this mode corresponds to R1

=2�0 /3, R2=R3= 1
3

�−4�0

2 /3, and it is always unstable �see
�4�, Chap. 4.4�. As we show below, however, feedback con-
trol can stabilize this solution.

Indeed, for infinitesimal perturbations R̃n	e�T of the so-
lution �10�, one obtains the following dispersion relation:

�� − �d − e����2 − �a + d + e�� + a�d + e� − 2bc� = 0,

�11�

where

a = �4qmpm2 − �6 + 3m2��R2, b = �4qmpm2 − 9m�R2,

c = �4qmpm − 9m�R2, d = �4qmpm − �3 + 6m2��R2,

e = �4qmpm + �3 − 12m2��R2.

The root �=d−e=6R2�m2−1� is negative for m
1 and
positive otherwise. It means that the mixed mode with R1

R2=R3 is always unstable. The remaining quadratic poly-
nomial has roots with negative real parts for m� �0,1� as
long as �12m−8�p�9m, and p
0. In terms of �, this sta-
bility condition becomes

12�0
2

112
3 p2 − 24p + 9


 � 

12�0

2

�3 − 4p�2 with p 
 0. �12�

Note that this condition restricts the range of the ratio m to
the interval �0, 2

3
�, where the neutral stability curve will ap-

proach the value m= 2
3 as p→−�.

D. Bifurcation diagrams

The above analysis allows us to plot bifurcation diagrams
that show the three types of stationary solution of the system
�5� and their stability. Stable branches are represented by
solid lines, while unstable branches are represented by dotted
lines. The following common notations for the key points on
the diagrams are used:

A:� =
12�0

2

�4p − 3�2 , B:� =
− �0

2

15 − 12p
,

C:� =
48�0

2

�12p − 3�2 , D:� =
12�0

2

� 112
3 p2 − 24p + 9� ,

E:� =
5�0

2

12p2 , F:� =
48�0

2

�12p + 3�2 , G:� =
12�0

2

�4p + 3�2 ,

H :�= −�0
2� �12p+15� .For p�0, the bifurcation diagrams

are shown in Fig. 1. One can see that, with increase of p, the
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FIG. 1. �Color online� Bifurcation diagrams for p�0, �0=0.2.
p= �a� 0.1, �b� 0.5, and �c� 0.8. The unstable mixed-mode branch
�MM� connects A and C and separates the two basins of attraction.
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stability domains shift to larger values of �. For 0� p

1/4, there is a finite region of bistability between hexa-
gons and rolls. For p�1/4, hexagons become uncondition-
ally stable �point C moves to infinity�. For p�3/4, roll
structures become unconditionally unstable �point A moves
to infinity�. Once p�5/4, the strength of the quadratic non-
linearity overpowers the saturation of the cubic term, and the
solutions of �4a� and �4b� blow up in finite time.

The dynamics for p
0 is far richer. Typical bifurcation
diagrams are shown in Figs. 2–6. In this case, the most in-
teresting effect of feedback control is probably that it can
stabilize the mixed-mode pattern, which is initially generated
by a saddle-node bifurcation and is terminated at the roll
solution branch. A typical bifurcation diagram for −1/4� p

0 is shown in Fig. 2. The stable branch of the mixed-mode
solution corresponds to line DA.

For −3/4� p
−1/4, a finite interval of � exists in which
the hexagonal pattern is unstable. In this interval, either roll

or mixed-mode patterns are stable. An example is shown in
Fig. 3. At point E, which exists for all p
0, the functional
���� switches sign, and the up hexagons �UHex� become
down hexagons �DHex�. Down hexagons become stable at
point F, after which, there is an infinite bistability region
between rolls and hexagons.

For p
−3/4, the unstable mixed-mode branch intersects
the roll solution and terminates its stability at point G as seen
in Fig. 4. Once ��G, down hexagons are the only stable
pattern.

For p
−5/4, there is a sign change in the down-hexagon
branch, and the solution cannot exist past a critical value of
�. The stability of this branch is hence terminated at this
value of � via saddle-node bifurcation. This is shown in Fig.
5 by point H. Thus, in this case, there is a region of bistabil-
ity between down hexagons and rolls between points F and
H. After point H, a transition from down hexagons to rolls
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FIG. 2. �Color online� Bifurcation diagram for p=−0.24, �0

=0.2. A stable branch for the mixed-mode pattern �MM� corre-
sponds to line DA.
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FIG. 3. �Color online� Bifurcation diagram for p=−0.74,
�0=0.2.
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FIG. 4. �Color online� Bifurcation diagram for p=−1.0, �0

=0.2. Rolls become unstable at point G. The boxed region is quali-
tatively similar to Fig. 3.
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=0.2. Down hexagons become unstable at point H.
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occurs, and rolls remain stable until point G. After point G,
no stable solution of Eqs. �4a� and �4b� exists, and the solu-
tion blows up in finite time.

At p=−9/4, points F and H from Fig. 5 collide, and down
hexagons become completely unstable for any larger values
of �p� �see Fig. 6�. In this case, with the increase of �, one
observes a transition from up hexagons to the mixed mode at
point C. The latter is transformed to rolls at point A.

We solved Eqs. �4a� and �4b� numerically for �0=0.2, p
=−1, and a range of � to demonstrate the possibility of stable
up-hexagon, roll, and down-hexagon patterns for p
−1/4
�bifurcation diagram seen in Fig. 4�. A pseudospectral code
was used with periodic boundary conditions on a 256�256
grid. The results of these numerical simulations can be seen
in Fig. 7. In order to demonstrate stabilization of the mixed-
mode �skewed hexagonal� pattern, we solved Eqs. �4a� and
�4b� numerically for �0=0.2, p=−2.5, and a range of � cor-
responding to various values of the ratio m. The results of the
numerical simulations are shown in Fig. 8, where one can
see the stable skewed hexagonal patterns together with their
Fourier spectra. One can clearly see that the amplitude of one
mode is larger than that of the two other modes. The ampli-
tude ratio is in excellent agreement with our analytical pre-
dictions.

III. FEEDBACK CONTROL OF SUBCRITICAL
DYNAMICS

In this section, we investigate the possibility of using
feedback control to suppress the blowup in a subcritical SH
equation. We thus consider the following model without de-
lay ��=0�:

��

�t
= ����� − �1 + �2�2� + ��2 + �3, �13a�

���� = �0 − p max
x

�����, �p � 0� . �13b�

In the absence of feedback �p=0�, the solutions of �13a� and
�13b� blow up in a finite time, which means that the model
�13a� and �13b� cannot describe the system dynamics. How-
ever, as we show below, it is possible to suppress the blowup
in the model �13a� and �13b� by means of the chosen feed-
back control.

A. One-dimensional case

First consider the model �13a� and �13b� in one spatial
dimension. Introduce a small parameter 0
	�1 and con-
sider a weakly nonlinear regime with �0=O�	2�. Introduce a
long-scale coordinate X=	x and slow time T=	2t, assume
p ,�=O�	�, and consider the expansion �=	�1�x ,X ,T�
+	2�2�x ,X ,T�+	3�3�x ,X ,T�+¯, where �1�x ,X ,T�
=A�X ,T�eix+A��X ,T�e−ix. Here we take into account spatial
modulations, since patterns with a spatially uniform ampli-
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FIG. 6. �Color online� Bifurcation diagram for p=−3.0, �0

=0.2. Down hexagons are unstable here for all �.

FIG. 7. Numerical simulations of Eqs. �4a� and �4b� showing the
possibility of up hexagons, rolls, and down hexagons for �0=0.2,
p=−1, and �= �a� 0.005, �b� 0.02, �c� 0.04.

FIG. 8. Numerical simulations of Eqs. �4a� and �4b� showing
stable mixed-mode patterns �a�,�b� with their corresponding Fourier
spectra �c�,�d� for �0=0.2 and p=−2.5. �a� and �c� correspond to
�=0.001 59 �m=1/2�, while �b� and �d� correspond to �
=0.001 95 �m=1/6�.
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tude are always unstable. By means of a standard multiple-
scale analysis, one obtains, as a solvability condition for �3
at O�	3�, the following amplitude equation for the complex
amplitude A:

�A

�T
= �0A − 2p max

X
��A��A + 3A�A�2 + 4

�2A

�X2 . �14�

Equation �14� is a globally controlled Ginzburg-Landau
equation for the complex amplitude of the periodic pattern
that occurs near the threshold of linear stability. It was first
derived in �32� for the case of global feedback control of
morphological instability in directional solidification. As
shown in �32�, the only stable solution of Eq. �14� is the
following localized solution:

A�X� = aei�0 sech�b�X − X0��, a =
2

3
p −

2

3

p2 −

3

2
�0,

b =
3

8
a ,

where �0 and X0 are arbitrary constants. This solution exists
for p�
3�0 /2 and blows up otherwise. Figure 9 shows sta-
tionary numerical solutions of �13a� and �13b� obtained by
means of our pseudospectral code �with periodic boundary
conditions starting from small-amplitude random noise�. One
can see the formation of localized spatially oscillating struc-
tures whose envelope in a large domain is well described by
the solution �15�. An increase of the feedback strength p
results in the widening of the localized region until it be-
comes equal to the computational domain, and the solution
becomes a modulated periodic structure. Alternatively, an in-
crease in �0 narrows the localization region.

Thus, one can see that, in the 1D case, a sufficiently
strong feedback control can suppress the blowup in the dy-
namics described by a subcritical SH equation and lead to
the formation of localized patterns.

B. Two-dimensional case

Now consider the model �13a� and �13b� in two spatial
dimensions. For this case, we have performed numerical
simulations of �13a� and �13b� with our pseudospectral code
�with periodic boundary conditions and random noise initial
conditions� for �=0 �systems with reflection symmetry for
the order parameter� and ��0 �no reflection symmetry for
the order parameter�. The results are shown in Figs. 10 and
11. One can see the formation of spatially localized patterns.
In the absence of a quadratic nonlinearity ��=0�, a solitary
peak evolves from the initial data �see Fig. 10�. The peak
height is such that the effective linear growth rate �=�0
− p maxx�����, is slightly negative, so that the trivial steady
state �peak tails� becomes stable. As a result, a spatially lo-
calized, radially symmetric structure forms.

In the presence of the quadratic nonlinearity ���0�, a
spatially localized hexagonal pattern is formed �see Fig. 11�.
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FIG. 9. �Color online� Numerical simulations of Eqs. �13a� and
�13b� in 1D for �0=1 and control strengths p= �a� 1.5, �b� 4, and
�c� 10.

FIG. 10. Numerical simulations of Eqs. �13a� and �13b� in 2D
with reflection symmetry ��=0�. The localized target patterns
broaden with increase of the control strength p.

FIG. 11. Numerical simulations of Eqs. �13a� and �13b� in 2D
without reflection symmetry ���0�. The localized hexagonal struc-
tures broaden with increase of the control strength p.
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With increase of the control strength p �or decrease of ��,
the localization regions of both types of structure broaden,
similarly to the 1D case shown in Fig. 9. The system with
�=0 approaches a target pattern until it interacts with itself
due to the periodic boundary conditions, while the system
with ��0 approaches a uniform hexagon pattern. Similar
localized hexagonal patterns were described in �32�.

IV. EFFECT OF DELAY

In this section, we investigate possible effects of feedback
delay on the evolution of systems described by �4a�, �4b�,
�13a�, and �13b�. In the supercritical case with a delayed
feedback of the form �2�, the delay does not affect the
steady-state solutions for small delay values. If the delay is
sufficiently large, the system may stabilize to the expected
pattern in the absence of control before the feedback is ini-
tiated. Once the feedback is then activated, the pattern may
still remain in its previous state.

For a subcritical system described by Eqs. �13a� and �13b�
with delayed control �3�, we have found that, when the delay
parameter � exceeds a certain threshold, the localized struc-
tures described in Sec. III undergo a Hopf bifurcation that
results in oscillations of the pattern amplitude. A spatiotem-
poral diagram of this oscillating structure in 1D is shown in
Fig. 12.

As the delay is increased, the oscillating amplitude along
with the period of oscillation grows. When the delay param-
eter exceeds another threshold value, the oscillations become
unstable, and the solution blows up. A diagram showing sta-
bility regimes of stationary and oscillatory solutions is
shown in Fig. 13. It is consistent with the stability diagram of
a Ginzburg-Landau equation with delayed feedback control
obtained recently in �60�.

One can see that the stability region of stationary local-
ized solutions has a vertical asymptote in the �� , p� plane, so
that no stable stationary solution exists past this critical value

of �. This critical delay can be found analytically. Indeed, for
p�1, stationary solutions take the form �	R�t�cos�x−x0�.
The system finds a balance for long times, such that the
effective linear growth �=�0− p maxx������0, so R�t�
��0 / p. Then to O�p−1� the amplitude of this solution
evolves as

Ṙ�t� = �0R�t� − pR�t�R�t − �� . �16�

Perturbations of the steady state R̃=R−�0 / p are described

by the linearized equation R̃
˙ �t�=−�0R̃�t−��. Letting R̃=ei�t

���R�, for which the Hopf bifurcation occurs, we find
�0�=��−1�n�n+ 1

2
�. Since �0��0, this equality is first satis-

fied for n=0. Steady-state solutions are hence stable for �

�c=� / �2�0�.

In the 2D case, a similar behavior is observed, where an
increase of delay induces oscillations in the pattern and an
eventual destabilization to blowup. In this case, Eq. �16� and
Fig. 13 can also be used for the case �=0 in the limit of large
p. Figure 14 shows the height of the central peak of the
localized target pattern for the case �=0 as a function of
time. One can see that, below a critical delay, the pattern is
stationary, while the peak starts oscillating with a constant
amplitude when the delay exceeds this critical value. The
��0 case exhibits qualitatively similar behavior. When the
delay exceeds a second critical value, the solution blows up.

V. CONCLUSIONS

We have investigated the possibility of active, feedback
control of pattern-forming systems using the generic, real
Swift-Hohenberg equation �1� as a model. We have consid-
ered two types of system: with supercritical and subcritical
instabilities. We have shown that, using global feedback con-
trol based on measurement of the maximum pattern ampli-

FIG. 12. Spatiotemporal diagram of a numerical solution of Eqs.
�13a� and �13b� in 1D with delay for �0=1, p=4, �=1.6, showing a
localized structure with oscillating amplitude.

FIG. 13. �Color online� Stability regimes in the �� , p� plane for
Eqs. �13a� and �13b� in 1D at �0=1. SS, stable stationary solutions;
OS, stable oscillatory solutions; U, unstable solutions �blowup�. The
vertical asymptote corresponds to the critical delay value �c=� /2
for large p.
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tude, one can manipulate the competition between patterns
with different symmetries �hexagons and rolls� and suppress
the blowup in subcritically unstable systems by keeping their
dynamics in the weakly nonlinear regime.

For supercritical systems, we have considered feedback
control of the quadratic term breaking the reflection symme-
try. Within the framework of the model described by Eqs.
�4a� and �4b�, we have derived a system of amplitude equa-
tions with a global control term. The analysis of the solutions
of this system shows that the stability regimes of the typical
roll and hexagon patterns can be manipulated. The corre-
sponding stability boundaries, given by conditions �6� and
�9�, are shown to depend on the parameter p, characterizing
the control strength. In particular, we have demonstrated that
rolls can be completely destabilized for p�3/4, and hexa-
gons can be completely stabilized for 1 /4� p
5/4. For p

0, a transition between up and down hexagons is induced
for larger values of �. In addition, we have shown that, for
p
0, feedback control can stabilize the mixed-mode solu-
tion corresponding to a skewed hexagonal pattern and found
the mixed-mode stability boundaries to be given by �12�.
Numerical simulations of the system �4a� and �4b� confirm

these conclusions. We note that our control method is differ-
ent from that studied theoretically and experimentally in
�29,30�, where the Fourier-filtering method was used to con-
trol the competition between up and down hexagons, rolls,
and patterns with other symmetries in nonlinear optical sys-
tems. Instead of applying feedback to the input signal itself,
our control method is based on changing physical parameters
of the system with feedback from the observed pattern. This
could be implemented experimentally by, say, applying an
external field to an active medium.

For subcritical systems, we have considered feedback
control of the linear growth rate. Within the framework of
the model described by Eqs. �13a� and �13b�, we have shown
that, for sufficient control strengths, the finite-time blowup
can be suppressed. We have investigated systems both with
and without a reflectional symmetry, corresponding to �=0
and ��0, respectively. For both types of system, the chosen
feedback control leads to the formation of spatially localized
structures. In systems with reflection symmetry ��=0�, the
formation of radially symmetric, localized target patterns is
observed. In systems without this symmetry ���0�, local-
ized hexagonal patterns develop instead. The spatial localiza-
tion domain increases with increase of the control strength.

We have also investigated the possible effects of delay in
the feedback control of Eq. �1�. We have found that, in the
case of a supercritical instability with feedback control �2�,
the dynamics remain mostly unchanged for small delay val-
ues. For larger delay values, the feedback takes longer to be
initiated, and the system has the possibility of stabilizing to
the expected pattern in the absence of feedback control. In
the case of a subcritical instability with feedback control �3�,
a sufficiently large delay can induce oscillations of the pat-
tern amplitude. The amplitude of these oscillations grows
with an increase of the delay and blows up past a critical
delay value. We should note that the feedback delay studied
in this paper is different from that used in works such as
�61,62�, where the delay value was specifically chosen to
affect the target pattern. In our analysis, the delay is not
chosen at will but is determined from any experimental lag
in the feedback loop.
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