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We generalize a sampling algorithm for lattice animals �connected clusters on a regular lattice� to a Monte
Carlo algorithm for “graph animals,” i.e., connected subgraphs in arbitrary networks. As with the algorithm in
�N. Kashtan et al., Bioinformatics 20, 1746 �2004��, it provides a weighted sample, but the computation of the
weights is much faster �linear in the size of subgraphs, instead of superexponential�. This allows subgraphs
with up to ten or more nodes to be sampled with very high statistics, from arbitrarily large networks. Using this
together with a heuristic algorithm for rapidly classifying isomorphic graphs, we present results for two protein
interaction networks obtained using the tandem affinity purification �TAP� method: one of Escherichia coli
with 230 nodes and 695 links, and one for yeast �Saccharomyces cerevisiae� with roughly ten times more nodes
and links. We find in both cases that most connected subgraphs are strong motifs �Z scores �10� or antimotifs
�Z scores �−10� when the null model is the ensemble of networks with fixed degree sequence. Strong
differences appear between the two networks, with dominant motifs in E. coli being �nearly� bipartite graphs
and having many pairs of nodes that connect to the same neighbors, while dominant motifs in yeast tend
towards completeness or contain large cliques. We also explore a number of methods that do not rely on
measurements of Z scores or comparisons with null models. For instance, we discuss the influence of specific
complexes like the 26S proteasome in yeast, where a small number of complexes dominate the k cores with
large k and have a decisive effect on the strongest motifs with 6–8 nodes. We also present Zipf plots of counts
versus rank. They show broad distributions that are not power laws, in contrast to the case when disconnected
subgraphs are included.
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I. INTRODUCTION

Recently, there has been an increased interest in complex
networks, partly triggered by the observation that naturally
occurring networks tend to have fat-tailed or even power law
degree distributions �1,2�. Thus real-world networks tend to
be very different from the completely random Erdös-Renyi
�3� networks that have been much studied by mathemati-
cians, and which give Poissonian degree distributions. In ad-
dition, most networks have further significant properties that
arise either from functional constraints, from the way they
have grown �fat tails, e.g., are naturally explained by prefer-
ential attachment�, or for other reasons. As a consequence, a
large number of statistical indicators have been proposed to
distinguish between networks with different functionality
�neural networks, protein transcription networks, social net-
works, chip layouts, etc.� and between networks which were
specially designed or which have grown spontaneously �such
as, e.g., the world wide web�, under more or less strong
evolutionary pressure. These observables include various
centrality measures �4�, assortativity �the tendency of nodes
with similar degree to link preferentially� �4�, clustering
�5,6�, different notions of modularity �2,7–10�, properties of
loop statistics �11�, the small world property �i.e., slow in-
crease of the effective diameter of the network with the num-
ber of nodes� �12�, bipartivity �the prevalence of even-sized
closed walks over closed walks with an odd number of steps�
�13�, and others.

The frequency of specific subgraphs form a particular
class of indicators. Subgraphs that occur more frequently

than expected are referred to as motifs, while those occurring
less frequently are antimotifs �14–17�. Typically, motif
search requires a null model for deciding when a subgraph is
overabundant or underabundant. The most popular null
model so far has been the ensemble of all random graphs
with the same degree sequence. This popularity is largely
due to the fact that it can be simulated easily by means of the
so-called “rewiring algorithm” �18,19�. As we shall see,
however, in the present analysis its value is severely limited,
because it gives predictions that are too far from those actu-
ally observed. Other null models that retain more properties
of the original network have been suggested �14,21�, but
have received much less attention. Analytic approaches to
null models are discussed in Refs. �22–24�.

A. Motifs and the search for structure

Up to now, motif search has been mainly restricted to
small motifs, typically with three or four nodes. Certain spe-
cific classes of larger subgraphs have been examined in Refs.
�16,20,32�. With the exception of Ref. �31�, few systematic
attempts have been made to learn about significant structures
at larger scale, by counting all possible subgraphs. �For a
different approach to the discovery of structure than dis-
cussed here, see the work on inference of hierarchy in Ref.
�25�.�

One reason for this is that the number of nonisomorphic
�i.e., structurally different� subgraphs in any but the most
trivial networks increases extremely fast �superexponen-
tially� with their size. For instance, the number of different
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undirected graphs with 11 nodes is �109 �26�. Thus exhaus-
tive studies of all possible subgraphs with �10 nodes be-
comes virtually impossible with present-day computers. But
just because of this inflationary growth, counts at intermedi-
ate sizes contain an enormous amount of potentially useful
information. Another obstacle is the notorious graph isomor-
phism problem �27,28�, which is in the NP class �though
probably not NP complete �29��. Existing state of the art
programs for determining whether any two graphs are iso-
morphic �30� remain too slow for our purpose. Instead, we
shall use heuristics based on graph invariants similar to those
put forward in Ref. �31�, where intermediate size motifs and
antimotifs in the protein interaction network of Escherichia
coli were detected.

The last problem when studying larger motifs, and the
main one addressed in the present work, is the difficulty of
estimating how often each possible subgraph appears in a
large network, i.e., of obtaining a “subgraph census.” Most
studies so far were based on exact enumeration. In a network
with N nodes, there are � N

n
� subgraphs of size n. With N

=500 and n=6, say, this number is �5�1011. In addition,
most of the subgraphs generated this way on a sparse net-
work would be disconnected, while connected subgraphs are
of more intrinsic interest. Thus some statistical sampling is
needed. If one is willing to generate disconnected as well as
connected subgraphs, then uniform sampling is simple: Just
choose random n-tuples of nodes from the network �31�.
Uniform sampling connected subgraphs is less trivial. To our
knowledge, the only work which addressed this systemati-
cally was Kashtan et al. �32� �for a less systematic approach,
see also �33��. There, a biased sampling algorithm was put
forward. While generating the subgraphs is fast, computing
the weight factor needed to correct for the bias is exp�O�n��,
making their algorithm inefficient for n�7.

B. Graph animals

In the present paper we exploit the fact that sampling
connected subgraphs of a finite graph resembles sampling
connected clusters of sites on a regular lattice. The latter is
called the lattice animal problem �34�, whence we propose to
call the subgraph counting problem that of graph animals. It
is important to recognize obvious differences between the
two cases. In particular, lattices are infinite and translation-
ally invariant, while networks are finite and heterogeneous
�disordered�. For lattice animals one counts the number of
configurations up to translations �i.e., per unit cell of the
lattice�, while on a network the quantity of immediate inter-
est is the absolute number of occurrences of particular sub-
graphs. Still, apart from these issues, the basic operations
involved in both cases coincide.

Algorithms for enumerating lattice animals exactly exist
and have been pushed to high efficiency �35�, but are far
from trivial �36�. Due to disorder, we should expect the situ-
ation to be even worse for graph animals. Algorithms for
stochastic sampling of lattice animals are divided into two
groups: Markov chain Monte Carlo �MCMC� algorithms
take a connected cluster and randomly deform it while pre-
serving connectivity �37–39�, while “sequential” sampling

algorithms grow the cluster from scratch �40,41,43,44�. Even
for regular lattices, MCMC algorithms seem less efficient
than growth algorithms �41�. For networks, this difference
should be even more pronounced, since MCMC algorithms
would dwell in certain parts of the network, and averaging
over the different parts costs additional time. Thus we shall
in the following concentrate only on growth algorithms.

All growth algorithms similar to those in �40,41,43,44�
produce unbiased samples of percolation clusters. As ex-
plained in Sec. II, this means that they sample clusters or
subgraphs with nonuniform probability �for an alternative
algorithm, see �45��. Consequently, computing graph animal
statistics requires the computation of weights to be assigned
to the clusters, in order to correct for the bias. In contrast to
the algorithm in Ref. �32�, the correct weights are easily and
rapidly calculated in our graph animal algorithm. This is its
main advantage.

C. Summary

In Sec. II we present the graph animal algorithm in detail.
The method used to handle graph isomorphism is briefly
reviewed in Sec. III. Extensive tests, mostly with two protein
interaction networks, one for E. coli with 230 nodes and 695
links �46�, and one for yeast with 2559 nodes and 7031 links
�47�, are presented in Sec. IV �48�. Both networks were ob-
tained using the tandem affinity purification �TAP� method.
In particular, our algorithm involves as a free parameter a
percolation probability p. For optimal performance, in lattice
animals p should be near the critical value where cluster
growth percolates �41�. We show how the performance for
graph animals depends on p, on the subgraph size n, and on
other parameters. In Sec. V we use our sampling method to
study these two networks systematically. We verify that large
subgraphs with high link density are overwhelmingly strong
motifs, while nearly all large subgraphs with low link density
are antimotifs �16,31�—although our data show much more
structure than suggested by the scaling arguments of �16�.
We also find striking differences in the strongest motifs for
the two networks. Dominant motifs for the E. coli network
are either bipartite or close to it �with many nodes sharing
the same neighbors� while “tadpoles” with bodies consisting
of �almost� complete graphs dominate for yeast. Our conclu-
sions and discussions of open problems are given in Sec. VI.

The present work only addresses undirected networks, but
the graph animal algorithm works without major changes
also for directed networks. Due to the larger number of dif-
ferent directed subgraphs, an exhaustive study of even mod-
erately large subgraphs is much more challenging �42�.

II. ALGORITHM

In this section we explain how our algorithm achieves
uniform sampling of connected subgraphs in undirected net-
works. The graph animal algorithm executes a generalization
of the Leath algorithm for lattice animals. The observation
central to the work in Refs. �40,41,44� is that the animal and
percolation ensembles concern exactly the same clusters. The
only difference between the two ensembles is that clusters in
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the percolation ensemble have different weights, while all
clusters with the same number of nodes �sites� have the same
weight in the animal ensemble. We focus on site percolation
�49�. Bond percolation could also be used �41�, but this
would be more complicated and is not discussed here.

A. Leath growth for graph animals

For regular lattices and undirected networks we use the
following epidemic model for growing connected clusters of
sites �40�:

�1� Choose a number p� �0,1� and a maximal cluster size
nmax. Label all sites �nodes� as “unvisited.”

�2� Pick a random site �node� i0 as a seed for the cluster,
so that the cluster consists initially of only this site; mark it
as “visited.”

�3� Do the following step recursively, until all boundary
sites of the cluster have been visited, or until the cluster
consists of nmax sites, whichever comes first: �Note that a
boundary site of a cluster C is a site which is not in C, but
which is connected to C by one or more edges�.

�A� Choose one of the unvisited boundary sites of the
present cluster, and mark it as visited;

�B� with probability p join it to the cluster.
Once a boundary site has been visited, it cannot later join

the cluster; it either joins the cluster when it is first visited
�with probability p� or is permanently forbidden to join �with
probability 1− p�.

The order in which the boundary �or “growth”� sites are
chosen influences the efficiency of the algorithm, but this is
irrelevant for the present discussion. The growth algorithm
can be seen as an idealization of an epidemic process �“gen-
eralized” or SIR epidemic �51,52�� with three types of indi-
viduals �susceptible, infected, removed�. Starting with a
single infected individual with all others susceptible, the in-
fected individual can infect neighbors during a finite time
span. Everyone either gets infected or does not at his �her�
first contact. The latter are removed, as are the infected ones
after their recovery, and do not participate in the further
spread of the epidemic.

Assume that for some fixed node i0, a connected labeled
subgraph G� exists, which contains i0 and has n�nmax nodes
and b visited boundary nodes. The chance that precisely this
particular labeled subgraph will be chosen using the algo-
rithm is

PG��p;i0� � Pnb�p;i0� = pn−1�1 − p�b. �1�

Since an independent decision is made at each boundary site,
this is indeed the probability for n−1 sites to be selected to
join the cluster, while b sites are rejected.

Denote by c�G�� the indicator function for the existence
of G�, i.e., c�G��=1 if the subgraph exists in the network,
and c�G��=0 otherwise. Furthermore, denote by c�G� ; i0� the
explicit indicator that G� exists and contains the node i0.
Then the total number of occurrences of the unlabeled sub-
graph G is given by

cG = n−1�
i=1

N

cG,i = n−1�
i0=1

N

�
G��G

c�G�;i0� , �2�

where cG,i is the number of occurrences that contain node i,
and where the last sum runs over all labeled subgraphs G�

that are isomorphic to G. The factor n−1 takes into account
that a subgraph with n nodes is counted n times.

If we repeat the epidemic process M times, always start-
ing at the same node i0, then the expected number of times
G� occurs is

	m�G�;p,i0�
 = Mc�G�;i0�PG��p;i0� . �3�

Hence, an estimator for cG,i based on the actual counts
m�G� ; P , i0� after M trials is

ĉG,i0
�M� = M−1 �

G��G

m�G�;p,i0��PG��p;i0��−1. �4�

Here and in what follows carets always indicate estimators.
More generally, the starting nodes are chosen according to

some probability Qi0
. After M �1 trials in total, site i0 will

have been used as a starting point on average Qi0
M times.

This gives then the estimator for the total number of occur-
rences of G,

ĉG�M� = n−1�
i0=1

N

ĉG,i0
�Qi0

M�

= �nM�−1�
i=1

N

Qi
−1 �

G��G

m�G�;p,i��PG��p;i��−1. �5�

It is simplest to take a uniform probability Qi0
=1/N. But a

better alternative is to choose each node with a probability
proportional to its degree, as nodes with larger degrees have
more connected subgraphs attached to them. This is accom-
plished by choosing a link with uniform probability 1 /L,
where L is the total number of links in the network, and then
choosing one of the two ends of this link at random. This
gives

Qi = �2L�−1ki. �6�

The algorithms of �40,44� are directly based on Eq. �5�.
Their main drawback is that all information from clusters
that are still growing at size n is not used. Clusters whose
growth had stopped at sizes �n do not contribute to ĉG ei-
ther, of course. Thus only those that stop growing exactly at
size n are used in Eq. �5�. This requires, among other things,
a careful choice of p: If p is too large, too many clusters
survive past size n, while in the opposite case too few reach
this size at all. But even with the optimal choice of p, most
of the information is wasted.

B. Improved Leath method

The major improvement comes from the following obser-
vation �41�: Assume that a cluster has grown to size n, and
among the b boundary sites there are exactly g that have not
yet been tested �“growth sites”�. Thus growth has definitely
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stopped at b−g already visited boundary sites, while the
growth on the remaining g boundary sites depends on future
values of the random variable used to decide whether they
are going to be infected. With probability �1− p�g none of
them are susceptible, and the growth will stop at the present
cluster size n. Thus we can replace the counts m�G� ; p , i0� in
the estimator for cG by the counts of “unfinished” subgraphs,
provided we weigh each occurrence of a subgraph isomor-
phic to G with an additional weight factor �1− p�g. Formally,
this gives, with uniform initial link selection �Eq. �6��,

ĉG =
2L

nM
�
i=1

N

ki
−1 �

G��G

p1−n�1 − p�g−bmunfinished�G�;p,i,g� .

�7�

The quantity munfinished�G� ; p , i ,g� is the number of epidem-
ics �with parameter p� that start at node i, give a labeled
subgraph G� of infected nodes, and leave g unvisited bound-
ary nodes. The factor p1−n�1− p�g−b has a simple interpreta-
tion. In analogy to Eq. �1�� it is the probability to grow a
cluster with n−1 nodes in addition to the start node, g
growth nodes, and b−g blocked boundary nodes,

Pnbg�p;i0� = pn−1�1 − p�b−g. �8�

Equation �7� is the number of generated clusters, reweighted
with their inverse probabilities to be sampled, given they
exist. It is the formula we use to estimate frequencies of
occurrences of connected subgraphs in the protein interaction
networks as discussed later in the text.

C. Resampling

In principle, Eq. �7� can be improved further. Reference
�41� shows how to use the equivalents of Eqs. �7� and �8� for
lattice animals as a starting point for a resampling scheme.
For completeness, resampling for graph animals is briefly
explained, even though it is not used in this work.

For each cluster that is still growing a fitness function is
defined as

fnbg�p� = p1−n�1 − p�−b = �Pnbg�p;i0��−1/�1 − p�g. �9�

Clusters with too small fitness are killed, while clusters with
too large fitness are cloned, with both the fitness and the
weight being split evenly among the clones. The first factor
in the fitness is just proportional to the weight, while the
second factor takes into account that clusters with larger g
have more possibilities to continue their growth, and thus
should be more “valuable.” The precise form of Eq. �9� is
purely heuristic, but was found to be near optimal in fairly
extensive tests.

This resampling scheme was found to be essential, if one
wants to sample clusters of sizes n�100. In �41�, the em-
phasis was on very large clusters �several thousand sites�,
and thus resampling was a necessity. Here, in contrast, we
concentrate on subgraphs with �10 nodes or less, and stick
to the simpler scheme without resampling. With respect to
graph animals, we point out that optimal fitness thresholds
for pruning and cloning depend in an irregular network on

the start node, i0, and have to be learned for each i0 sepa-
rately. Although a similar strategy achieves success for deal-
ing with self-avoiding walks on random lattices �50�, this is
much more time consuming than for regular lattices.

D. Implementation details

For fast data access, we used several redundant data struc-
tures. The adjacency matrix was stored directly as a N�N
matrix with elements 0/1 and as a list of linked pairs �i , j�,
i.e., as an array of size L�2. The first is needed for fast
checking of which links are present in a subgraph, while the
second is the format in which the networks were downloaded
from the web. Finally, for fast neighbor searches, the links
were also stored in the form of linked lists. To test whether a
site was visited during the growth of the present �say kth, k
=1. . .M� subgraph, an array s�i� of size N and type unsigned
int was used, which was initiated as s�i�=0, i=0, . . . ,N−1.
Each time a site i was visited, we set s�i�=k, and s�i��k was
used as indicator that this site had not been visited during the
growth of the present cluster.

In Leath-type cluster growth, there are two popular vari-
ants. Untested sites in the boundary can be written either into
a first-in first-out queue, or into a stack �first-in last-out
queue�. In was found in �41� that these two possibilities,
whose efficiency is roughly the same when Eq. �5� is used,
give vastly different efficiency with Eq. �7�, in particular �but
not only�, in combination with resampling. In that case, the
first-in first-out queue gives much better results, and we use
this method to get the numerical results shown later.

III. SUBGRAPH CLASSIFICATION

After sampling a labeled subgraph G�, one has to find its
isomorphism class G �i.e., G��G�, by testing which of the
representatives for isomorphism classes it can be mapped
onto by permuting the node labels. State-of-the-art computer
programs for comparing two graphs, such as NAUTY �30�,
proceed in two steps. First, some invariants are calculated
such as the number of links, traces of various powers of the
adjacency matrix, a sorted list of node degrees, etc. In most
cases, this shows that the two graphs are not isomorphic �if
any of these invariants disagree�, but obviously this does not
resolve all cases. When ambiguities remain, each graph is
transformed into a standard form by a suitable permutation,
and the standard forms are compared. The standard form is,
of course, also a special invariant, so the distinction between
“invariants” and “standard form” might seem arbitrary. It
becomes relevant in practice, since the user of the package
can specify which invariants �s�he deems relevant, while the
calculation of the standard form is at the core of the algo-
rithm and cannot be changed.

It is mostly the second step in this scheme, which is time
limiting and which renders it useless for our purposes—
although some invariants suggested, e.g., by NAUTY are also
quite demanding in CPU time. Thus we skip the second step
and only use invariants that are fast to compute. All these
invariants, except for the number n of nodes and the number
� of links in the subgraph, are combined into a single index
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I, which is intended to be a good discriminator between all
nonisomorphic subgraphs with the same n and �. Whenever
a new subgraph is found, the triplet �n , � , I� is calculated and
compared to triplets that have already appeared. If the triplet
appeared previously, the counter for this triplet is increased
by 1; if not, a new counter is initiated and set to 1.

Since no known invariant �other than standard form� can
discriminate between any two graphs, any method not using
it is necessarily heuristic. Some of the invariants we used are
those defined in Ref. �31�. In addition, we use invariants
based on powers of the adjacency matrix and of its compli-
ment. More precisely, if Aij is the adjacency matrix of a
subgraph, then we define its complement by Bij =1−Aij for
i� j and Bij =0=Aij for i= j. Any trace of any product
Aa1Bb1Aa2. . . is invariant, and can be computed quickly. The
same is true for the number of nonzero elements of any such
product, and for the sum of all its matrix elements. The index
I is then either a linear combination or a product �taken
modulo 232� of these invariants. The particular choices were
ad hoc and there is no reason to believe they are optimal;
hence those details are not given here.

With the indices described in �31�, all undirected graphs
of sizes n�8 and all directed graphs with up to five nodes
are correctly classified. In this work, a faster algorithm for
counting loops is used; hence loop counting is always in-
cluded, in contrast to the work of �31�. Index calculation
based on matrix products is even faster but less precise: only
11 112 out of all 11 117 nonisomorphic connected graphs
with n=8 were distinguished, and for directed graphs with
n=5 just four graphs out of 9608 �53� were missed. For
larger subgraphs we were not able to test the quality of the
indices systematically, but we can cite some results for n
=9. Using indices based on matrix products, we found
239 846 different connected subgraphs with n=9 in the E.
coli protein interaction network �46� and its rewirings. Given
the fact that there are only 261 080 different connected
graphs with n=9 �53�, that many of them might not appear in
the E. coli network, and that our sampling was not exhaus-
tive, our graph classification method failed to distinguish at
most 9% of the nonisomorphic graphs—and probably many
fewer.

IV. NUMERICAL TESTS OF THE
SAMPLING ALGORITHM

To test the graph animal algorithm, we first sampled both
n=4 and n=5 subgraphs of the E. coli network, as well as
n=4 subgraphs of the yeast network. In these cases exact
counts are possible, and we verified that the results from
sampling agreed with results from exact enumeration within
the estimated �very small� errors. To obtain these results we
used crude estimates for optimal p values, namely, p=0.11
for E. coli and p=0.03 for yeast. For larger subgraphs more
precise estimates for the optimal p are required.

Optimal values for p

When p is too small, only small clusters are regularly
encountered. If p is too large, performance decreases because

the weight factors in Eq. �7� depend too strongly on the
number of blocked boundary sites b−g. The latter varies
from instance to instance, and this can create huge fluctua-
tions in the weights given to individual subgraphs.

The networks we are interested in are sparse �L /N
�const�N� and approximately scale-free �47�. As a result,
most nodes have only a few links, but some “hubs” have
very high degree. In fact, the degrees of the strongest hubs
may diverge in the limit N→	. For such networks it is well
known that the threshold for spreading of an infinite SIR
epidemic is zero �54�. On finite networks this means that one
can create huge clusters even for minute p, and this tendency
increases as N increases. Thus, we anticipate the optimal p to
be small, and to decrease noticeably in going from the E. coli
�N=230� to the yeast network �N=2559�. This is, in fact,
what we find.

As a first test, we compute the root mean square relative
errors of the subgraph counts, averaged over all subgraphs of
fixed size n. Let 
n be the number of different subgraphs of
size n found, and let �cG be the error of the count for sub-
graph G. These errors were estimated by dividing the set of
M independent samples into bins, and estimating the fluctua-
tions from bin to bin. Then

�n�p� = � 1


n
�
j=1


n

��cGj
/ĉGj

�2�1/2

. �10�

Smaller values of �n�p� indicate that the subgraph census is
on average more precise. Figure 1 shows results for the yeast
network, with various values of p and n. Also shown are data
for the E. coli network, for n=7. Each simulation used for
this figure �i.e., each data point� involved M =4�109 gener-
ated clusters. Our first observation is that the results for E.
coli are much more precise than those for yeast. This is
mainly due to smaller hubs �kmax

E. coli=36, while kmax
yeast=141�, so

that much larger p values �55� could be used. Also in all
other aspects, our algorithm worked much better for the E.
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FIG. 1. �Color online� Root mean square relative errors of con-
nected subgraph counts, Eq. �10�, for the yeast �n=5 to 8� and E.
coli �n=7� networks. In most cases, clear minima indicate roughly
the optimum value for p, with caveats as explained in the text. Each
data point is based on 4�109 generated subgraphs. Smaller values
of �n�p� indicate that the census for subgraphs with n nodes is on
average more precise.
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coli network than for yeast. Therefore we exhibit in the rest
of this section only results for yeast, implying that whenever
a test was positive for yeast, an analogous test had been
made for E. coli with at least as good results.

Even with the large sample sizes used in Fig. 1, many n
=8 subgraphs were found only once �in which case we set
�cGj

/ ĉGj
=1�, which explains the high values of �8�p�. This

is also why we do not show any data for n�8 in Fig. 1. The
relative error �n�p� for each n�8 shows a broad minimum
as a function of p. The increase in �n�p� at small p is because
of the paucity of different graphs being generated. This effect
grows when n increases, explaining why the minimum shifts
to the right with increasing n. The increase of �n�p� for large
p, in contrast, comes from large fluctuations of weights for
individual sampled graphs. When p is large, the factor �1
− p�b−g in Eq. �7� can also be large, particularly in the pres-
ence of strong hubs.

Unfortunately, if a subgraph is found only once, it is im-
possible to decide whether or not the frequency estimate is
reliable. Even for strong outliers, when the frequency esti-
mate is far too large, the formal error estimate cannot be
larger than �cG=O�ĉG�. This underestimates the true statis-
tical errors and is partially responsible for the fact that the
curve for n=8 in Fig. 1 does not increase at large p �56�.

A more direct understanding of the decreasing perfor-
mance at large p comes from histograms of the �logarithms
of� weight factors. Such histograms, for n=8 subgraphs in
the yeast network, are shown in Fig. 2. From the results in
Sec. II,

w =
2L

nMk
p1−n�1 − p�g−b �11�

is the weight for a subgraph with n nodes, b boundary nodes,
and g growth nodes. The algorithm produces reliable esti-
mates if P�w� decreases for large w faster than 1/w2, since
averages �which are weighted by w� are then dominated by
subgraphs that are well sampled. If, in contrast, P�w� de-

creases more slowly, then the tail of the distribution domi-
nates, and the results cannot be taken at face value �57�. We
observe from Fig. 2 that the data for n=8 is indeed reliable
for p�0.07 only. The curve for p=0.09 in Fig. 2 also bends
over at very large values of w, indicating that even for this p
our estimates should finally be reliable, when the sample
sizes become sufficiently large. But this would require ex-
tremely large sample sizes.

As a last test we checked whether the estimates ĉG are
independent of p as they should be. Figure 3 shows the es-
timates obtained for n=8 subgraphs in the yeast network
with p=0.025 and p=0.07 against those obtained with p
=0.04. Clearly, the data cluster along the diagonal—showing
that the estimates are basically correct. They scatter more
when the counts are lower �i.e., in the lower left corner of the
plot�. The asymmetries in that region result from the fact that
rarely occurring subgraphs are completely missed for p
=0.04 and even more so for p=0.025, cutting off thereby the
distributions at small ĉG. For larger counts, the estimates for
p=0.025 are more precise than those for p=0.07. The latter
show high weight “glitches” arising from the tail of P�w�
discussed earlier in this section.

For increasing p, the numbers mG of generated subgraphs
of type G increase of course �as the epidemic survives
longer�, so that average weights, defined as 	wG
= ĉGM /mG,
decrease. But this decrease is not uniform for all G. Rather, it
is strongest for fully connected subgraphs ��=n�n−1� /2�,
and is weakest for trees. For the yeast network and n=8, e.g.,
	wG
 averaged over all trees decreases by a factor �18 when
p increases from 0.025 to 0.085, while 	wG
 averaged over
all graphs with ��25 decreases by a factor �1700. Smaller
values of 	wG
 are preferable, as they imply smaller fluctua-
tions. Thus it would be most efficient to use larger p values
for highly connected subgraphs, and smaller p for treelike
subgraphs. Counting very highly connected subgraphs—
where every node has a degree in the subgraph �k0, say—is
also made easier by first reducing the network to its k core
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FIG. 2. �Color online� Histograms of wP�ln w�=w2P�w� for
connected n=8 subgraphs of the yeast network. Each curve corre-
sponds to one run �4�109 generated subgraphs� with a fixed value
of p, with p increasing from the lower curves to the higher ones.
Results are more reliable, the further to the left the maximum of the
curve is and the faster the decrease of its tail at large w is.
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FIG. 3. �Color online� Scatter plots of ĉG�p=0.025� and ĉG�p
=0.07� against ĉG�p=0.04� for connected n=8 subgraphs of the
yeast network. The clustering of the data along the diagonal indi-
cates the basic reliability of the estimates, independent of the pre-
cise choice of p. Sample sizes were 4�1010 for p=0.04, 2.4
�1010 for p=0.025, and 8�109 for p=0.07. The latter two corre-
spond to roughly the same CPU time.
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with k=k0, and then sampling from the latter.

V. RESULTS

A. Characterization of the networks

As already stated, both networks as we use them are fully
connected �48�. The E. coli network has 230 nodes and 695
links, while the yeast network has 2559 nodes and 7031
links. Both networks show strong clustering, as measured by
the clustering coefficients �5�

Ci =
2

ki�ki − 1� �
j�m

Ajm, �12�

where ki is the degree of node i and the sum runs over all
pairs of nodes linked directly to i. In Fig. 4 we show aver-
ages of Ci over all nodes with fixed degree k. We see that
	C
k is quite large, but has a noticeably different dependence
on k for the two networks. While it decreases with k for E.
coli, it attains a maximum at k�15 for yeast.

The unweighted average clustering C̄=N−1�i=1
N Ci is

0.1947 for yeast, and 0.2235 for E. coli. Due to the different
behavior of 	C
k, the ranking is reversed for the weighted
averages

	C
 =

�
i=1

N

Ciki�ki − 1�

�
i=1

N

ki�ki − 1�

=
3n�

3n� + n∨
, �13�

where n� is the number of fully connected triangles on the
network and n∨ is the number of triads with two links �see
�6� for a somewhat different formula�. Numerically, this
gives 	C
=0.1948 for yeast and 0.1552 for E. coli. This can
be understood as a consequence of the fact that the relative
frequency of fully connected triangles is higher in yeast than
in E. coli: in yeast �E. coli� there are 6969 �478� triangles
compared to 86 291 �7805� triads with two links.

Associated with this difference are distinctions between
the k cores �58� of the two networks. Figure 5 shows the
sizes of the k cores against k. We see that the yeast network
contains nonempty cores with k up to 15. Moreover, the core
with k=15 has exactly 17 nodes. It is a nearly fully con-
nected subgraph with just one missing link. All 17 proteins in
this core are parts of the 26S proteasome, which consists of
20 or 21 proteins �59,60�. All these proteins presumably in-
teract very strongly with each other. When the interactions
between the proteins within the 26S proteasome are taken
out �the corresponding elements of the adjacency matrix are
set to zero�, the k core with highest k has k=12 and consists
of 15 nodes. All its nodes correspond to proteins in the me-
diator complex of RNA polymerase II �59�, which contains
20 proteins altogether. After eliminating all interactions be-
tween these, two 11 cores with, respectively, 13 and 14 nodes
remain, the first corresponding to the 20S proteasome and
the second corresponding to the RSC complex �59�. Again
these particular complexes have only a few more proteins
than those contained within their largest k cores, so they are
very tightly bound together. All remaining complexes appear
to be more loosely bound, so that much of the strong larger
scale clustering in the yeast network �involving 7–10 nodes�
can be traced to only a few tightly bound complexes. This
has a big effect on the subgraph counts, as we shall see.

B. Trends in subgraph counts

Subgraph counts ĉG for the Escherichia coli and yeast
networks, plotted against n2+2�, are shown in Figs. 6 and 7.
For large n we see a very wide range, with counts varying
between 1 and �108. In general, counts decrease with an
increasing number of links, i.e., trees are most frequent. This
is a direct consequence of the fact that the networks are
sparse. Even when n and � are fixed, the counts cG can range
over six orders of magnitude �e.g., for yeast with n=8 and
�=17�.

For the yeast network, there are clear systematic trends
for the counts at fixed n and �. The most frequent subgraphs
are those with strong heterogeneity, i.e., with a large varia-

0.001

0.01

0.1

1

0 20 40 60 80 100 120 140 160

<
C

>
k

degree k

yeast
e. coli

FIG. 4. �Color online� Average clustering coefficients for nodes
with fixed degree k plotted versus the degree, for the giant compo-
nent of the yeast and E. coli protein interaction networks. While the
clustering coefficient decreases with k for E. coli, it attains a maxi-
mum at k�15 for yeast.
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FIG. 5. �Color online� Sizes of the k cores for the two networks,
plotted against k. Notice that the k cores for yeast contain a nearly
fully connected cluster with 17 nodes. In addition to the core sizes
for the original networks, the figure also shows average core sizes
for rewired networks as discussed in Sec. V C.
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tion of the degrees �within the subgraph� of nodes, while the
most rare are those with minimal variation. Figure 8 shows
the counts ĉG for n=8 and with four different values of �
plotted against the variance of the degrees of the nodes
within the subgraph,

�2 =
1

n
�
i=1

n

ki
2 − �1

n
�
i=1

n

ki�2

. �14�

For all four curves we see a trend, where the count increases
with �, but hardly any trend like this is seen for the E. coli
network �data not shown�. The effect seen in the yeast data is
probably related to the very strongly connected core in that
network �see the last subsection�. As we shall also see later in
Sec. V D, subgraphs with high counts in yeast often have a
tadpole form with a highly connected body �which is part of
one of the densely connected complexes discussed in the last
section� and a short tail attached to it. These cores may also
be responsible for the main difference between Figs. 6 and 7,
namely, the strong representation of very highly connected
�large �� subgraphs in the yeast network. Taking out all in-

teractions within the 26S and 20S proteasomes, within the
mediator complex and within the RSC complex reduces sub-
stantially the counts for highly connected subgraphs. The
count for the complete n=7 subgraph, e.g., is reduced in this
way from 25164±68 to 682±23. The removal of interactions
within the 26S proteasome makes by far the biggest contri-
bution.

C. Zipf plots

In �31� it was found that “Zipf plots” �subgraph counts
versus rank� in the E. coli network exhibit power law behav-
ior, whose origin is not yet understood. The essential differ-
ence between the subgraph counts in �31� and in the present
paper is that we sample only connected subgraphs, while all
subgraphs with given n were ranked in �31�. Also, noting that
disconnected subgraphs are more likely to be sampled than
connected ones when picking nodes at random �due to the
sparsity of the networks�, we can go to much higher ranks for
the connected subgraphs.

Zipf plots for connected subgraphs in the E. coli network
are shown in Fig. 9. Each curve is based on 4�109–1010

generated subgraphs. Each is strongly curved, suggesting
that there are no power laws—at least for subgraph sizes
where we obtain reasonable statistics for the census. The
curves show less curvature for larger n, but this is a gradual
effect. It seems that the scaling behavior found in �31� was
mainly due to the presence of disconnected graphs, although
it is not immediately obvious why those should give scale-
free statistics either. In addition, the right hand tails of the
Zipf plots in �31� were cut off because of substantially lower
statistics. In our case, apparently sharp cutoffs in the counts
are observed for ranks �1.08�104 for n=8, �2.1�105 for
n=9, and �2.9�106 for n=10. For n�9 these are close to
the total number of different connected subgraphs �26�, sug-
gesting that we have fairly complete statistics. For n=10 the
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FIG. 6. �Color online� Counts for connected subgraphs with
fixed topology and with n�8 in the E. coli network, plotted against
n2+2�. The variable n2+2� is used to spread out the data, so that
the dependence on both n and � �number of links� can be seen
independently, without data points overlapping. For most of the
points, the error bars are smaller than the sizes of the symbols.
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FIG. 7. �Color online� Counts for subgraphs with fixed topology
and with n�8 in the yeast network, plotted against n2+2� as in
Fig. 6.
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FIG. 8. �Color online� Counts for n=8 subgraphs of the yeast
network with �=7, 10, 13, and 18, plotted against the variance of
the node degrees within the subgraphs, as given by Eq. �14�. Zero
variance means that all nodes have exactly the same degree,
whereas a higher variance indicates that the nodes differ more
widely. Typically, subgraphs with more variation in their nodes �and
thus with larger �2� have higher counts than those for which the
degrees within the subgraph are more uniform.
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cutoff is more affected by lack of statistics, but it is still
within a factor of four of the upper limit.

D. Null model comparison and motifs

One of the most striking results of �31� was that most
large subgraphs were either strong motifs or strong antimo-
tifs. However, this finding was based on rather limited statis-
tics and on a single protein interaction network. One of the
purposes of the present study is to test this and other results
of �31� with much higher statistics and for a larger network,
the protein interaction network of yeast.

To define a motif requires a null model. We take this to be
the ensemble of networks with the same degree sequence,
obtained by the rewiring method. The average subgraph
counts in the null ensemble are denoted as 	cG

�0�
. In Figs. 10
and 11 we plot the ratios cG / 	cG

�0�
 against the variable n2

+2� for each connected subgraph that was sampled both in
the original graph and in at least one of the rewired graphs.
The error bars, which include both statistical errors from
sampling and the ensemble fluctuations of the null model

estimated from several hundred rewired networks, are for
most points smaller than the symbols. A subgraph is a motif
�antimotif�, if this ratio is significantly larger �smaller� than
1. Even without rigorous criteria to estimate significance, it
is clear that most densely connected subgraphs are motifs in
the yeast network. The fact that trees or subgraphs with few
loops tend to be antimotifs might not be so evident from Fig.
11, since the ratios for trees and treelike graphs are close to
one. Thus we have to discuss significance more formally.

1. Z scores

Usually �31�, the significance of a motif �or antimotif� is
measured by its Z score

Z =
cG − 	cG

�0�

�G

�0� , �15�

where �G
�0� is the standard deviation of cG within the null

ensemble. A subgraph is a motif �antimotif�, if Z�1 �Z�
−1�.

The eight strongest motifs with n=7 in the E. coli net-
work according to this definition are shown in Fig. 12, to-
gether with their Z values. To name the strongest motifs in
the yeast network is less straightforward, since many sub-
graphs did not show up in any rewired network at all. As-
suming for those subgraphs �G

�0�= 	cG
�0�
=0 would give Z=	.
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FIG. 9. �Color online� “Zipf” plots showing the counts for indi-
vidual connected subgraphs with fixed n, plotted against their rank.
Data are for the E. coli network.
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FIG. 10. �Color online� Ratios between the count estimates ĉG

for connected subgraphs in the E. coli network, and the correspond-
ing average counts 	ĉG

�0�
 in rewired networks. The data are plotted
against n2+2�, again to spread the points out conveniently. Most
error bars are smaller than the symbols.
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FIG. 11. �Color online� Same as Fig. 10, but for the yeast net-
work. Notice that most data points for large n and � are missing.
Indeed, for n=7 all �!� data points with ��16 are missing, because
no such subgraphs were found in the rewired ensemble.

FIG. 12. The eight strongest motifs with n=7 in the E. coli
protein interaction network. These tend to be almost bipartite
graphs, and many pairs of nodes are linked to the same set of
neighbors. Their Z scores, in order from left to right, first then
second row, are 2.9�104, 932, 885, 648, 595, 532, 516, and 377.
Their estimated frequencies in the original E. coli network are, in
the same order: 20936±8, 161521±63, 8312±5, 1331±2, 838±2,
5985±5, 5165±4, and 519±1.
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Rough lower bounds on Z are obtained for them by assuming
that 	cG

�0�
�1/R and �G
�0��1/
R, where R is the number of

rewired networks that were sampled, giving Z�cG

R. Some

of the strongest motifs in the yeast network, together with
their estimated Z scores, are shown in Fig. 13. Note that no
n=7 graphs with ��16 were found in any of the realizations
of the null model, while they were all found in the real yeast
network. Hence these are all strong motifs. Those motifs in
Fig. 13 for which only lower bounds for the Z score are
given are the most frequent in the real network, hence they
have the highest lower bound. It was pointed out in �33,61�
that cliques �complete subgraphs� are in general very strong
motifs. In yeast, the n=7 clique �with �=21� is indeed a very
strong motif, but it does not have the largest lower bound on
the Z score. In comparison, antimotifs have rather modest Z
scores. The strongest antimotif with n=7 has Z=−32.9 �Z=
−24.7� for E. coli �yeast�.

With Z values up to 107 and more, as in Fig. 13, the
motivation for using Z scores becomes suspect. On the one
hand, the null model is clearly unable to describe the actual
network, and has to be replaced by a more refined null
model. This will be done in a future paper �42�. On the other
hand, it suggests one to use instead a Z score based on loga-
rithms of counts,

Zln =
ln cG − 	ln cG

�0�

�ln,G

�0� , �16�

where �ln,G
�0� is the standard deviation of ln cG

�0�. An advantage
of Eq. �16� would be that it suppresses �Z� for motifs, but
enhances �Z� for antimotifs.

In general, strong yeast motifs have a tadpole structure
with a complete or almost complete body, and a tail consist-
ing of a few nodes with low degree. This agrees nicely with
our previous observation that frequently occurring subgraphs
in the yeast network have strong heterogeneity in the degrees

of their nodes. In contrast, strong E. coli n=7 motifs with not
too many loops are all based on a 4-3 or 5-2 bipartite struc-
ture. When the number of loops increases, strictly bipartite
structures are impossible, but the tendency towards these
structures is still observed.

Whether we use Z scores or the ratio CG /CG
�0� to identify

motifs makes very little difference. Using either criterion, the
strengths of the strongest motifs skyrocket with subgraph
size. This is most dramatically apparent for the yeast net-
work. Indeed, correlations between Z scores of individual
graphs in the yeast and E. coli networks �data not shown� are
much weaker than correlations between count ratios. The
latter are shown in Fig. 14 for n=7 subgraphs.

2. Twinning versus clustering

Another characteristic feature of strong motifs in the E.
coli network is the tendency for “twin” nodes. We call two
nodes in a subgraph twins if they are connected to the same
set of neighbors in the subgraph. Otherwise said, nodes i and
k are twins, iff the ith and kth rows of the subgraph adja-
cency matrix are identical. Notice that twin nodes can be
created most naturally by duplicating genes. We found that
subgraphs with many pairs of twin nodes are, in general, also
motifs in the yeast network, but they do not stand out spec-
tacularly from the mass of other motifs. They could be the
“genuine” motifs also for yeast, but only a better null model
where all subgraphs actually occur with reasonable fre-
quency would be able to prove or disprove this.

In Fig. 14 we also indicated the dependence on the num-
ber ntwin of pairs of twin nodes, by marking subgraphs with
ntwin�3 �ntwin�1� by bullets �asterisks�. We see that all
strong motifs in E. coli have multiple pairs of twin nodes.
These subgraphs tend to be also motifs of comparable
strength in yeast—the bullets in Fig. 14 tend to cluster on the
diagonal �cG / 	cG

�0�
�E. coli= �cG / 	cG
�0�
�yeast. However, there are

FIG. 13. Eight very strong motifs with n=7 for the yeast protein
interaction network. These tend to be almost complete graphs with
a single dangling node. Four of these graphs were not seen in any
realization of the null model, so only lower bounds on their Z scores
can be given. From left to right, first then second row, the estimated
Z scores are �3�107, 9�105, �8�106, 5�105, �4�106, 3
�105, 2.5�105, and �1.5�106. Estimated frequencies are, in the
same order: 6.68�1��105, 9.27�5��104, 1.76�1��105, 4.84�1�
�105, 7.78�2��104, 3.13�6��105, 1.38�1��105, and 3.35�1�
�104.
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FIG. 14. �Color online� Count ratios cG / 	cG
�0�
 for individual

subgraphs in the E. coli network, plotted against the count ratio for
the same subgraph in the yeast network. To highlight the depen-
dence on the number of twin nodes in the subgraph, subgraphs with
ntwin�1�ntwin�3� are marked by asterisks �bullets�. Whereas al-
most all ratios are much higher in the yeast network, this is notice-
ably less true for subgraphs containing more than three pairs of twin
nodes. These tend to fall on the diagonal indicated by the dashed
line.
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even stronger motifs in yeast that have no twin nodes. These
graphs are typically much weaker motifs or not motifs at all
in E. coli.

As we have already indicated, many of the strong motifs
in yeast seem to be related to a few densely connected com-
plexes such as those discussed in Sec. V A. They are either
part of their cores, or they have most of their nodes in the
core, with one or two extra nodes forming the tail of what
looks like a tadpole. This effect is even more pronounced for
n=8 subgraphs. For instance, the three most frequent sub-
graphs with n=8 and �=17 all contained a six clique and
two nodes connected to it either in chain or in parallel. None
of them occurred even in a single rewired network.

The situation is different for the E. coli network. There,
the three most frequent graphs with eight nodes and 17 edges
also have a tadpole structure, few twin nodes, and low bipar-
tivity. But they are not very strong motifs since they occur
also frequently in the rewired networks. The three strongest
motifs with n=8 and �=17, in contrast, have many twin
pairs and high bipartivity. They have slightly lower counts
�by factors 2–4�, but occur much more rarely in the rewired
networks.

3. Effects of rewiring on differences between networks

Finally, Fig. 15 shows counts for individual subgraphs in
the E. coli network against counts for the same subgraph in
yeast. This is done for all four combinations of original and
rewired networks. We see that the correlation is strongest
when we compare rewired networks of E. coli to rewired
networks of yeast. This is not surprising. It means that a lack
of correlations is mostly due to special features of one net-
work, which are not shared by the other. Rewiring eliminates
most of these features. The other observation is that rewiring,
in general, reduces further the counts for subgraphs, which
are already rare in the original networks. This is mainly due
to the fact that such subgraphs are relatively densely con-
nected, and appear in the original networks only because of
the strong clustering. This effect is more pronounced for
yeast than for E. coli, because it is more sparse and has more
densely connected clusters or complexes.

VI. DISCUSSION

In this paper we have presented an algorithm for sampling
connected subgraphs uniformly from large networks. This
algorithm is a generalization of algorithms for sampling lat-
tice animals, hence we refer to it as a “graph animal algo-
rithm” and to the connected subgraphs as “graph animals.” It
allowed us to obtain high statistics estimates of subgraph
censuses for two protein interaction networks. Although the
graph animal algorithm worked well in both cases, the analy-
sis of the smaller network �E. coli� was much easier than that
of the bigger �yeast�. This was not so much because of the
sheer size of the latter �the yeast network has about ten times
more nodes and links than the E. coli network�, but was
mainly caused by the existence of stronger hubs. Indeed, the
presence of hubs places a more stringent limitation on the
method than the size of the network.

One of the main results is that many subgraph frequency
counts are hugely different from those in the most popular
null model, which is the ensemble of networks with fixed
degree sequence. Based on a comparison with this null
model, most subgraphs with size �6 in both networks would
be very strong motifs or antimotifs. This clearly shows that
alternative null models are needed, which take clustering and
other effects into account.

While this was not very surprising �hints of it had been
found in previous analyses�, a more surprising result is the
fact that the dominant motifs in the two protein interaction
networks show very different features. Most of these seem to
be related to the densely connected cores of a small number
of complexes in the yeast network, which have no parallels
in the E. coli network and which strongly affect the subgraph
census. Further studies are needed to disentangle these ef-
fects from other—possibly biologically more interesting—
effects.

Finally, a feature with likely biological significance is the
dominance of subgraphs with many twin nodes. These are
nodes which share the same list of linked neighbors within
the subgraph. They correspond to proteins which interact
with the same set of other proteins. The most natural expla-
nation for them is gene duplication. Connected to this is a
preference for �approximately� bipartite subgraphs. These
two features are very clearly seen in the E. coli network,
much less so in yeast. But it would be premature to conclude
that gene duplication was evolutionarily more important in
E. coli than in yeast. It is more likely that its effect is just
masked in the yeast network by other effects, most probably
by the densely connected complexes and other clustering ef-
fects, which do not show up to the same extent in E. coli.

Up to now, we know very little about the biological sig-
nificance of our findings. One main avenue of further work
could be to relate our results on subgraph abundances in
more detail to properties of the network that are associated
with biological function. Another important problem is the
comparison between network reconstructions, which suppos-
edly describe the same or similar objects. There exist, e.g., a
large number of published protein-protein interaction net-
works for yeast. Some were obtained by means of different
experimental techniques, either with conventional or with
high throughput methods, while others were obtained by
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comprehensive literature compilations. In a preliminary step,
we compared three such networks: The network obtained by
Krogan et al. �47� that was studied above, a somewhat older
network downloaded from �62� and attributed to Bu et al.
�63�, and the “high confidence” �HC� network of Batada et
al. �64�. The latter is the most recent. It was obtained by

extracting the most reliable interactions from a vast data
base, which includes the data of both Bu et al. and Krogan et
al. In Fig. 16 we plot the ratios between the actual counts
and the average counts in rewired networks for Bu et al. and
for the HC data set against the analogous ratios for the Kro-
gan et al. networks. If the three data sets indeed describe the
same yeast network—as they purport to do, within experi-
mental uncertainties—the points should all fall onto the di-
agonal. Instead, we see systematic deviations. Surprisingly,
these deviations are much stronger between the Krogan et al.
and the HC networks than between the Krogan et al. and the
Bu et al. networks. Clarifying these and other systematic
irregularities should give valuable insight into the strengths
and weaknesses of the methods used in constructing the net-
works as well as their biological reliability, and should lead
to improved methods for network reconstruction.

In the present paper we have only dealt with undirected
networks. The basic sampling algorithm works equally well
for directed networks. The main obstacle in applying our
methods to the latter is the huge number of directed sub-
graphs, even for relatively small sizes. Nevertheless, we will
present an analysis of directed networks in forthcoming
work, as well as applications to other undirected networks.
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